首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Short‐rotation forestry (SRF) on arable soils has high potentials for biomass production and leads to long‐term no‐tillage management. In the present study, the vertical distributions of soil chemical and microbial properties after 15 y of SRF with willows and poplar (Salix and Populus spp.) in 3‐ and 6‐year rotations on an arable soil were measured and compared to a pertinent tilled arable site. Two transects at different positions in the relief (upper and lower slope; transect 1 and 2) were investigated. Short‐rotation forestry caused significant changes in the vertical distribution of all investigated soil properties (organic and microbial C, total and microbial N, soil enzyme activities), however, the dimension and location (horizons) of significant effects varied. The rotation periods affected the vertical distribution of the soil properties within the SRF significantly. In transect 1, SRF had higher organic‐C concentrations in the subsoil (Bv horizon), whereas in transect 2, the organic‐C concentrations were increased predominantly in the topsoil (Ah horizon). Sufficient plant supply of P and K in combination with decreased concentrations of these elements in the subsoil under SRF pointed to an effective nutrient mobilization and transfer from the deeper soil horizons even in the long term. In transect 1, the microbial‐C concentrations were higher in the B and C horizons and in transect 2 in the A horizons under SRF than under arable use. The activities of β‐glucosidases and acid phosphatases in the soil were predominantly lower under SRF than under arable use in the topsoil and subsoil. We conclude, that long‐term SRF on arable sites can contribute to increased C sequestration and changes in the vertical distribution of soil microbial biomass and soil enzyme activities in the topsoil and also in the subsoil.  相似文献   

2.
Hydrothermally converted biomass (hydrochar) is evaluated as a carbon‐rich soil amendment in addition to pyrogenic biochar. After assessing the suitability of hydrochar for use in agriculture, its environmental safety and comparing its chemistry with that of biochar, we describe a field trial established at Halle (Germany) under natural conditions for a temperate climate and without further external management practices. The main objective of our study was to analyse the stability and hence the C sequestration potential of composted chars over a period of 2 years. Four treatments (no amendment control, compost, co‐composted hydrochar and co‐composted biochar) in fourfold field replication were chosen to make a direct comparison of biochar and hydrochar under field conditions. The total organic carbon and total N increased in all treatments in comparison with the control but only in biochar‐amended treatments were N concentrations more stable. Composted biochar showed significantly more black carbon content in topsoil, sampled some months after application, compared with all other treatments. We show that hydrochar is less suitable for long‐term C sequestration in comparison with biochar but has potential for soil amelioration because it delivers essential nutrients. On the other hand, biochar is richer in polyaromatic C than hydrochar and therefore is more stable in the long term. We assessed biochar stability using the black carbon analysis of the different soil samples.  相似文献   

3.
The work aimed to quantify native organic C mobilized in one calcareous soil in the 21 days after addition of biochar at a range of large to very large applications. The experiment was carried out in unplanted microcosms, and CO2 flux was used as a measure of net mineralization. A rapid methodological approach, which does not require 13C as a tracer, was used to assess any priming effects induced by the biochar. The amount of CO2‐C mobilized was small relative to the amount of biochar C and proportional to the amount of the biochar added. The additional CO2‐C was similar to the content of the water‐soluble organic carbon in the biochar added with each application. No interaction with native soil C, that is priming effect, was observed.  相似文献   

4.
Both biochar and compost may improve carbon sequestration and soil fertility; hence, it has been recommended to use a mixture of both for sustainable land management. Here, we evaluated the effects of biochar–compost substrates on soil properties and plant growth in short rotation coppice plantations (SRC). For this purpose, we planted the tree species poplar, willow, and alder in a no‐till field experiment, each of them amended in triplicate with 0 (= control) or 30 Mg ha?1 compost or biochar–compost substrates containing 15% vol. (TPS15) and 30% vol. biochar (TPS30). For three years running, we analyzed plant growth as well as soil pH, potential cation exchange capacity (CEC), stocks of soil organic carbon (SOC), total N, and plant‐available phosphate and potassium oxide.Biochar‐compost substrates affected most soil properties only in the topsoil and for a limited period of time. The CEC and total stocks of SOC were consistently elevated relative to the control. After three years the C gain of up to 6.4 Mg SOC ha?1 in the TPS30 plots was lower than the added C amount. Especially in the case of TPS30 treatment, C input was characterized by the greatest losses after application, although the black carbon of the biochar was not degraded in soil. Additionally, tree growth and woody biomass yield did not respond at all to the treatments. Overall, there were few if any indications that biochar–compost substrates improve the performance of SRC under temperate soil and climate conditions. Therefore, the use of biochar for such systems is not recommended.  相似文献   

5.
Substitution of mineral fertilizers with organic soil amendments is postulated to improve productivity‐relevant soil properties such as aggregation and organic matter (OM) content. However, there is a lack of studies analyzing the effects of biochar and biogas digestate versus mineral fertilizer on soil aggregation and OM dynamics under temperate field conditions. To address this research gap, a field experiment was sampled four years after establishment on a sandy Cambisol in Germany where mineral fertilizer or liquid biogas digestate was applied with or without 3 or 40 Mg biochar ha?1 (produced at 650°C). Soil samples were analyzed for soil organic carbon (SOC) content, pH, cation exchange capacity, bulk density, water‐holding capacity, microbial biomass, aggregate size class distribution, and the SOC content associated with these size classes. 40 Mg biochar ha?1 significantly increased SOC content in all fractions, especially free particulate OM and the 2–0.25 mm fraction. The yield of small macroaggregates (2–0.25 mm) was increased by biochar, but cation exchange capacity, water‐holding capacity, and pH were not consistently improved. Thus, high‐temperature biochar applied to a sandy soil under temperate conditions is primarily recommended to increase SOC content, which could contribute to climate change mitigation if this C remains sequestered over the long‐term. Fertilizer type did not significantly affect SOC content or other measured properties of the sandy Cambisol, suggesting that replacement of mineral fertilizer with digestate has a neutral effect on soil fertility. Co‐application of biochar with digestate provided no advantages for soil properties compared to co‐application with mineral fertilizer. Thus, independent utilization of these organic amendments is equally suitable.  相似文献   

6.
试验研究生草栽培对柑橘园土壤水分和有效养分含量及果实产量品质的影响结果表明,生草栽培7~11月份干旱时期可提高果园土壤含水率;生草栽培初期降低果园土壤有效氮、磷、钙、镁、锰、铜和锌等矿质养分含量,但生草栽培2年后土壤有效氮、钾、铁和锌等矿质养分含量高于清耕对照。生草栽培可提高果实产量和果实可溶性固形物含量,降低果实柠檬酸含量,且种植百喜草比白三叶效果更明显  相似文献   

7.
Abstract

Plots from a N, P, and K field fertility experiment were soil sampled each spring and fall from 1971 to 1979 to study the effect of cropping and different rates of added P and K on the content of available soil P and K (Bray I). Phosphorus and K fertilization was in the spring after soil sampling and before planting in 1971, 1972,and 1973 and in the fall after sampling in 1974, 1975, 1976, 1977, and 1978. Over the 8‐year period, available soil P increased 1 kg/ ha for every 2.3 kg/ha of added P; while available soil K increased 1 kg/ha for every 5.7 kg/ha of added K. However, within a growing season and between growing seasons, contents of available soil P and K showed cyclic patterns, increasing and decreasing to a greater extent than the long‐term response. Changes in available P and K from spring to fall and from fall to spring are presented. Variability in the content of available soil P and K for 32 plots receiving a similar treatment of either P or K was greater for P as compared to K.  相似文献   

8.
9.
Paddy soils in subtropical China are usually deficient in phosphorus (P) and require regular application of chemical fertilizers. This study evaluated the effects of chemical fertilizers on the distribution of soil organic carbon (SOC), total nitrogen (N) and available P, and on the activity of the associated enzymes in bulk soil and aggregates. Surface soils (0–20 cm) were collected from a 24‐yr‐old field experiment with five treatments: unfertilized control (CK), N only (N), N and potassium (NK), N and P (NP), and N, P and K (NPK). Undisturbed bulk soils were separated into >2, 1–2, 0.25–1, 0.053–0.25 and <0.053 mm aggregate classes using wet sieving. Results showed that both NP‐ and NPK‐treated soils significantly increased mean weight diameter of aggregates, SOC, available P in bulk soil and aggregates, as compared to CK. Most SOC and total N adhered to macro‐aggregates (>0.25 mm), which accounted for 64–81% of SOC and 54–82% of total N in bulk soil. The activities of invertase and acid phosphatase in the 1–2 mm fraction were the highest under NPK treatment. The highest activity of urease was observed in the <0.053 mm fraction under NP treatment. Soil organic carbon and available P were major contributors to variation of enzyme activities at the aggregate scale. In conclusion, application of NP or NPK fertilizers promoted the formation of soil aggregates, nutrient contents and activities of associated enzymes in P‐limited paddy soils, and thus enhanced soil quality.  相似文献   

10.
The objective of this work was to evaluate the C and N stocks and organic‐C fractions in soil under mixed forest stands of Scots pine (Pinus sylvestris L.) and Sessile oak (Quercus petraea [Matt.] Liebl.) of different ages in NE Germany. Treatments consisted of pure pine (age 102 y), and pine (age 90–102 y) mixed with 10‐, 35‐, 106‐, and 124‐y‐old oak trees. After sampling O layers, soils in the mineral layer were taken at two different depths (0–10 and 10–20 cm). Oak admixture did not affect total organic‐C (TOC) and N stocks considering the different layers separately. However, when the sum of TOC stocks in the organic and mineral layers was considered, TOC stocks decreased with increasing in oak age (r2 = 0.58, p < 0.10). The microbial C (CMB) was not directly correlated with increase of oak age, however, it was positively related with presence of oak species. There was an increase in the percentage of the CMB‐to‐TOC ratio with increase of oak‐tree ages. On average, light‐fraction C (CLF) comprised 68% of the soil TOC in upper layer corresponding to the highest C pool in the upper layer. CLF and heavy‐fraction C (CHF) were not directly affected by the admixture of oak trees in both layers. The CHF accounted on average for 30% and 59% of the TOC at 0–10 and 10–20 cm depths, respectively. Despite low clay contents in the studied soils, the differences in the DCB‐extractable Fe and Al affected the concentrations of the CHF and TOC in the 10–20 cm layers (p < 0.05). Admixture of oak in pine stands contributed to reduce topsoil C stocks, probably due to higher soil organic matter turnover promoted by higher quality of oak litter.  相似文献   

11.
放牧强度对中国内蒙古草原土壤水分状况与通量的影响   总被引:1,自引:0,他引:1  
GAN Lei  PENG Xin-Hu  S. PETH  R. HORN 《土壤圈》2012,22(2):165-177
In the past few decades,the increase in grazing intensity has led to soil degradation and desertification in Inner Mongolia grassland,China,due to population growth and shift in the socio-economic system.Two sites with different grazing intensities,continuous grazing site(CG) with 1.2 sheep ha 1 year 1 and heavy grazing site(HG) with 2.0 sheep ha 1 year 1,were investigated at the Inner Mongolia Grassland Ecosystem Research Station(43 37 50 N,116 42 18 E) situated in the northern China to i) characterize the temporal distribution of soil water content along soil profile;and ii) quantify the water fluxes as affected by grazing intensity.Soil water content was monitored by time domain reflectometry(TDR) probes.Soil water retention curves were determined by pressure membrane extractor,furthermore processed by RETC(RETention Curve) software.Soil matric potential,plant available water and water flux were calculated using these data.Both sites showed an identical seasonal soil water dynamics within four defined hydraulic periods:1) wetting transition coincided with a dramatic water increase due to snow and frozen soil thawing from March to April;2) wet summer,rainfall in accordance with plant growth from May to September;3) drying transition,a decrease of soil water from October to November due to rainfall limit;and 4) dry winter,freezing from December to next February.Heavy grazing largely reduced soil water content by 43%-48% and plant available water by 46%-61% as compared to the CG site.During growing season net water flux was nearly similar between HG(242 mm) and CG(223 mm) sites between 5 and 20 cm depths.However,between 20 and 40 cm depths,the upward flux was more pronounced at HG site than at CG site,indicating that water was depleted by root uptake at HG site but stored at CG site.In semi-arid grassland ecosystem,grazing intensity can affect soil water regime and flux,particularly in the growing season.  相似文献   

12.
Bioenergy is becoming an important option in Global Change mitigation policy world‐wide. In agriculture, cultivation of energy crops for biodiesel, biogas, or bioethanol production received considerable attention in the past decades. Beyond this, the cultivation of Miscanthus, used as solid fuel for combustion, may lead to an increase in soil organic matter content compared to other agricultural land use, since C‐sequestration potential in soils of Miscanthus crops is high due to, e.g., high amounts of harvest residues. This may indirectly contribute to a reduction of atmospheric CO2 concentration. The objective of the present work was to investigate the development of soil organic carbon and Miscanthus‐derived C contents, as well as to estimate carbon stocks in soils cultivated with Miscanthus using 13C‐natural‐abundance technique. The investigations were carried out in relation to soil depth up to 150 cm in a sequence of 2, 5, and 16 y of cultivation relative to a reference soil cultivated with cereals. Amounts of total organic C (TOC) and Miscanthus‐derived C (Miscanthus‐C) increased with increasing duration of cultivation. For example, TOC increased from 12.8 to 21.3 g C kg–1 after 16 y of cultivation at the depth of 0–15 cm, whereby the portion of Miscanthus‐C reached 5.8 g C kg–1. Also within deeper soil layers down to 60 cm depth a significant enhancement of Miscanthus‐C was detectable even though TOC contents were not significantly enhanced. At soil depth below 60 cm, no significant differences between treatments were found for Miscanthus‐C. Within 16 y of continuous commercial farming, Miscanthus stands accumulated a total of 17.7 Mg C ha–1 derived from Miscanthus residues (C4‐C), which is equivalent to 1.1 Mg C4‐C ha–1 y–1. The annual surplus might function as CO2 credit within a greenhouse‐gas balance. Moreover, the beneficial properties of Miscanthus cultivation combined with a low requirement on fertilization may justify the status of Miscanthus as a sustainable low‐input bioenergy crop.  相似文献   

13.
14.
Total, mobile, and easily available C and N fractions, microbial biomass, and enzyme activities in a sandy soil under pine (Pinus sylvestris L.) and black locust (Robinia pseudoacacia L.) stands were investigated in a field study near Riesa, NE Germany. Samples of the organic layers (Oi and Oe‐Oa) and the mineral soil (0–5, 5–10, 10–20, and 10–30 cm) were taken in fall 1999 and analyzed for their contents of organic C and total N, hot‐water‐extractable organic C and N (HWC and HWN), KCl‐extractable organic C and N (Corg(KCl) and Norg(KCl)), NH ‐N and NO ‐N, microbial‐biomass C and N, and activities of β‐glucosidase and L‐asparaginase. With exception of the HWC, all investigated C and N pools showed a clear response to tilling, which was most pronounced in the Oi horizon. Compared to soils under pine, those under black locust had higher contents of medium‐ and short‐term available C (HWC, Corg(KCl)) and N (HWN, Norg(KCl)), mineral N (NH ‐N, NO ‐N), microbial‐biomass C and N, and enzyme activities in the uppermost horizons of the soil. The strong depth gradient found for all studied parameters was most pronounced in soils under black locust. Microbial‐biomass C and N and enzyme activities were closely related to the amounts of readily mineralizable organic C (HWC and Corg(KCl)). However, the presented results implicate a faster C and N turnover in the top‐soil layers under black locust caused by higher N‐input rates by symbiotic N2 fixation.  相似文献   

15.
We conducted a pot experiment using a wheat‐millet rotation to examine the effects of two successive rice‐straw biochar applications on crop growth and soil properties in acidic oxisols and alkaline cambosols from China. Biochar was incorporated into soil at rates of 0, 2.25 or 22.5 Mg/ha at the beginning of each crop season with identical applications of NPK fertilizer. In the oxisols, the largest biochar treatment enhanced soil pH and cation exchange capacity, decreased soil bulk density, improved soil P, K, Ca and Mg availability and enhanced their uptake, and increased wheat and millet yields by 157 and 150% for wheat grain and straw, respectively, and 72.6% for millet straw. In the cambosols, biochar treatment decreased soil bulk density, improved P and K availability, increased N, P and K uptake by crops and increased wheat and millet straw yields by 19.6 and 60.6%, respectively. Total soil organic carbon increased in response to successive biochar applications over the rotation. No difference in water‐soluble organic carbon was recorded between biochar‐treated and control soils. Converting straw to biochar and treating soils with successive applications may be a viable option for improving soil quality, sequestering carbon and utilizing straw resources in China.  相似文献   

16.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

17.
The activities of carbon‐cycle enzymes were measured in soil and aggregates to understand compost and inorganic fertilizer amendment effects on soil organic carbon accumulation in an intensively cultivated upland field. Soil samples were collected from a long‐term field experiment with seven treatments: compost, half‐compost N plus half‐fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK and no fertilizer control. The 18‐yr continuous application of compost increased organic C content in soil and three aggregate sizes by 72–124 and 78–234%, respectively, compared with the control. Fertilization also significantly increased organic C contents in soil, macroaggregates and the silt + clay fraction, but not in microaggregates. Compost application significantly reduced the specific activities of polyphenol oxidase (activity per unit organic C) in soil and three aggregate sizes compared with control, whereas fertilization had a much weaker effect. Compost amendment also significantly lowered the specific activities of invertase in macroaggregates and the silt + clay fraction, and this effect was more pronounced than the addition of fertilizer NPK. In contrast, inorganic fertilizer and compost application significantly increased the specific activities of cellobiohydrolase in soil, macroaggregates and microaggregates (but not in the silt + clay fraction), and xylosidase in microaggregates. The application of fertilizer NPK had a more pronounced effect than compost. We considered that the increase in organic C in compost‐amended soil was therefore probably associated with the accumulation of lignocellulose and sucrose in macroaggregates, lignocellulose and hemicellulose in microaggregates and lignin (its derivative) and nonstructural carbohydrates in the silt + clay fraction. However, the application of fertilizer NPK enhanced organic C probably due to an increase in the content of lignin (its derivative) and sucrose in macroaggregates and the silt + clay fraction. Therefore, the application of compost with high lignocellulose should be effective to increase soil organic C in the North China Plain.  相似文献   

18.
Long‐term applications of inorganic fertilizers and farmyard manure influence organic matter as well as other soil‐quality parameters, but the magnitude of change depends on soil‐climatic conditions. Effects of 22 annual applications (1982–2003) of N, P, and K inorganic fertilizers and farmyard manure (M) on total organic carbon (TOC) and nitrogen (TON), light‐fraction organic C (LFOC) and N (LFON), microbial‐biomass C (MB‐C) and N (MB‐N), total and extractable P, total and exchangeable K, and pH in 0–20 cm soil, nitrate‐N (NO ‐N) in 0–210 cm soil, and N, P, and K balance sheets were determined using a field experiment established in 1982 on a calcareous desert soil (Orthic Anthrosol) at Zhangye, Gansu, China. A rotation of irrigated wheat (Triticum aestivum L.)‐wheat‐corn (Zea mays L.) was used to compare the control, N, NP, NPK, M, MN, MNP, and MNPK treatments. Annual additions of inorganic fertilizers for 22 y increased mass of LFON, MB‐N, total P, extractable P, and exchangeable K in topsoil. This effect was generally enhanced with manure application. Application of manure also increased mass of TOC and MB‐C in soil, and tended to increase LFOC, TON, and MB‐N. There was no noticeable effect of fertilizer and manure application on soil pH. There was a close relationship between some soil‐quality parameters and the amount of C or N in straw that was returned to the soil. The N fertilizer alone resulted in accumulation of large amounts of NO ‐N at the 0–210 cm soil depth, accounting for 6% of the total applied N, but had the lowest recovery of applied N in the crop (34%). Manure alone resulted in higher NO ‐N in the soil profile compared with the control, and the MN treatment had the highest amount of NO ‐N in the soil profile. Application of N in combination with P and/or K fertilizers in both manured and unmanured treatments usually reduced NO ‐N accumulation in the soil profile compared with N alone and increased the N recovery in the crop as much as 66%. The N that was unaccounted for, as a percentage of applied N, was highest in the N‐alone treatment (60%) and lowest in the NPK treatment (30%). In the manure + chemical fertilizer treatments, the unaccounted N ranged from 35% to 43%. Long‐term P fertilization resulted in accumulation of extractable P in the surface soil. Compared to the control, the amount of P in soil‐plant system was surplus in plots that received P as fertilizer and/or manure, and the unaccounted P as percentage of applied P ranged from 64% to 80%. In the no‐manure plots, the unaccounted P decreased from 72% in NP to 64% in NPK treatment from increased P uptake due to balanced fertilization. Compared to the control, the amount of K in soil‐plant system was deficit in NPK treatment, i.e., the recovery of K in soil + plant was more than the amount of applied K. In manure treatments, the recovery of applied K in crop increased from 26% in M to 61% in MNPK treatment, but the unaccounted K decreased from 72% in M to 37% in MNPK treatment. The findings indicated that integrated application of N, P, and K fertilizers and manure is an important strategy to maintain or increase soil organic C and N, improve soil fertility, maintain nutrients balance, and minimize damage to the environment, while also improving crop yield.  相似文献   

19.
Residue retention and reduced tillage are both conservation agricultural practices that may enhance soil organic carbon (SOC) stabilization in soil. We evaluated the long‐term effects of no‐till (NT) and stover retention from maize on SOC dynamics in a Rayne silt loam Typic Hapludults in Ohio. The six treatments consisted of retaining 0, 25, 50, 75, 100 and 200% of maize residues on each 3 × 3 m plot from the crop of previous year. Soil samples were obtained after 9 yrs of establishing the experiment. The whole soil (0–10 and 10–20 cm of soil depths) samples under different treatments were analysed for total C, total N, recalcitrant C (NaOCl treated sample) and 13C isotopic abundance (0–10 cm soil depth). Complete removal of stover for a period of 9 yrs significantly (P < 0.01) decreased soil C content (15.5 g/kg), whereas 200% of stover retention had the maximum soil C concentration (23.1 g/kg). Relative distribution of C for all the treatments in different fractions comprised of 55–58% as labile and 42–45% as recalcitrant. Retention of residue did not significantly affect total C and N concentration in 10–20 cm depth. 13C isotopic signature data indicated that C4‐C (maize‐derived C) was the dominant fraction of C in the top 0–10 cm of soil layer under NT with maize‐derived C accounting for as high as 80% of the total SOC concentration. Contribution of C4‐C or maize‐derived C was 71–84% in recalcitrant fraction in different residue retained plots. Residue management is imperative to increase SOC concentrations and long‐term agro‐ecosystem necessitates residue retention for stabilizing C in light‐textured soils.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号