首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compositions of soil solution obtained by the following methods were compared with those obtained by lysimetry: centrifugation; 2:1 extracts of air dried (2:1dried) and field moist (2:1moist) samples; saturation extracts; the ‘equilibrium soil pore solution’︁ method using columns with undisturbed (ESPS) and composited soil (ESPScomp); and a method using pressure. Two soil depths of a Spodic Dystric Cambisol at Solling, Germany, were sampled with 10 to 12 replications. A coupled equilibrium model was used to describe the effect of soil to solution ratio on the solution composition. The model included multiple cation exchange and inorganic complexation, and for the subsoil solubility products of AlOHSO4 and Al(OH)3. Saturation extracts gave similar results as lysimetry and thus may be useful for calculating output fluxes. However, biological transformations (N mineralisation, solubilisation of organic matter) occurred during the preparation of saturation extracts. Composition of soil solutions obtained by either 2:1dried extracts or centrifugation differed greatly from the results of other methods, indicating that these two methods may not be the best means to investigate equilibrium soil solutions. The values of molar ion ratios depended largely on the method used to obtain soil solutions: Ca2+/Al3+ ratios for each depth ranged from less than 0.3 (which suggests that liming is required urgently) to greater than 1 (liming not necessary). Modelling described the effect of soil to solution ratio on element concentrations for the methods pressure, saturation extracts, ESPScomp and 2:1moist extracts qualitatively with a few exceptions. The model suggested that differences in element concentrations using these methods may be mainly due to dilution, cation exchange and solubilisation of sparingly soluble salts, depending on the soil to solution ratio used.  相似文献   

2.
The accumulation of heavy metals (HMs) in soils is the most often cited potential risk of compost application. As the ecological effects of metals are related to mobile fractions rather than to total concentrations in the soil, we measured the total (aqua regia–extractable) HM concentrations, the readily available water‐soluble and the potentially bioavailable LiCl‐extractable fraction of soil HMs in a field experiment after 10 y with total applications of 95, 175, and 255 t ha–1 biowaste compost (fresh matter). Total soil concentrations of Cd, Cr, Cu, Ni, and Pb in the compost treatments were not significantly higher than in the unfertilized control. Total Zn concentrations increased in the treatment with the highest application rate, as expected from the calculation of the Zn load in the composts. In the mobile fractions, as measured in soil saturation extract and LiCl extract, Cd and Pb were not detectable. Concentrations of Cr, Ni, and Zn were in the range published for unpolluted soils in other studies and did not show any differences according to treatment. Easily exchangeable Cu (in LiCl extract) was increased with compost fertilization, most probably due to complexation with low‐molecular organic complexants. Except for Cd and Zn, the results of the mobile HM fractions in the soil were in good agreement with plant HM concentrations. In conclusion, fertilization with high‐quality biowaste compost at such rates and after 10 y of application gives no cause for concern with regard to both total HM concentrations and available HM fractions.  相似文献   

3.
Scientists, land managers and environmental regulators all want to quantify the amount of nitrate leached into groundwater to better understand and manage the risk of environmental contamination from agricultural land, including grazed pasture. The ability of current technology to adequately measure the nitrate leached from a grazed paddock is tested in a stochastic simulation study. Results show that impractical numbers of samplers are needed to achieve estimates accurate to within ±20% of the true value. Rather than trying to directly measure paddock‐scale leaching under grazing, we suggest that further consideration be given to wider application of controlled application of nitrogen onto a few lysimeters and then extrapolate from the resulting measurements of leached nitrate to the paddock scale and beyond based on urine patch coverage.  相似文献   

4.
Ectomycorrhizae (ECM) or the root‐fungal association in forest ecosystems provide a unique soil microenvironment where soil properties and processes differ from the bulk soil. In this study, we would like to better understand the role of ECM systems in mineral weathering and its implications to soil formation and nutrient cycling in forest ecosystems. Specifically, we would like to document the spatial variations in the composition of soil solution and mineralogy of the rhizosphere as influenced by the ECM of Norway spruce + Piloderma croceum. Two‐month‐old seedlings of Norway spruce (control and colonized by P. croceum) were cultivated in special rhizotrons designed to allow spatial collection of soil solution. We used A and C horizons of a Dystric Cambisol collected from Höglwald forest near Munich. Micro suction cups (5 mm x 1mm) were installed in colonized and control rhizotrons, and soil solution was collected from September to November 2000. Our results show that the concentrations of NH , Ca2+, and Mg2+ in the soil solution were lower in <1.0 cm than in >3.0 cm distance from the roots of Norway spruce, due to the possible range of influence of Piloderma mycelium reaching about 2–3 cm from the surface of the mycorrhizal root. In the rhizotron with soil from the A horizon, a higher phosphorus content in Piloderma‐colonized seedlings was observed. X‐ray diffraction data indicate that chlorite and possibly mica are being transformed to 2:1‐expanding clay minerals (probably smectite) within <1.0 cm distance from roots. The spatial variations in soil solution composition and mineral transformation are likely to be due to Piloderma colonization and concentrated mycelial growth within <1.0 cm distance from the roots. This is also evident in more intricate growth of mycelia on surfaces of micaceous minerals as compared to quartz. We assume that Piloderma modifies soil solution and mineralogy through acquisition of essential elements for its own survival and/or for the uptake by plant roots. However, the presence of spontaneous infection with wildtype ECM in the control plots may have altered the influence of Piloderma and must be taken into consideration when interpreting our results.  相似文献   

5.
6.
The Swiss soil‐monitoring network (NABO) was launched in 1984 and comprises currently 105 observation sites covering all characteristic land‐use types across Switzerland. So far, the sampling periodicity was 5 y, and the fifth sampling campaign will be accomplished by end of 2009. The concentrations of Cd, Zn, Pb, Cu, Hg, Ni, Cr, Co, and F were measured. The major results and conclusions are: (1) Even topsoils in remote areas are to some extent polluted, mainly by Pb, Cu, and Cd. However, elevated concentrations can also be of natural origin, e.g., for F, Ni, Cr, and Cd. (2) Land use alone is often a rather unreliable indicator to discriminate soil pollution. (3) After the 2nd campaign positive, negative, or no temporal concentration changes were measured. From the 3rd campaign onwards, nonmonotonous (zigzag) evolutions were frequently observed. Therefore, no certified trends can be stated after three measurement campaigns during a period of 10 y. (4) Soil monitoring is an environmental time‐series problem. The only way to detect reliable signals and trends earlier is to improve the overall measurement quality (precision and bias) and to shorten the measurement periodicity. (5) The causes of temporal soil concentration changes are complex and result from natural processes, anthropogenic processes, and methodological artifacts. Hence, not all soil concentration changes are due to anthropogenic inputs. Based on the state‐of‐art of our experience, some basic methodological requirements and recommendations can be supported for a “good soil‐monitoring practice”: (1) Assurance of long‐term continuity and consistency under changing boundary conditions as site conditions, methodologies, etc. (2) Implementation of a scientifically and politically appropriate spatial and temporal measurement resolution. (3) Long‐term assessment of reliability (quality assurance) by adequate quantification of precision, bias, and confidence intervals along the whole measurement chain. (4) Documentation of all potentially relevant boundary conditions by suitable metadata. Only soil‐monitoring results meeting these requirements are fit to support political decisions.  相似文献   

7.
Micro–suction cups made of nylon membranes and polyacrylic tubes with planar geometry of the membrane were designed for repeated sampling of rhizosphere solution at defined distances from a root monolayer. Adsorption tests revealed that the materials used (nylon membrane, polyacrylic tube) have little influence on the concentration of heavy metals in the sample solution, whereas some organic acids are partly retained by the suction cup. A sampling protocol was developed for collecting extremely small solution volumes (i.e., droplets of 28.3±2.46 μl) for subsequent measurements of trace elements using ICP‐SFMS. A homogeneity test showed that soil‐solution concentrations of Ca, K, Mg, and Ni could be reproduced independent of the suction‐cup position in a rhizobox experiment without plants. In a similar experiment, the rhizobox was planted with the Ni hyperaccumulator Thlaspi goesingense. Compared to more distant soil layers, an increase of Ni and a concurrent decrease of Ca, K, and Mg at 1 mm distance from the root plane was found. These changes can be related to plant uptake and mobilization processes. Our results show that the novel micro–suction cups are a valuable tool for elucidating rhizosphere processes.  相似文献   

8.
Although the composition of the soil solution has important ecological information, there is no general consensus for obtaining and analyzing of the soil solution. This study presents an alternative procedure to obtain the soil solution and determine all relevant anions and cations. The soil samples are taken with an auger. 10—20 g of field moist soil are desorbed in a pressure chamber at 170 kPa (pF 3.2), with a cellulose acetate membrane filter (∅︁ < 0.45 μm) as capillar bridge between the interior and exterior of the chamber. The desorption procedure is performed at 4°C for 24 hours and yields up to 1.0 ml soil solution, depending on the actual water potential. If more soil solution is needed, the soil may be replaced by another aliquot of the same sample. 0.15 ml of soil solution is sufficient for analysing all cations and anions, which account quantitatively for the ion balance with a capillary electrophoresis. Compared with suction cups, ion concentrations in desorption solutions are, although generally lower, in the same order of magnitude. The advantage of this method is that no field equipment is needed, apart from the auger. Even in heterogeneous forest soils, water soluble ions can be monitored with a high spatial resolution and without any dilution effects, which are common in the most laboratory methods. The problem of lacking spatial representativity in stationary lysimeter stations is also overcome. Additionally it is possible to obtain and analyze soil solutions in a suction range where suction cups fail.  相似文献   

9.
10.
Abstract

Four methods were tested for suitability in collecting unaltered bulk (soil) solution from container root media. Suction methods led to higher cation and lower P concentrations as a result of interaction between the ceramic sampling cup and the bulk solution. Centrifugation methods yielded insufficient volumes of bulk solution thus calling for further refinements in procedures. Methanolic extraction resulted in lower concentrations of K, Ca and P. The lower concentrations were in accord with the lower dielectric constant for methanol compared to water; i.e., lower solubility and affinity of ions for the solvent. The column displacement procedure facilitated the collection of adequate quantities of unaltered bulk solution in a reasonable period (within 2 hours). A refined procedure is presented.  相似文献   

11.
A stratified subsurface layer of acidic soil can develop in minimally disturbed soil such as no‐till receiving injection of N fertilizer (e.g., anhydrous ammonia). The objective of this study was to evaluate the effectiveness of subsurface band treatments in alleviating soluble Al3+ and Mn2+ toxicities on sorghum growth. Soil columns 40 cm in length were packed with soil (Valentine fine sand mixed mesic Typic Ustipsamment and Thurman loamy sand mixed Mesic Udorhentic Haplustoll) with treatments applied at the 10–18 cm depth to mimic soil pH stratification. The treatments at this depth were: (1) entire layer at soil pH of 3.7; (2) band of soil 6 cm wide at pH of 5.8 with the rest of the soil at pH 3.7; (3) band of soil 6 cm wide at pH of 6.3 with the rest of the soil at pH 3.7; and (4) entire layer at soil pH of 5.8. The soil above and below the 10–18 cm depth was at pH 5.8. Sorghum (Sorghum bicolor L. Moench) was grown in the soil columns under a controlled environment for 6 weeks. High concentration of Al in soil solution was found in soil at soil pH 3.7 which was overcome by either banding to pH 5.8, 6.3, or having the soil layer at pH 5.8. Treatment with pH of 5.8 throughout the soil 10–18 cm depth produced significantly greater top growth, although all other pH or liming strategies performed better than the soil pH 3.7 treatment. The banded treatments at pH 5.8 and 6.3 allowed roots to grow below the 10–18 cm layer of soil, but root growth was still significantly less than in the soil where the entire soil treatment layer was at pH 5.8. The increase in biomass yield with soil pH of 5.8 in the entire treatment layer was higher compared to band treatment at pH 5.8; however, the lime requirement would be 3.4 times more with liming the entire layer compared to banding a portion of the soil to pH 5.8 and would thus be translated into a higher liming cost.  相似文献   

12.
Organic matter‐derived soil amendments containing humic substances (HS) have a functional role to improve plant growth and soil quality, but their response to water deficit stress is less reported, particularly in vegetable crops. This study assessed the impact of lignite‐derived HS on biota growth and evaluated their potential mitigative effects under water deficit stress in growth chamber and greenhouse environments. Bell pepper (Capsicum annuum L. cv. Revolution) plants were grown in sandy and clay soil previously mixed with lignite‐derived HS and subjected to four irrigation levels (20%, 40%, 60%, and 80%) based on soil water‐holding capacity. Plant growth traits, soil chemical properties, and microbial populations were measured and analyzed. HS increased plant root development and soil bacteria population in moderate and no stress conditions (60%, 80%). Physiologically, HS rapidly decreased leaf stomatal conductance and transpiration after imposing severe or mild stress (20%, 40%). The results indicate that HS transiently ameliorated plants exposed to water stress by reducing moisture loss. In addition, due to their capacity to improve plant root growth, soil nutrient cycling and microbial activity, application of HS might have long‐term benefits in agricultural systems.  相似文献   

13.
Adoption of input‐responsive varieties enhanced food production during the second half of the 20th century. However, even bigger challenges lie ahead because of the growing societal demands. For example, the global population of 7.2 billion in 2013 is projected to reach 9.2 billion by 2050 and stabilize at 10 billion by 2100. The growing and increasingly affluent population, with preference towards more and more meat‐based diet, is likely to jeopardize the finite, fragile, and dwindling soil and water resources which are already under great stress in densely populated countries in Asia and elsewhere. Economic growth and increase in gross domestic product also lead to generation of waste or by‐products, along with contamination and eutrophication of water resources. International trade in food/feed products also involves transfer of virtual water, which is a serious issue when water‐scarce countries export virtual water to water‐endowed countries. The problem is confounded by the present and future climate change driven by the growing energy demands of the carbon civilization. Thus, adaptation to climate change represents both a threat and an opportunity for sustainable development. Adaptive strategies must be sustainable socially and environmentally and advance the Millennium Development Goals, while buffering agroecosystems against extreme climate events (e.g., pedologic, agronomic, and ecologic drought). Thus, recognizing and addressing the water‐soil‐waste nexus is important to achieving climate‐strategic agriculture. Sustainable intensification of agroecosystems, producing more per unit consumption of essential resources, must consider judicious management of hydrological and biogeochemical cycles (C, N, P, S). The soil C pool must be managed and enhanced to offset anthropogenic emissions, and mitigate/adapt to the climate change. The pace of adoption of recommended land use and soil‐/plant‐/animal‐management practices can be kept at par with advances in scientific knowledge through continuous dialogue between scientists on the one hand and policy makers / land managers on the other to translate research data into policy and action plans.  相似文献   

14.
It is well accepted that the penetration resistance of soils is, among others factors, highly sensitive to the moisture status of the soil. This study tested the hypothesis of whether the dewatering of a soil by crops of varying dewatering capacities significantly affects the soil's penetration resistance and whether this contributes to an exceedance of the commonly accepted root‐growth threshold already in the range of plant‐available water. During a 22‐month period between March 2002 and December 2003, the soil water content of a former lignite strip mine in E Germany was studied. The soil had been restored with Saalian glacial till. Plots contained two different crops, a 3 y–old stand of lucerne (Medicago sativa L.) and a 7 y–old stand of wild rye (Secale multicaule L.). Soil water contents under the two crops were converted on the basis of the water‐retention characteristics into water tensions, allowing an investigation of the changes in the measured water content in the wider context of the water availability to the crops. During both growing seasons, the water tension under lucerne exceeded the permanent‐wilting point (104.2 hPa) for up to 20 weeks between 0 and 90 cm, which is equal to a predicted penetration resistance of >15 MPa. Water tensions under the wild rye rose only up to a maximum of 103 hPa for the same period, so that the predicted penetration‐resistance values remained constantly <5 MPa. Our findings demonstrate that the dewatering by plants during the growing seasons affects the actual strength of the soil, which can lead to the exceeding of the commonly accepted root‐growth threshold.  相似文献   

15.
16.
A large variety of extraction methods are used worldwide for the estimation of “plant‐available P” in soils. In Germany, the standard extractants are Calcium‐Acetate‐Lactate (CAL) and Double‐Lactate (DL). Until now there is no validated transformation procedure available and studies on the comparability of both methods have reported conflicting evidence. The uncertainty about the equivalence of CAL‐P and DL‐P hinders a direct comparison of the P fertility status and P fertilizer recommendations across Germany. Based on 136 datasets for soil samples from an interlaboratory comparison program and three P fertilization field trial sites, for which plant‐available P had been determined by both the CAL and DL method, we assessed the comparability of both extraction methods and derived simple and multiple regression equations to transform DL‐P into CAL‐P values. On average, DL extracted 30% more P than CAL. However, this strongly depended on soil pH and carbonate content. A simple linear regression model explained 70% of the variance. However, if simple linear regression models were fitted to pH‐specific samples (pH range 4.5 to 7.0) the R2 increased to 0.96. Based on an independent validation dataset (n = 48) we demonstrated that such pH‐specific models were more accurate than models that did not consider pH when transforming DL‐P to CAL‐P values. Multiple regression results showed that out of soil pH, Corg, Nt, and C : N ratio, only soil pH improved the model. The transformation equations in this study provide a step towards an improved comparability of P fertility status assessments of soils across Germany.  相似文献   

17.
Rice growth and its resistance to pests had been often constrained by soil‐silicon (Si) availability. The purpose of this study was to assess the potential of biochar soil amendment (BSA) to improve Si availability in paddy soils. A cross‐site field trail with BSA was conducted in six locations with different climatic and crop‐production conditions across S China. Plant‐available Si content before field‐trials establishment and after rice harvest, as well as Si content in rice shoot were determined. Varying with site conditions, plant‐available Si content of soil was observed to increase significantly with BSA in most sites. Significant increase in rice shoot Si was detected in four out of the six sites, which was well correlated to the concurrent increase in soil pH under BSA treatment. This study demonstrates an important role of BSA to improve Si availability and uptake by rice mainly through increasing soil pH of the acid and slightly acid rice soils.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号