共查询到20条相似文献,搜索用时 0 毫秒
1.
Molin Fan Zhilong Bie Huiying Xie Fang Zhang Shuang Zhao Hongyan Zhang 《植物养料与土壤学杂志》2013,176(3):466-473
Potassium (K) is an important nutrient for watermelon (Citrullus lanatus Thunb. Matsum. & Nakai). However, there is little knowledge about genetic variations in K efficiency in watermelon. Sixty‐four watermelon genotypes were grown under conditions of ample (6 mM) and limited (0.1 mM) K supply in a glasshouse. Thirty‐eight wild genotypes (C. lanatus var. citroide) and 26 domesticated genotypes (C. lanatus var. lanatus) were cultivated hydroponically for 30 d. Shoot dry weight, shoot K concentration, K uptake, K‐use index (shoot dry weight / shoot K concentration), relative shoot dry weight (shoot dry weight under limited K / shoot dry weight under ample K), and relative shoot K concentration (shoot K concentration under limited K / shoot K concentration under ample K) were determined. Significant differences were observed among genotypes. The K efficiency was classified based on a medium‐efficiency interval which is equivalent to the 95% confidence interval of the mean relative shoot dry weight and relative shoot K concentration. Genotypic data above or below this interval were classified as either K‐efficient or K‐inefficient. We identified eight K‐efficient genotypes, of which four were wild types. Thus, wild watermelons can be used in breeding programs to improve the K efficiency of domesticated watermelons. 相似文献
2.
以10个烤烟基因型为材料,进行了离子耗竭溶液培养、土壤耗竭盆栽试验和田间小区试验,研究比较钾素营养特性的基因型差异。结果表明,不同基因型的吸钾速率和耐低钾能力差异显著。吸钾速率以红大和K358最大,耐低钾能力Nc27NF和K358最强,Nc729最弱。10个基因型全株含钾量在低钾水平下变幅为0.87%~1.25%,而在高钾水平下为1.40%~1.94%。高钾条件下,基因型G28、77089-12、Rg11和Nc82的叶片含钾量高于2%;K358、Coker319、K346和Nc27NF有较高的钾素利用效率,K346、Nc729、G28和K358的钾素收获指数大于50%。各烤烟基因型的钾素营养特性在不同供钾条件下无显著相关性。综合比较K346属于钾高效基因型。 相似文献
3.
In a field trial in Northwest Mexico, the phosphorus efficiency of three advanced bread wheat lines (Triticum aestivum L.) from CIMMYT were compared with an older Mexican variety Curinda, under irrigation, on an alkaline clay soil (3.7 mg Olsen-P kg—1 soil) without (P-0) and with P-fertilisation (P-35; 35 kg P ha—1). Dry matter, P-content, P-uptake of above ground biomass and root growth (root length densities in different soil depths) were measured at different growth stages, and the net P-uptake rates per unit root length calculated. All four genotypes responded positively to P-fertilisation. The three new genotypes showed significantly higher grain yields compared with the old variety Curinda, on the average, 54% and 42% higher at P-0 and P-35, respectively. The higher grain yield was mainly due to a larger number of kernels per ear, higher thousand kernel weight as well as a higher harvest index. The old variety Curinda had the same (P-0) or greater (P-35) number of spikes m—2 than the new genotypes. In conclusion of this experiment, the three new genotypes could be classified as more P-efficient. The P-uptake at harvest averaged 35% and 24% more than the old variety Curinda at the P-0 and P-35 level, respectively. The improved P-efficiency was mainly due to a more efficient P-uptake. However, there were only small differences in P-utilisation efficiency (kg grain per kg P in shoots) between old and new varieties (8—11%). The differences in the root systems were more decisive in the P-0 treatment than with P-fertilisation. At low P, the improved P-uptake per ha of the advanced lines was due to a higher root length density especially after flowering, while at high P, a higher P-influx rate per unit root length played a more important role than the root length density. The superiority of the new genotypes at both P levels is obviously due to the good adaptation of their root system (root length density, uptake rate per unit root) to variable P availability in soil. 相似文献
4.
K高效和K低效基因型水稻Na和K的吸收和分布与水稻生长及体内K利用率之间的关系 总被引:2,自引:0,他引:2
A pot experiment with two rice (Oriza sativa L.) genotypes differing in internal potassium use efficiency (IKUE) was conducted under different sodium (Na) and potassium (K) levels. Adding NaCl at a proper level enhanced rice vegetative growth and increased grain yield and IKUE under low potassium. Addition of higher rate of NaCl had a negative effect on the growth of the K-efficient rice genotype, but did not for the K-inefficient genotype. Under low-K stress, higher NaCl decreased IKUE of the K-efficient rice genotype but increased IKUE for the K-inefficient genotype. At tillering stage and under low-K stress, adding NaCl increased K and Na contents and decreased the ratio of K/Na for both genotypes. At harvesting stage under low-K stress, adding NaCl increased K and Na contents and K/Na ratio for the K-efficient genotype but decreased the K/Na ratio for the K-inefficient genotype. The accumulated Na was mostly deposited in the roots and sheaths. At tillering stage, the K and Na contents and the K/Na ratios in different parts for both genotypes decreased in the following sequence: K+ in sheaths > K+ in blades > K+ in roots; Na+ in roots > Na+ in sheaths > Na+ in blades; and K/Na in sheaths >> K/Na in roots. The K-efficient genotype had a lower K/Na ratio in roots and sheaths than the K-inefficient genotype under low-K stress. At harvesting stage, K and Na contents in grains were not affected, whereas K/Na ratio in the rice straws was increased for the K-efficient genotype but decreased for the K-inefficient genotype by Na addition. However, this was not the case under K sufficient condition. 相似文献
5.
Walter D. Carciochi Guillermo A. Divito Lucrecia A. Fernández Hernán E. Echeverría 《Journal of plant nutrition》2017,40(9):1231-1242
Wheat plants were cultivated in pots with the objective of evaluating the effect of two sulfur (S) rates (+S and ?S) on (i) shoot growth, S and nitrogen (N) uptake and nitrogen use efficiency (NUE) and (ii) root growth and architecture and its relations with S and N uptake. Plant samplings were at Z39, Z51 and Z92 stages. Shoot mass and NUE were greater in +S treatment at the three stages. ?S treatment increased root growth at Z39 (14% more length and 16% more tips) in comparison with +S, but the opposite occurred at Z51 (31% less area and 42% less mass). S uptake per unit root mass, area and length were greater in +S treatment at Z39 and Z51. A similar pattern was determined for nitrogen uptake (Nu) at Z39, but the opposite occurred at Z51. This indicates that Nu is mainly controlled by shoot growth and not by root growth. 相似文献
6.
Tomato (Lycopersicon esculentum) plants were grown in hydroponic culture with nitrogen (N): phosphorus (P) supply ratios from 18:1 to 2:1. Nitrate and phosphate were supplied daily in pre-set ratios to maintain a constant P concentration, giving varying degrees of N limitation. Plant dry weight, weights of plant fractions and N and P concentrations in plant parts were measured at 9 and 18 days. Relative growth rate was related to ratio of N:P supplied, with higher ratios giving a higher growth rate, but a noticeably reduced rate was only apparent at 4:1 and 2:1 ratios. Relative growth rate was largely independent of internal N and P concentrations, although there was an optimum internal N:P ratio of approximately 14:1. The plants took up N and P at rates adjusting towards this 14:1 ratio. Depressed relative growth rate of plants inadequately supplied N was linearly correlated with decreased shoot fraction. 相似文献
7.
ZHANG Hui-Min YANG Xue-Yun HE Xin-Hu XU Ming-Gang HUANG Shao-Min LIU Hu WANG Bo-Ren 《土壤圈》2011,21(2):154-163
Sustainable potassium (K) management at different soil sites requires understanding the relationships between crop productivity and long-term K fertilizations on a regional or national scale.We analyzed responses of grain yield of wheat (Triticum aestivum L.) and maize (Zea mays L.),K efficiency,and partial balance (difference between K input through fertilizer and K output in the aboveground biomass) during 15-(1990-2005) or 18-year (1990-2008) K fertilizations at five distinctive agroecological zones across China.Compared to the inorganic nitrogen (N) and phosphorus (P) fertilization,the inorganic NPK fertilization significantly increased grain yields of wheat (21%) and maize (16%-72%) at Qiyang and Changping,where soils have low exchangeable and non-exchangeable K contents,but not at rmqi,Yangling and Zhengzhou,where soils have a high exchangeable and non-exchangeable K and/or low N/K ratio in crop plants.Compared to the inorganic NPK fertilization,the inorganic NPK (30% N) and organic manure (70% N) fertilization (NPKM) increased grain yields of wheat (14%-40%) and maize (9%-61%) at four sites,but not at Zhengzhou.For a productivity of wheat at 2-5 t ha-1 or maize at 3-6 t ha-1,13-26 or 9-17 kg K ha-1 were required to produce 1.0 t wheat or maize.The NP fertilization resulted in the lowest negative partial K balance and accumulated 52 kg K ha-1 year-1 less than the NPK fertilization,which accumulated 28 kg ha-1 year-1 less K than the NPKM fertilization.A re-evaluation of the site-specific fertilization effects on N/K ratio in crop plants and soil K accumulation under current NPK and NPKM fertilization is urgently needed to increase both crop yield and K use efficiency at different agroecological zones across China. 相似文献
8.
Water and phosphorus (P) are often unevenly distributed in the soil profile, thus limiting water and P uptake and plant growth. A soil column and a split‐root experiment were conducted to quantify the effect of localized water and P supply on shoot growth, root morphology, specific P uptake (SPU), P‐use efficiency (PUE), and water‐use efficiency (WUE) of maize (Zea mays L.). Our results indicate that roots preferentially grow in the layer or compartment with both adequate water and P supply, subsequently stimulating SPU, PUE, and WUE, and enhancing shoot growth. Compared with the treatments in which both layers and compartments were supplied with adequate P and/or water, the growth of maize was maintained or minimally affected. SPU, PUE, and WUE were increased when both P and water were supplied in one layer or one compartment only. These findings show that normal plant growth with an adequate P uptake was achieved even if part of the roots were supplied with 2/3 (soil column experiment) and 1/2 (split‐root experiment) of the phosphorus and water supplied in the full‐phosphorus and full‐water treatment. Changes in root morphology under water stress conditions induced by the application of phosphorus and water in deeper soil layers or to a part of the roots may have substantial practical implications for agricultural production and environmental protection. 相似文献
9.
砂培筛选体系中不同小麦品种对磷的吸收和利用率 总被引:6,自引:0,他引:6
A sand-based culture system using rock phosphate(P)was developed to simulate the situation in alkaline soils,with respect to the dominant P form,and five wheat cultivars(Excalibur,Brookton,Krichauff,Westonia and Sunco)were tested in this screening system to compare their P uptake and utilisation efficiencies.Results showed that these cultivars differed significantly in their ability to acquire P from the sparingly available form(rock phosphate in this case).The accumulation of P by Brookton was three times that by Krichauff.P concentrations in plant tissues did not differ signifficantly,indicating that all cultivars were similar in P utilisation efficiency.A further experiment showed that the greater ability of a cultivar to take up P from sparingly available form was related to the ability of a cultivar to acidify the rhizosphere.Seed P content was a confounding factor in this system,and the use of relatively uniform seed with similar Pcontent,preferably low,was conducive to a successful outcome of the screening process. 相似文献
10.
采用水培试验,比较分析了氮素对高产玉米杂交种幼苗生长、根系形态及氮素吸收利用效率的影响。结果表明,在一定氮素范围内供氮量的增加能够促进玉米地上部的生长,也促进东单90(DD90)和沈玉21(SY21)根系干重的增加,而高量供氮会抑制根系的生长,导致根冠比下降。郑单958(ZD958)在8.0 mmol/L氮水平下地上部受抑制的程度大于根系,造成根冠比有所增加。在各氮素水平下,东单90具有很好的根系形态,提高了氮素的吸收能力,从而提高氮素积累量。随氮浓度的增加,玉米植株氮素吸收效率增大而氮素生理利用效率减小,无论在低氮还是高氮条件下,郑单958和东单90的氮素吸收效率均显著高于沈玉21和郝育12(HY12),氮素生理利用效率却显著低于沈玉21和郝育12。不同品种对氮素的响应存在显著差异,东单90和郑单958耐低氮和对氮素吸收的能力强,郑单958耐高氮能力相对较弱,沈玉21和郝育12对氮素需求量大,耐低氮能力弱。适宜的氮素供应能更好地协调根系与地上部的关系,促进根系形态发育,增加根系对氮素的接触面积,促进根系对氮素的高效吸收。 相似文献
11.
The availability of nitrogen (N) contained in crop residues for a following crop may vary with cultivar, depending on root traits and the interaction between roots and soil. We used a pot experiment to investigate the effects of six spring wheat (Triticum aestivum L.) cultivars (three old varieties introduced before mid last century and three modern varieties) and N fertilization on the ability of wheat to acquire N from maize (Zea mays L.) straw added to soil. Wheat was grown in a soil where 15N‐labeled maize straw had been incorporated with or without N fertilization. Higher grain yield in three modern and one old cultivar was ascribed to preferred allocation of photosynthate to aboveground plant parts and from vegetative organs to grains. Root biomass, root length density and root surface area were all smaller in modern than in old cultivars at both anthesis and maturity. Root mean diameter was generally similar between modern and old cultivars at anthesis but was greater in modern than in old cultivars at maturity. There were cultivar differences in N uptake from incorporated maize straw and the other N sources (soil and fertilizer). However, these differences were not related to variation in the measured root parameters among the six cultivars. At anthesis, total N uptake efficiencies by roots (total N uptake per root weight or root length) were greater in modern than in old cultivars within each fertilization level. At maturity, averaged over fertilization levels, the total N uptake efficiencies by roots were 292?336 mg N g?1 roots or 3.2?4.0 mg N m?1 roots for three modern cultivars, in contrast to 132?213 mg N g?1 roots or 0.93?1.6 mg N m?1 roots for three old cultivars. Fertilization enhanced the utilization of N from maize straw by all cultivars, but root N uptake efficiencies were less affected. We concluded that modern spring wheat cultivars had higher root N uptake efficiency than old cultivars. 相似文献
12.
Lactuca sativa L. plants were grown at three root-zone temperatures (RZTs): 25°C, 30°C and ambient RZT (A-RZT) on an aeroponic system. Three potassium (K) concentrations: ?25% (minus K), control (standard K), and +25% (plus K) were supplied to plants at each RZT. Plants grown at the plus K and 25°C-RZT had the highest productivity, largest root system and highest photosynthetic capacity. The minus K plants at 25°C-RZT had the highest shoot soluble carbohydrate (SC) concentration, but they had the highest root SC concentration in the plus K plants at A-RZT. However, the highest starch concentration was found in both shoots and roots of the plus K plants at 25°C-RZT. The plus K plants had the highest shoot K concentration at 25°C-RZT, but they had the highest root K concentration at A-RZT. Highest proportion of absorbed K was partitioned to shoots when the plants were grown with the plus K at 25°C-RZT. 相似文献
13.
Identification of cotton (Gossypium hirsutum L.) genotypes efficient in potassium (K) uptake and utilization, under K-deficient conditions represents a cost-effective and environmentally friendly approach for low-K-input agriculture. It would reduce the costly input of K-fertilizers and manage K resources in agro-ecosystems. We ranked 25 cotton genotypes for their K use efficiency under deficient and adequate K regimes in hydroponics, using two different methods. K deficiency generally reduced cotton growth; however, K-efficient genotypes accumulated more biomass due to higher K uptake. Genotype NIBGE-2 exhibited excellent adaptation potential in terms of high shoot dry weight under both K regimes and ranked as the only most desirable, “efficient-responsive” genotype. Genotype CIM-506 produced low shoot dry weight under low K condition and ranked as “non-efficient.” Genotype Desi okra produced low shoot dry weight at adequate K level and ranked as “non-responsive.” Genotype ranking using two different methods ensured the validity of results. 相似文献
14.
《Communications in Soil Science and Plant Analysis》2012,43(21):2595-2601
Potassium (K) plays an important role in many physiological and biochemical processes in plants and its adequate use is an important issue for sustainable economic crop production. Soil test–based K fertilizer recommendations are very limited for lowland rice (Oryza sativa L.) grown on Inceptisols. The objective of this study was to calibrate K soil testing for the response of lowland rice (cv. Ipagri 109) to added K. A field experiment was conducted in the farmers' field in the municipality of Lagoa da Confusão, State of Tocantins, central Brazil. The K rates used were 0, 125, 250, 375, 500, and 625 kg K ha?1 applied as broadcast and incorporated during sowing of the first rice crop. Rice responded significantly to K fertilization during 2 years of experimentation. Maximum grain yield of about 6,000 kg ha?1 was obtained with 57 mg K kg?1 soil in the first year and with 30 mg K kg?1 in the second year. This indicated that at low levels of K in the soil, nonexchangeable K was available for plant growth. Potassium use efficiency designated as agronomic efficiency (kg grain produced/kg K applied) decreased significantly in a quadratic fashion with increasing K level in the soil. Agronomic efficiency had a significantly linear association with grain yield. Hence, improving agronomic efficiency with management practices can improve rice yield. 相似文献
15.
《Communications in Soil Science and Plant Analysis》2012,43(13):1757-1767
The present investigation was conducted on a laterite soil to study biomass partitioning and nutrient-uptake pattern in the aboveground parts of arecanut palm and their relationships to yield. Total biomass production was significantly greater in high-yielding plants (43.6 kg palm?1) than in low-yielding plants (30.8 kg palm?1). Total standing biomass of trunk accounted for 69–74% of the total aboveground biomass in arecanut palm. Dry-matter partitioning to kernel was only 4–10% of the total biomass. The uptake of major nutrients varied significantly between low- and high-yielding plants. Calcium (Ca) uptake was greater by trunk than by other parts, while magnesium (Mg) accumulation was similar in trunk and leaf. The uptake of micronutrients by aboveground parts except leaf was significantly different between low- and high-yielding plants. The present study indicated that combined effect of greater biomass production and nutrient uptake had direct impact on marketable yield of arecanut. 相似文献
16.
17.
Liaqat Ali Rahmatullah M. Aamer Maqsood Shamsa Kanwal M. Ashraf A. Hannan 《Journal of plant nutrition》2013,36(10):1657-1673
ABSTRACT Potassium (K) deficiency affects cotton (Gossypium hirsutum L.) growth. Sodium (Na) can substitute K for some non-specific functions in plants. Four cotton genotypes were evaluated for their growth rates and K use efficiency grown at various K:Na. The cotton genotypes and treatments had significant (p < 0.01) effect on biomass production, growth rate related parameters, K use efficiency, and K: Na ratio. Maximum total dry matter (2.57 g plant-1) was accumulated by ‘NIBGE-2’ and minimum (1.91 g plant?1) was by ‘FH-1000’. Maximum K:Na ratio in shoot was obtained by ‘MNH-786’ and minimum was by ‘NIBGE-2’when 1/3rd K was replaced with Na. Genotypes and various treatments significantly (p < 0.05) influenced specific utilization rate (SUR) and K transport rate (KTR). There was a significant relationship (R2 = 0.84, n = 60) between shoot dry matter and K: Na ratio in shoot. Overall, the growth was better when K and Na were added in ratio of 3:1. 相似文献
18.
AbstractThe present study was conducted in the existing germplasm block of gerbera under protected condition at ICAR-IIHR, Bengaluru, India during 2017–2019 to obtain comprehensive information on biomass partitioning, nutrient uptake pattern and flower yields in different genotypes for precision use of critical inputs. The number of leaves (187.6–353.2 m?2?yr?1) and flower stalks (166.9–274.5 m?2?yr?1) varied significantly among genotypes. Specific leaf area (SLA) was similar among Balance, Stanza, Arka Aswha and Terra Kalina cultivars (0.150–0.156?cm2 mg?1). Strong positive influence of SLA on number of flower stalks was evident from the significant correlation (r = –0.774). Significant positive correlations among number of flower stalks and leaves, leaf area and SLA substantiate the flower yield pattern in gerbera. Optimum leaf number per plant was estimated at 18.6, while optimum range was quantified at 14.1 to 22.4. In gerbera genotypes, the partitioning of total aboveground dry biomass to leaves and flower stalks was 46–61% and 39–54%, respectively. The average nutrient removal was quantified at 32.8?g N, 7.3?g P, 78.7?g K, 24.7?g Ca and 4.1?g Mg m?2?yr?1 and the uptake of macronutrients was in the order of K?>?N > Ca > P?>?Mg. The order of micronutrient removal (g m?2?yr?1) was Fe (0.2), Zn (0.08), Mn (0.06) and Cu (0.03). The soil fertility status at uniform management was above optimum. It is clear that leaf number, biomass partitioning and nutrient removal pattern had direct impact on flower stalk yields of gerbera. 相似文献
19.
《Communications in Soil Science and Plant Analysis》2012,43(7):1025-1036
Abstract Twenty‐eight agriculturally important Delaware soils were cropped intensively in a greenhouse experiment. There was no consistent positive correlation between K uptake and percent sand, silt, clay, clay minerals of the clay fraction, K‐feld‐spars of the sand fraction or K‐feldspar weathering of the soils from the A horizon. Only potassium feldspar from the sand fraction and K‐feldspar weathering correlated with K uptake in the soils of the B horizon. This correlation was only significant at the latter part of the experiment when nonexchangeable K was probably the source of plant available K. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(22):2676-2684
Potassium (K) is an essential nutrient for higher plants. Information on K uptake and use efficiency of upland rice under Brazilian conditions is limited. A greenhouse experiment was conducted with the objective to evaluate influence of K on yield, K uptake, and use efficiency of six upland rice genotypes grown on Brazilian Oxisol. The K rate used was zero (natural soil level) and 200 mg K kg–1 of soil. Shoot dry weight and grain yield were significantly influenced by K level and genotype treatments. However, K × genotype interactions were not significant, indicating similar responses of genotypes at two K levels for shoot dry weight and grain yield. Genotypes produced grain yield in the order of BRS Primavera > BRA 01596 > BRSMG Curinga > BRS 032033 > BRS Bonança > BRA 02582. Potassium concentration in shoot was about sixfold greater compared to grain, across two K levels and six genotypes. However, K utilization efficiency ratio (KUER) (mg shoot or grain yield / mg K uptake in shoot or root) was about 6.5 times greater in grain compared to shoot, across two K level and six genotypes. Potassium uptake in shoot and grain and KUER were significantly and positively associated with grain yield. Soil calcium (Ca), K, base saturation, acidity saturation, Ca saturation, K saturation, Ca/K ratio, and magnesium (Mg)/K ratio were significantly influenced by K application rate. 相似文献