首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field study was conducted in 2013 and 2014 where cotton was exposed to three N regimes: (1) the control without N application (low N); (2) 260 kg N ha?1 (medium N); (3) 520 kg N ha?1 (high N). Boll size, lint mass per boll, seed mass per boll, fiber length and strength were significantly decreased under N deprivation in the two years. The increased carbohydrate levels of LSCB (leaf subtending the cotton boll) led to decreased carbohydrate levels of fibers in the low N relative to the other N treatments. The low N embryos exhibited lower starch concentrations at 17 and 31 DPA (days post anthesis), and TNC (total nonstructural carbohydrate) concentrations at 17, 31, 45 and 52 DPA compared to medium N embryos. Starch levels in LSCB had negative associations with those in fibers at 17, 31 and 45 DPA, but positive associations with those in embryos at 24 and 45 DPA. Fibers expressed negative associations with embryos in glucose level at 24 and 38 DPA, and in TNC levels at 17 and 45 DPA. The study suggests that carbon assimilate levels in fibers and embryos could explain the difference in boll yield components and fiber quality.  相似文献   

2.
于2008~2009年在长江流域下游棉区,选用纤维比强度差异明显的德夏棉1号(平均比强度26.2 cN/tex)、科棉1号(平均比强度35 cN/tex)和美棉33B(平均比强度32 cN/tex)为试验材料,设置不同施氮量以形成不同的棉铃对位叶氮浓度,研究了棉铃对位叶氮浓度对纤维发育过程中关键酶(蔗糖酶、蔗糖合成酶、磷酸蔗糖合成酶、-1, 3-葡聚糖酶)活性及纤维比强度形成的影响。结果表明,棉铃对位叶氮浓度随施氮量的增加而上升,随花后天数的变化符合幂函数方程YN=t-[YN:棉铃对位叶氮浓度(%);t:花后天数(d);、为参数]。在花后同一时期,纤维发育关键酶活性和纤维比强度均随棉铃对位叶氮浓度的上升呈先升后降的趋势,可用抛物线方程Y=ax2+bx+c拟合[Y:酶活性或纤维比强度(cN/tex);x:叶片氮浓度(%);a、b、c为参数]。表明在纤维发育过程中,棉铃对位叶氮浓度显著影响纤维中相关酶活性和纤维比强度的形成,各指标所对应的最佳棉铃对位叶氮浓度差异较小;因此,通过调节对位叶氮浓度可调控相关酶活性达到最优以及棉花高强纤维的形成。在本试验条件下,中部棉纤维发育所需的最佳对位叶氮浓度动态变化方程分别为:NDexiamian1=7.2841t-0.2771(R2=0.9860**);NKemian1=7.1807t-0.2989(R2=0.9879**);NNuCOTN33B=7.1467t-0.2819(R2=0.9755**)。  相似文献   

3.
Abstract

Sampling variability of petiole nitrates was evaluated on commercial, furrow‐irrigated cotton fields in southern Arizona. Analysis of individual petioles shows that sampling from the first mature leaf is best and when the maturity of the leaf is in question, it is better to sample the next older leaf. Field sampling methods used by a growers’ association were evaluated and confidence levels of their estimations were determined.  相似文献   

4.
ABSTRACT

The objective of this study was to examine the effect of late planting on sucrose metabolism in cotton bolls and the relationship to fiber properties and within-boll yield components. Two cotton lines A201 and A705 were employed in a sowing date experiment where two temperature regimes during boll maturation period were created at mean daily temperature of 26.8°C, 28.3°C for early planting and 25.2°C, 23.1°C for late planting in 2016 and 2017, respectively. Boll size, seed mass per boll, seed index and fiber length were increased, and lint percentage was decreased by late planting. Greater cell wall invertase activity and the resultant hexose concentration in fibers were observed in late planting, and thus led to decreased osmotic potential accounting for the enhanced fiber length. Similarly, late planting increased the maximum of vacuolar invertase activity in ovules occurring at 5 days post anthesis (DPA) and hexose concentrations in embryos from 10 DPA afterwards which may favor embryo cell division, and thus increase final seed size. Our data indicate that acid invertase and hexose are implicated in the formation of within-boll yield components and fiber properties as affected by the lower temperature regime due to late planting.  相似文献   

5.
ABSTRACT

Cotton is critical for phosphorus demands and very sensitive for its deficiency. However, identifying the effect of low-phosphorus tolerance on cotton growth, yield, and fiber quality by reducing phosphorus consumption. This may help to develop phosphorus-tolerant high-yielding cotton cultivars. In a two-year repeated (2015 and 2016) hydroponic experiment (using 0.01 and 1 mM KH2PO4), two cotton cultivars with phosphorus sensitivity (Lu 54; a low-phosphorus sensitive and Yuzaomian 9110; a low-phosphorus tolerant) were screened on the base of agronomic traits and physiological indices through correlation analysis, cluster analysis and principal component analysis from 16 cotton cultivars. Low phosphorus nutrition reduced the plant height, leaf number, leaf area, phosphorus accumulation and biomass in various organs of seedlings. The deficiency negatively affected the morphogenesis of seedlings, as well as yield and fiber quality. Further, these screened cultivars were tested in a pot experiment with 0, 50, 100, 150, 200 kg P2O5 ha?1 during 2016 and 2017. It was found to have a significant (P< 0.05) difference in boll number, lint yield, fiber strength, and micronaire at the harvest. Furthermore, after collectively analyzed the characteristics of Lu 54 and Yuzaomian 9110, there were six key indices that could improve the low phosphorus tolerance of cotton cultivars. These were root phosphorus accumulation, stem phosphorus accumulation percentage, leaf and total biomass of seedlings, seed cotton weight per boll and fiber length.  相似文献   

6.
To examine the combined effects of phosphorus (P) nutrition and CO2 on photosynthesis, chlorophyll fluorescence (CF), and nutrient utilization and uptake, two controlled‐environment experiments were conducted using 0.01, 0.05 and 0.20 mM external phosphate each at ambient and elevated CO2 (aCO2: 400 and eCO2: 800 µmol mol?1, respectively). The CF parameters were affected more by P nutrition than by CO2 treatment. Photoinhibition of photosystem II (PSII) was due to increased minimal CF (Fo′) and decreased maximal CF (Fm′), and efficiency of energy harvesting (Fv′/Fm′). In addition, reduced electron transport rate (ETR), the quantum yield of PSII (ΦPSII) and CO2 assimilation ( ), and overall photochemical quenching in the P‐deficient leaves led to reduction in the efficiency of energy transfer to the PSII reaction center. Stimulation in the ΦPSII/ and photorespiration (ETR/Pnet) was found under P deficiency, whereas the opposite was the case under CO2 enrichment. On average, photosynthetic rate (Pnet) and stomatal conductance declined by 50–53% at 0.05 mM P and by 70–72% at 0.01 mM P as compared to the 0.20 mM P treatment. However, P deficiency, especially at eCO2, tended to increase the intrinsic water‐use efficiency. In the P‐deficient plants, the decline in the P and N utilization efficiency (up to 91%) of biomass production was mainly associated with greater reduction in the biomass relative to the tissue P concentration as the P supply was reduced. However, it was significantly stimulated by eCO2 especially at higher P supply. The CO2 × P interaction was observed for some parameters such as Fo′, Fm′, P utilization efficiencies of photosynthesis and biomass production that might be attributed to the irresponsiveness of these parameters to eCO2 under low P treatment. Thus, P deficiency limited the beneficial effect of eCO2. A close relationship between total biomass and photosynthesis with the P and N utilization or uptake efficiencies was found. The P utilization efficiency of Pnet appeared to be stable across a range of leaf P concentrations, whereas the N‐utilization efficiency markedly increased with leaf P and differed between CO2 levels. An apparent effect of both the treatments (P and CO2) on N‐uptake and utilization efficiency also indicated the alteration in N acquisition and assimilation in cotton plants.  相似文献   

7.
Water and nitrogen (N) are two major factors limiting cotton growth and yield. The ability of plants to absorb water and nutrients is closely related to the size of the root system and the rooting space. Better understanding of the physiological mechanisms by which cotton (Gossypium hirsutum L.) adapts to water and N supply when rooting volume is restricted would be useful for improving cotton yield. In this study, cotton was grown in soil columns to control rooting depth to either 60 cm (root‐restriction treatment) or 120 cm (no‐root‐restriction treatment). Four water–N combinations were applied to the plants: (1) deficit irrigation and no N fertilizer (W0N0), (2) deficit irrigation and moderate N fertilizer rate (W0N1), (3) moderate irrigation and no N fertilizer (W1N0), and (4) moderate irrigation and moderate N fertilizer rate (W1N1). Results revealed that root restriction reduced root length density (RLD), root volume density (RVD), root mass density (RMD), superoxide dismutase (SOD) activity, nitrate reductase (NR) activity, total plant biomass, and root : shoot ratio. In contrast, root restriction increased aboveground biomass and yield. The RLD, RVD, RMD, and root : shoot ratio decreased in the order W0N0 > W1N0 > W0N1 > W1N1 in both the root‐restriction and no‐root‐restriction treatments. However, the opposite order (i.e., W1N1 > W0N1 > W1N0 > W0N0) was observed for SOD activity, NR activity, aboveground biomass, and seed yield. Our results suggest that, when N and water supplies are adequate, root restriction increases both root activity and the availability of photosynthates to aboveground plant parts. This increases shoot growth, the shoot : root ratio, and yield.  相似文献   

8.
【目的】本研究旨在揭示施氮量调控不同播种期棉铃对位叶光合产物形成与运转的生理机制,以期为棉花的合理氮肥运筹提供理论依据。【方法】试验于2005和2007年在中国农业科学院棉花研究所(河南安阳,黄河流域黄淮棉区)进行,以科棉1号和美棉33B品种为材料,设置大田不同播种期(4月25日和5月25日)和不同施氮量[低氮N 0 kg/hm2(N0)、适氮N 240 kg/hm2(N240)、高氮N 480 kg/hm2(N480)]处理,研究施氮量对不同播种期棉花产量和品质及棉铃对位叶光合产物的影响。【结果】1)4月25日播种条件下,随施氮量的增加棉铃对位叶中蔗糖含量先升高后降低,淀粉含量增加;随播种期的推迟,N240、N480处理下的棉铃对位叶蔗糖和淀粉含量差异不明显,但均显著高于N0处理;花后24~45 d,棉铃对位叶中蔗糖含量与叶氮浓度呈显著正相关,且相关系数随花后天数的增加而降低;花后17~24 d,蔗糖转化量与叶氮浓度呈显著负相关,至花后31~52 d,反而呈显著正相关(P0.01)。表明棉铃对位叶中适宜叶氮浓度有利于碳水化合物的累积。2)4月25日播种条件下,N0、N480处理对棉花单株铃数、铃重和皮棉产量影响为负效应,对纤维长度和麦克隆值影响较小;晚播低温条件下,N480处理的棉花铃重、皮棉产量、纤维比强度均有所提高,麦克隆值得以优化。因此,施氮量与播种期对纤维比强度和麦克隆值的影响存在补偿效应,晚播棉花增加施氮量可减小因低温而造成的纤维比强度降低的幅度,优化麦克隆值。【结论】本试验条件下,播种期(温度)和施氮量对棉铃对位叶光合产物含量、棉花产量和品质存在互作效应,其主导因素是播种期(温度),施氮量对其有补偿效应。随播种期的推迟,施氮量N 240 kg/hm2时棉花单铃重、产量及纤维品质降低的主要原因是晚播低温使棉铃对位叶中的光合产物(蔗糖和淀粉含量)增加,抑制了光合产物向棉铃及纤维的运输。晚播低温条件下,适量追施氮肥可调节棉铃对位叶中的氮浓度并提高光合产物再利用的能力,促进棉花单铃的形成,降低棉纤维比强度的下降幅度,优化麦克隆值。  相似文献   

9.
Silicon (Si) and salicylic acid (SA) foliar applications can benefit cotton yield especially if there is stress during cultivation. The objective of this study was to evaluate the foliar application of Si and SA on the photosynthetic variables and cotton yield. The experimental design used was randomized complete block, constituted by Si foliar application in potassium and sodium balanced silicate form (0 and 3.6?g L?1 of Si) and SA (0 and 210?mg L?1). The treatments were applied in three leaf sprays during the reproductive stage that coincided with water stress in tillage. Therefore, the Si foliar application associated with SA favors the physiological variables, increasing the photosynthesis, stomatal conductance and water use efficiency reflecting on the increase of cotton yield.  相似文献   

10.
为兼顾试验的重复性和生态区域性,选用高品质棉(科棉1号)和常规棉(美棉33B)品种为材料,于2005年分别在江苏南京(118o50E, 32o02N,长江流域下游棉区)和江苏徐州(11711E, 3415N,黄河流域黄淮棉区)设置施氮量(低氮:N 0 kg/hm2;适氮:N 240 kg/hm2;高氮:N 480 kg/hm2)试验,研究施氮量对不同开花期棉铃纤维细度、成熟度和马克隆值形成的影响。结果表明:(1)施氮量显著影响棉纤维细度、成熟度和马克隆值的形成过程,但三者在不同开花期对氮素水平的响应不同,施氮量与开花期对棉纤维细度、成熟度和马克隆值的形成存在互作效应。8月10日前开花的棉铃,铃期[花后0~50 d (DPA)]日均温在23.3 oC以上,纤维细度、马克隆值以N 0 kg/hm2施氮量下最大,棉纤维马克隆值与纤维细度的相关性较大;8月25日开花的棉铃(铃期日均温在20.8~23.3 oC之间),纤维成熟度、马克隆值以N 240 kg/hm2施氮量下最大;9月10日开花棉铃(铃期日均温低于20.8 oC),纤维细度、成熟度和马克隆值均以N 480 kg/hm2最大,棉纤维马克隆值与纤维成熟度的相关性增强。(2)影响不同开花期间纤维细度、成熟度和马克隆值的主要因素是铃期日均温,最终纤维细度、成熟度和马克隆值在不同施氮量之间的变异与不同开花期(铃期日均温不同)间的变异比较,前者显著小于后者。综上,因开花期不同而形成的铃期日均温是决定细度、成熟度和马克隆值的最重要因素,施氮量可通过对位叶叶氮浓度NA影响棉纤维细度、成熟度和马克隆值的形成过程,增加施氮量可减小上述指标在不同开花期间的差异。  相似文献   

11.
ABSTRACT

Recent developments in cotton (Gossypium hirsutum L.) production technology in the Mississippi River Delta region include drill planting cotton. Production systems that include drill planting cotton are referred to as ultra narrow row (UNR). Ultra narrow row cotton production is a low input system designed to maximize economic returns. Cotton grown under UNR systems is generally lower yielding and lower returning than conventionally spaced cotton, but the inputs and input costs are also generally reduced compared to conventionally spaced cotton production systems. Studies were conducted for five location-years in southeastern and northeastern Arkansas to determine the optimum N-fertilizer rate for UNR cotton. Plant maturity was estimated using nodes above white flower (NAWF) measurements. The NAWF indicated that greater nitrogen (N)-rates delayed maturity of the crop, although differences were not always significant. Lint yields were significantly different in only three of five location-years. Yield responses of UNR cotton tended to maximize with N-treatments between 56 and 84 kg N ha? 1 when significant differences were observed. Plant height, similar to lint yield, was significantly different due to N-treatments in three out of five location-years, and generally increased with increasing N-fertilization up to 112 kg N ha? 1. Boll load was significantly influenced by N-fertilization in only two of five location years. In these two instances, 84 kg N ha? 1 was sufficient to maximize boll load. Boll weight, a component of yield, was determined in the southern Arkansas location only. Significant differences in boll weight due to N-fertilization were found in only two of four years. Boll weight generally increased with increasing N-fertilization.  相似文献   

12.
A greenhouse hydroponic experiment was conducted to study the effects of cadmium (Cd; 0, 0.1, 1.0, 10 μM in nutrient solution) on yield and yield components as well as Cd concentration and accumulation in three cotton genotypes (Simian 3, Zhongmian 16, Zhongmian 16–2). The results showed that Cd concentration in different organs increased with increasing Cd levels in the nutrient solution in the following order: root > petiole > xylem > fruiting branch, leaf > phloem in vegetative organs and seed coat, seed nut > boll shell > fiber in reproductive organs. There were significant genotypic differences in functional leaf and petiole Cd concentrations at 1 and 10 μM Cd treatments, with the cultivar Simian 3 showing higher Cd concentrations and greater reductions in lint yield than the other two genotypes.  相似文献   

13.
施氮量对棉铃干物质和氮累积及分配的影响   总被引:4,自引:1,他引:3  
以高品质棉(科棉1号)和常规棉(美棉33B)品种为材料,2005年在江苏徐州(11711E, 3415N)、2007年在河南安阳(11413E, 3604N)设置施氮量(低氮N 0 kg/hm2,适氮N 240 kg/hm2,高氮N 480 kg/hm2)试验,研究施氮量对棉铃干物质、氮累积分配和棉铃(纤维、棉子)品质的影响。结果表明:施氮可改变棉铃各部分干物质和氮素的累积特征,进而影响棉铃重和棉铃品质。在本试验N 240 kg/hm2水平下,单铃棉子和纤维的干物质累积量最大,棉铃各部分(铃壳、纤维、棉子)氮含量适中、氮累积量最高,最终铃重最大,棉纤维和棉子品质最优;在不施氮(N 0 kg/hm2)时,棉铃干物质和氮快速累积期开始较早、累积速率较低,最终干物质和氮累积量均较低,铃重最低,棉纤维和棉子品质最差。在N 480 kg/hm2水平下,棉铃各部分(铃壳、纤维、棉子)的氮含量和累积量提高,且在成熟棉铃中棉纤维干物质的分配系数下降,棉子中的氮分配系数提高,最终棉子中蛋白质含量上升,铃重和棉纤维比强度、棉子油分含量均降低。综上所述,施氮量过低影响棉铃干物质和氮素的累积,而施氮量过高则主要影响棉铃干物质和氮素在铃壳、棉子和纤维间的分配,二者均导致最终的铃重降低、棉纤维和棉子品质变劣。  相似文献   

14.
The earliness is of great importance to cotton production in Mediterranean-type environments due to detrimental effects of autumn rainfall on lint quality. However, farmers commonly avoid early sowing due to risks of cold soil temperature and waterlogging after sowing in spring. Ridge-tillage system is one approach to increase soil temperature and mitigate adverse effects of waterlogging. The ridge-tillage system is also advantageous in reducing inputs in tillage operations. However, a limited experimental data are available about the effects of ridge-tillage system on earliness of harvesting, lint yield and quality of cotton in the Mediterranean-type environments. Thus, the objective of this study was to determine how ridge-tillage (RT)-planting system and intra-row spacing affect cotton lint yield, earliness and fiber quality compared with conventional tillage (CT)-planting system. Field experiments were conducted on a clay soil (Vertisol) in Hatay province (36°39′N–36°40′E, 83 m a.s.l.) in the Eastern Mediterranean Region of Turkey during 2000 and 2001. The experiment was laid out as a split-plot with three replications with tillage systems as main plots and intra-row spacings (13, 17, 21 and 25 cm) as subplots. The effects of tillage systems on lint yield and earliness were inconsistent among years. The RT-planting system resulted in 13.5% higher lint yield and 14.5% more earliness in 2001 when abundant rainfall occurred after sowing, while significant effects of tillage systems were not observed in 2000. The intra-row spacings significantly affected lint yield and earliness in both years. The earliness increased with closer spacing, while the highest lint yield was obtained from 17 cm intra-row spacing in both years. However, the fiber quality parameters were not significantly affected by tillage systems, intra-row spacings and tillage system × spacing interaction in both years. Finally, the results suggest that RT-planting system with 17 cm intra-row spacing can be used in cotton production instead of CT-planting system in the Eastern Mediterranean Region of Turkey. Ridging in 17 cm intra-row spacing also seems to be suitable to mechanical harvesting.  相似文献   

15.
Over application of fertilizer N to cotton is not only a potential threat to environment but also leads to increased costs of cultivation. The study aimed to establish the indicator leaf and its critical greenness for in-season management of fertilizer nitrogen (N) in Bt cotton using chlorophyll (SPAD) meter and leaf color chart (LCC). The response of three varieties and N treatments viz. 0, 30, 60, 90,120, 150 and 180?kg N ha?1 applied in two splits {(50% at thinning and 50% at first flowering) and three splits (50% at thinning, 25% at first flowering and 25% at boll formation)} was studied through split plot design. SPAD values and LCC scores of first, second, third and fourth fully opened leaves from the top of the main stem was recorded at first flowering and boll formation. The physiological efficiency and harvest index was highest for 90?Kg N ha?1 applied in two splits. Beyond 120?kg N ha?1, the N use efficiency parameters were higher for the N treatments applied in three split compared to the respective two split N treatments. The fourth leaf from the top in terms of SPAD values and LCC scores correlated best with N concentration compared to other leaves at all growth stages. The calculated critical SPAD values for the fourth leaf were 45 and 41 at first flowering and boll formation, respectively. Critical score of fourth leaf was 4.1 and 4, respectively at first flowering and boll formation, respectively. It is suggested that color of the fourth leaf from the top of Bt cotton can well indicate N supply from the soil and can help in need based N management.  相似文献   

16.
ABSTRACT

This study aimed to assess the physiological and biochemical responses of cotton plants to manganese (Mn2+) nutrition. Four cotton genotypes (G1 – TMG 47; G2 – FM 975 WS; G3 – TMG 11 WS and G4 – IMA 8405 GLT) were grown in nutrient solution under two Mn2+ concentrations (2 and 200 µmol L?1) for 10 days. No visible symptoms of Mn2+ toxicity were observed in the genotypes tested. All genotypes showed a marked increase in leaf chlorophylls, pheophytins, carotenoids, sucrose and total sugars concentration in response to high Mn2+ in a nutrient solution. However, the net photosynthetic rate, stomatal conductance, internal carbon dioxide concentration and transpiration decreased in genotypes G1 and G2 growing under 200 µmol L?1. Antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR) activities increased in genotypes G1, G3 and G4. Cotton genotypes showed an increased leaf antioxidant and sugar metabolism as a possible strategy to mitigate oxidative stress. The decrease in the net photosynthetic rate and stomatal conductance; the increased antioxidant enzymes activities (SOD, APX and GR); and the increase in leaf sucrose and total sugar concentration were the main physiological and biochemical responses in cotton plants to Mn2+ stress.  相似文献   

17.
Plant growth and metabolism is impaired under stress conditions, resulting in decreased crop yields. The purpose of this investigation was to evaluate the NaCl stress effects on NH+ 4 metabolism in cotton plants at vegetative and reproductive stages of growth.

Cotton (Gossypium hirsutum L.) plants grown in normal (control) and NaCl treated Hoagland solutions were analyzed for distribution of N15 in NH+ 4 plus amide‐N, free α‐amino‐N, total soluble‐N and protein‐N after the plants were provided 15NH4NO3 in nutrient solutions for 6, 12 and 24 h. The concentration of protein‐15N was enhanced under a low level of NaCl (‐0.4 MPa osmotic potential) at the vegetative growth stage. The difference between the protein‐15N concentration of the moderately salinized (‐0.8 MPa) plants and the controls was not significant. A high level of NaCl (‐1.2 MPa) significantly decreased protein‐N content of plants compared with the controls and any other level of salinity. The NaCl increased accumulation of NH4 + plus amide‐N, free (α‐amino‐N, and total soluble‐N in cotton shoots, at both stages of growth. Low osmotic potential (high osmotic pressure) of the nutrient solution induced by excessive amounts of NaCl in nutrient solution inhibited NH+ 4 metabolism and decreased protein synthesis, thus resulting in accumulation of soluble N‐compounds. The ionic effect probably contributed also to inhibition of protein synthesis.  相似文献   


18.
基于GGE分析的西北内陆棉区纤维品质生态区划分   总被引:1,自引:1,他引:0  
本文选用2005—2014年我国棉花区域试验西北内陆早熟棉区7个和早中熟棉区10个试验点作为试验环境进行纤维品质区域分布分析。运用GGE模型划出双标图,研究西北内陆棉区的试验环境与参试品种纤维品质性状互作模式,对参试品种性状选择适宜的生态区进行探讨与划分,并基于GGE双标图对纤维物理性能指标相关性进行研究,为西北内陆棉区棉花品种区域化种植和理想试验环境选择提供依据。结果表明:(1)棉花各纤维品质性状相互之间存在着一定的相关关系,纺纱均匀性指数与长度、比强度和整齐度指数表现极显著或显著正相关。(2)西北内陆棉区早熟组纤维品质性状可划分为3个生态区:优质棉纤维生态区(精河)、普通优质纤维生态区(兵团第六师昌吉、乌苏)、普通纤维生态区(兵团第七师125团、兵团第八师121团、石河子以及敦煌)。(3)西北内陆棉区早中熟组品质性状由优质到普通亦可划分为3个生态区:优质纤维生态区(莎车、轮台、巴州、库车、疏附、兵团第一师阿拉尔13团以及新疆塔河10团)、普通优质纤维生态区(麦盖提和兵团第三师喀什)、普通纤维生态区(阿克苏)。因此西北内陆早熟棉区应在注重品种早熟性选育的基础上,注重优质纤维综合品质性状的培育,提高纤维的长度和比强度。南疆的早中熟棉区,注重推选适合机采棉的长度和比强度的棉花品种外,应精准掌握合理的棉花采摘期,提高纤维成熟度,但要注重降低马克隆值,划分优化种植区域为棉纺企业合理用棉提供多层次的原棉材料。  相似文献   

19.
Abstract

Field and greenhouse studies were conducted to identify starter fertilizers which would enhance cotton seedling survival, growth, and yield in legume residues. Field studies were initiated in the fall of 1982 on a Norfolk sandy loam (Typic Paleudult) in the Upper Coastal Plain of Alabama. Winter annual legumes, crimson clover (Trifolium incarnatum L.) and hairy vetch (Vicia villosa Roth) were established as whole plots along with a winter fallow area. Split plot treatments consisted of O, N, P, K, NP, NK, and NPK starter fertilizers. The cotton (Gossypium hirsutum L.) was planted with a conservation tillage planting unit with in‐row subsoilers. The starter fertilizers were applied deep (8 to 10 inches) in the subsoil track. Greenhouse studies were also conducted with soil from whole plot areas top dressed with corresponding legume tissue at a rate of .9 g tissue/500 g soil. Seedlings in the greenhouse were rated for disease and emergence, and dry weights were recorded.

Cotton populations in field studies were lower in legume mulched than fallow soils in 1984. Application of starter fertilizers generally increased harvest populations, particularly the NK combination. In 1983, cotton growth was greater in vetch than other soils, but responses to starter fertilizers varied with analyses and years. Seed cotton yields were consistently high with P starter, although P did not always improve cotton stands and growth. When averaged across years and cover crops, yields were 3151, 3031, 2865, 2790, 2753, 2741, 2512, and 2364 for P, NP, P, NP, K, NPK, N and O, starter treatments respectively.

Greenhouse studies indicated that starter fertilizer improved cotton emergence in legume soils, but decreased emergence in fallow soils. Disease ratings of emerged seedlings were more severe when starter fertilizer was used than when it was not used. Thus, starter fertilizer increased emergence and survival, despite high disease ratings. Cotton seedling growth generally increased when poor emergence reduced cotton seedling competition.  相似文献   

20.
为精确分析中国棉花纤维品质的区域特征、分布规律及综合性评价,以2005-2014年国家棉花品种区域试验531个参试品种纤维品质数据为材料,运用作物育种同异性分析理论对杂交棉和常规棉品种的纤维品质进行综合评价。结果表明:1)常规棉品种纤维品质符合审定标准Ⅰ型、Ⅱ型和Ⅲ型的品种数分别占参试常规棉品种数的1.58%、28.42%和14.74%,杂交棉纤维品质符合审定标准Ⅰ型、Ⅱ型和Ⅲ型的品种分别占参试杂交棉品种数的0.59%、19.94%和10.56%。黄河流域常规棉品种、杂交棉品种纤维品质综合同一度分别为0.869 3和0.888 8,长江流域杂交棉纤维品质综合同一度为0.864 3,西北内陆棉区常规棉纤维品质综合同一度为0.890 5。2)不同棉区常规棉与杂交棉纤维品质性状比较表明,西北内陆棉区常规棉品种纤维品质性状优于黄河流域杂交棉;而黄河流域杂交棉又优于黄河流域常规棉和长江流域杂交棉,黄河流域常规棉与长江流域杂交棉纤维品质性状差异不显著。可见,黄河流域棉区适宜种植推广中长绒、高比强和高马克隆值的常规棉品种;长江流域棉区适宜种植中长绒、高比强度和高马克隆值的杂交棉品种;西北内陆棉区适合种植长强细的优质常规棉品种,可作为棉纺工业纺中高支纱的优质棉生产基地。本研究对优化我国优质棉区域布局和种植结构调整有重要参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号