首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 A single conidium of tomato powdery mildew was isolated from heavily infected leaves of tomato (cv. Moneymaker) grown in the greenhouse of Kinki University, Nara Prefecture, Japan. It was successively multiplied so the morphological and taxonomic characteristics of the pathogen and its host range under high humidity conditions could be analyzed. The isolate KTP-01 of the tomato powdery mildew optimally developed infection structures at 25°C under continuous illumination of 3500 lx. More than 90% of the conidia germinated and developed moderately lobed appressoria. After forming haustoria, the pathogen elongated secondary hyphae from both appressoria and conidia. The hyphae attached to leaf surfaces by several pairs of appressoria and produced conidiophores with noncatenated conidia. In addition to its morphological similarity to Oidium neolycopersici, the phylogenetic analysis (based on the sequence of internal transcribed spacer regions of rDNA) revealed that KTP-01 could be classified into the same cluster group as O. neolycopersici. In host range studies, KTP-01 produced abundant conidia on the foliage of all tomato cultivars tested and tobacco (Nicotiana tabacum), and it developed faint colonies accompanied by necrosis on leaves of potato (Solanum tuberosum), red pepper (Capsicum annuum), petunia (Petunia × hybrida), and eggplant (S. melongena). The pathogen did not infect other plant species including Cucurubitaceae plants, which have been reported to be susceptible to some foreign isolates. Thus, the present isolate of the tomato powdery mildew was assigned as O. neolycopersici, a pathotype different from foreign isolates of the pathogen. Received: December 5, 2002 / Accepted: December 26, 2002 Acknowledgments This work was supported in part by a Grant-in-Aid (12660050) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We express our deepest thanks to professor Dr. Y. Sato, Toyama Prefectural University, for his kind and valuable suggestion on taxonomic analysis of the powdery mildew pathogen described in the present study.  相似文献   

2.
The role of salicylic acid (SA) was investigated in basal defence and induced resistance to powdery mildew ( Oidium neolycopersici ) and grey mould ( Botrytis cinerea ) in tomato ( Lycopersicon esculentum ) and tobacco ( Nicotiana tabacum ). A comparison of NahG transgenic tomato and tobacco (unable to accumulate SA) to their respective wild types revealed that in tomato, SA was not involved in basal defence against O. neolycopersici but NahG tobacco showed an enhanced susceptibility to O. neolycopersici infection, the effect becoming more obvious as the plants grew older. In contrast, SA played no role in the basal defence of tobacco against B. cinerea , but seemed to contribute to basal defence of tomato against B. cinerea. Activation of the SA-dependent defence pathway via benzothiadiazole (BTH) resulted in induced resistance against O. neolycopersici in tobacco but not in tomato. Microscopic analysis revealed that BTH treatment could prevent penetration of the Oidium germ tube through tobacco leaves, whereas penetration was successful on tomato leaves irrespective of BTH treatment. In contrast, soil or leaf treatment with BTH induced resistance against B. cinerea in tomato but not in tobacco. It is concluded that the SA-dependent defence pathway is effective against different pathogens in tomato and tobacco.  相似文献   

3.

BACKGROUND

Host plant resistance plays an important role in integrated pest management programs. Crop resistance assessments commonly focus on only a single dependent variable, such as larval survival/plant damage, which limits the ability to appreciate the impact of host plants on pest populations in the full sense. Therefore, we performed life-table analyses for tomato leaf miner Tuta absoluta, on 19 Solanum lycopersicum genotypes and a wild Solanum habrochaites accession. These analyses assess the ability of the pest to attain a high population density on different tomato genotypes. Based on the resulting ranking of tomato resistance at the vegetative stage (45-day-old plants), we tested the resistance of six selected genotypes at the reproductive stage (4-month-old plants).

RESULTS

T. absoluta performance was significantly inferior on vegetative-stage S. habrochaites plants (LA 1777); time taken for the first instars to mine the leaves (5 ± 0.14 days), development time of early- and late-stage larvae (8.8 ± 0.2 and 4.2 ± 0.2 days, respectively), pupal period (11.2 ± 0.58 days), and total developmental time (29.4 ± 0.83 days) were significantly longer, fecundity was significantly lower (18.66 ± 7.24 days), and the highest total mortality (63.33%) also recorded compared with other genotypes, resulting in the lowest net reproductive rate (R0) (11.20 ± 2.51). For the six selected genotypes, the ranking of plant resistance did not change between plants at the vegetative and reproductive stages.

CONCLUSION

This study suggested that of 20 screened tomato genotypes, LA 1777 and EC-620343 are the least suitable hosts for T. absoluta to establish fast-growing populations, and thus can be employed in integrated T. absoluta management. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

4.
黑龙江省番茄白粉病病原鉴定   总被引:1,自引:0,他引:1  
通过收集东北农业大学日光温室中的番茄白粉菌,并对其进行形态和分子鉴定及分析,明确了该白粉病的病原种类及其分类地位。根据分生孢子的显微形态观察初步确定为新番茄粉孢菌(Oidiumneolycopersici L. Kiss)。进一步根据真菌rDNA-ITS序列检测分析后发现该病原菌与新番茄粉孢菌(O. neolycopersici)的相似性为100%,并对与其相似性较高的序列构建进化树分析发现,本试验研究的白粉菌与其他国家和地区的白粉菌相似性不高,这可能是由于哈尔滨地区白粉菌自身小种进化的原因。  相似文献   

5.
Abiotic stress may affect plant response to pathogen attack through induced alterations in growth regulator and gene expression. Abscisic acid (ABA) mediates several plant responses to abiotic stress. The effects of drought, salt stress and ABA on the interaction of tomato ( Lycopersicon esculentum ) with the biotrophic fungus Oidium neolycopersici and the necrotrophic fungus Botrytis cinerea were investigated. Drought stress resulted in a twofold increase in endogenous ABA as well as a 50% reduction in B. cinerea infection and a significant suppression of O. neolycopersici on tomato cv. Moneymaker. Salt stress did not affect B. cinerea infection, but significantly reduced infection by O. neolycopersici , with no obvious increase in endogenous ABA. Compared with the wild type, the ABA-deficient sitiens mutant was more resistant to O. neolycopersici and B. cinerea . Exogenous ABA resulted in increased susceptibility of sitiens to both pathogens, but did not increase the basal susceptibility of wild-type plants. It is concluded that, in tomato, drought and salt stress stimulate different, but possibly overlapping, pathogen-defence pathways which may not necessarily involve ABA. Meanwhile, basal endogenous ABA levels suppress the resistance of tomato to O. neolycopersici and B. cinerea , but an ABA increase above the basal level, resulting from exogenous application, does not increase susceptibility to these pathogens.  相似文献   

6.
Hormesis is a dose response phenomenon in which low, non-damaging doses of a stressor bring about a positive response in the organism undergoing treatment. Evidence is provided here that hormetic UV-C treatments of tomato seed can control disease caused by Botrytis cinerea, Fusarium oxysporum f. sp. lycopersici (FOL) and f. sp. radicis-lycopersici (FORL) on tomato (Solanum lycopersicum). Treating seeds with a 4 kJ m−2 dose of UV-C significantly reduced both the disease incidence and progression of B. cinerea, with approximately 10% reductions in both on cv. Shirley. Disease severity assays for FOL and FORL on cv. Moneymaker showed dose-dependent responses: UV-C treatments of 4 and 6 kJ m−2 significantly reduced the disease severity scores of FOL, whilst only the 6 kJ m−2 showed significant reductions for FORL. To determine the effects of treatment on germination and seedling growth, UV-C doses of 4, 8 and 12 kJ m−2 were performed on cv. Shirley. No negative impacts on germination or seedling growth were observed for any of the treatments. However, the 8 kJ m−2 treatment showed significant biostimulation, with increases in seedling, root and hypocotyl dry weight of 11.4%, 23.1% and 12.0%, respectively, when compared to the control. Furthermore, significant increases in the root-mass fraction (10.6%) and root:shoot ratio (13.1%) along with a decrease in shoot-mass fraction (2.0%) indicates that the 8 kJ m−2 treatment stimulated root growth to the greatest extent. There was no effect on hypocotyl and primary root length or the number of lateral roots, indicating no adverse effects to basic root architecture or seedling growth.  相似文献   

7.
Efficient management of whitefly-borne diseases remains a challenge due to the lack of a comprehensive understanding of their epidemiology, particularly of the diseases tomato golden mosaic and tomato yellowing. Here, by monitoring 16 plots in four commercial fields, the temporal and spatial distribution of these two diseases were studied in tomato fields in Brazil. In the experimental plots these diseases were caused by tomato severe rugose virus (ToSRV) and tomato chlorosis virus (ToCV), respectively. The incidence of each virus was similar in the plots within a field but varied greatly among fields. Plants with symptoms for both diseases were randomly distributed in three of four spatial analyses. The curves representing the progress of both diseases were similar and contained small fluctuations, indicating that the spread of both viruses was similar under field conditions. In transmission experiments of ToSRV and ToCV by Bemisia tabaci MEAM1 (former biotype B), these viruses had a similar transmission rate in single or mixed infections. It was then shown that primary and secondary spread of ToCV were not efficiently controlled by insecticide applications. Finally, in a typical monomolecular model of disease progress, simulation of the primary dissemination of ToSRV and ToCV showed that infected plants were predominantly randomly distributed. It is concluded that, although the manner of vector transmission differs between ToSRV (persistent) and ToCV (semipersistent), the main dispersal mechanisms are most probably similar for these two diseases: primary spread is the predominant mechanism, and epidemics of these diseases have been caused by several influxes of viruliferous whiteflies.  相似文献   

8.
The nutritional status of a plant is known to influence its susceptibility to pathogens. In the case of Botrytis cinerea, the role of nitrogen fertilization of various host plants on disease development appears to be variable. This study was carried out to characterize possible variability associated with isolates and inoculum density of B. cinerea in its ability to infect leaf‐pruning wounds and to develop stem lesions on tomato plants, as affected by the nitrogen input. Six isolates differing in their aggressiveness to tomato were compared. They all had similar reaction patterns in vitro in response to differential nitrogen levels. In tests on plants grown with contrasted regimes of nitrate fertilization, overall disease severity was lower for all isolates on plants with higher nitrogen inputs, regardless of inoculum concentration. However, differences among isolates were observed in the effect of plant nitrogen nutrition on infection and on lesion expansion. Disease onset was delayed on all plants with higher nitrogen inputs, but the response was greater for isolates with lower aggressiveness on tomato. The highest contrast among isolates was observed with the colonization of stems. The daily rate of stem lesion expansion decreased with increasing nitrogen fertilization levels for the more aggressive isolates, while it increased for the less aggressive isolate. Hypotheses to explain these results are discussed in light of the possible physiological effects of nitrogen fertilization on nutrient availability for the pathogen in the host tissue and of possible production of defence metabolites by the plant.  相似文献   

9.
Boron is a microelement required for normal growth and development of plants but its positive effect is restricted to a narrow range of concentrations. The gradual increase in use of recycled water, which contains high concentrations of boron for irrigation, has already raised the level of boron in soils and plants in southern Israel. This research was conducted to examine the direct effects of sub‐phytotoxic boron concentrations on potato late blight epidemics and to explore the mode of action of boron against Phytophthora infestans. When boron was applied alone to field grown potato plants it did not affect the epidemic. However, together with a reduced rate of the fungicide Melody Duo (propineb + iprovalicarb), boron improved late blight suppression compared to plants treated with the fungicide alone. The ED50 of boron against P. infestans (256·4 mg L?1) was about 6400 times higher than the ED50 value of the fungicide chlorothalonil (0·04 mg L?1), indicating that boron does not have a direct fungicidal activity that would explain the level of protection seen in the field. In greenhouse experiments conducted with potted tomato plants, boron decreased late blight severity in both treated leaves and distant leaves not treated with boron. The results suggest that boron is active locally but also may induce systemic acquired resistance against P. infestans.  相似文献   

10.
The antifungal activity of hexanoic acid on the phytopathogen Botrytis cinerea was studied. This chemical inhibited both spore germination and mycelial growth in vitro in a concentration‐ and pH‐dependent manner, and stopped spore germination at a very early stage, preventing germ‐tube development. The minimum fungicidal concentration (MFC) for in vitro spore germination was 16 mm . Hexanoic acid also inhibited in vitro mycelial growth of germinated spores at an MFC of 12 mm . Studies performed to characterize the mechanisms underlying the antimicrobial effect of hexanoic acid showed that it alters fungal membrane permeability. In addition, hexanoic acid treatment increased the levels of spermine, spermidine, putrescine and cadaverine in B. cinerea mycelia. Spray application of hexanoic acid at fungicidal concentrations on 4‐week‐old tomato plants prior to fungal inoculation reduced necrosis diameter by approximately 60%. Application of the same hexanoic acid concentrations on previously infected plants reduced further necrosis expansion by around 30%. The results suggest that this chemical acts as a preventive and curative fungicide. Interestingly, treatments with hexanoic acid at concentrations below the MFC in hydroponic solution prior to fungal inoculation significantly reduced necrosis area. These results suggest an inducer effect of plant responses for hexanoic acid treatments at these concentrations. Hexanoic acid is a good candidate for safe antifungal treatments for the control of B. cinerea, which is responsible for many economic losses on fruits, vegetables and flowers.  相似文献   

11.
Nine accessions of three cucurbit species, ten of eight legume species, three of lettuce (Lactuca sativa) and 34 of 14 Solanaceae species were inoculated with a Dutch isolate of the tomato powdery mildew fungus (Oidium lycopersici) to determine its host range. Macroscopically, no fungal growth was visible on sweet pepper (Capsicum annuum), lettuce, petunia (Petunia spp.) and most legume species (Lupinus albus, L. luteus, L. mutabilis, Phaseolus vulgaris, Vicia faba, Vigna radiata, V. unguiculata). Trace infection was occasionally observed on melon (Cucumis melo), cucumber (Cucumis sativus), courgette (Cucurbita pepo), pea (Pisum sativum) and Solanum dulcamara. Eggplant (Solanum melongena), the cultivated potato (Solanum tuberosum) and three wild potato species (Solanum albicans, S. acaule and S. mochiquense) were more heavily infected in comparison with melon, cucumber, courgette, pea and S. dulcamara, but the fungus could not be maintained on these hosts. All seven tobacco (Nicotiana tabacum) accessions were as susceptible to O. lycopersici as tomato (Lycopersicon esculentum cv Moneymaker), suggesting that tobacco is an alternative host. This host range of the tomato powdery mildew differs from that reported in some other countries, which also varied among each other, suggesting that the causal agent of tomato powdery mildew in the Netherlands differ from that in those countries. Histological observations on 36 accessions showed that the defense to O. lycopersici was associated with a posthaustorial hypersensitive response.  相似文献   

12.
13.
Three diagrammatic grading keys were designed for the assessment of the severity of late blight (caused by Phytophthora infestans ) in tomato leaves. Simplified and broad keys considered, respectively, six (3, 12, 22, 40, 60 and 77%) and eight (3, 6, 12, 22, 40, 60, 77 and 90%) levels of disease severity, whilst a modified key based on a previous proposal for potato late blight considered six levels (1, 5, 10, 16, 32 and 50%). The keys were validated by 24 evaluators who assessed digital images of tomato leaves exhibiting different areas with lesions. Evaluator errors were compared using a mixed model in which evaluators were considered as random effects and the keys and evaluations as fixed effects. The accuracy and precision of the evaluators were compared by simple linear regression between the estimated and actual values of disease severity. The repeatability of evaluators was assessed using Pearson's correlation coefficient. There was significant ( P  ≤   0·001) variability amongst the errors made by evaluators, although the precision of each of the three keys was high with a coefficient of determination (R2) of 0·96, 0·93 and 0·83 for the simplified, broad and modified key, respectively. Repeatability of estimations amongst the evaluators was adequate (correlation coefficients of 0·91, 0·91 and 0·90 for the three keys, respectively). The simplified and broad keys resulted in higher precision and accuracy for the estimation of severity than did the modified key. Since the simplified key considers a smaller number of disease severity levels, its use is recommended in the assessment of late blight in tomato leaves.  相似文献   

14.
Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV) are two criniviruses inducing similar yellowing symptoms in tomato. An approximately 4 kb central region of the genomic RNA2 of French ToCV and TICV isolates was sequenced. TICV, for which no other sequences were available, appeared as a distant species in the genus, being close only to LIYV ( Lettuce infectious yellows virus ) for some, but not all, proteins. ToCV has more than 98% nucleotide identity with isolates from the US and Spain, and sequencing the CP gene of several isolates collected in different regions in southern France during 2 years suggested a unique origin. Polyclonal antisera were produced using capsid proteins of both viruses expressed in Escherichia coli . DAS-ELISA assays were developed for routine diagnosis and conditions for preparing samples for an optimized detection were determined. No cross-reactions were observed. However, some false-negative results, corresponding to samples giving ELISA readings close to the detection limit were regularly detected, particularly for ToCV (approximately 5% of the samples). A triplex RT-PCR assay was thus developed, which allowed detection of both viruses in a one-step protocol. An internal PCR control was included, which in addition showed that it could be used as a control for the entire RT-PCR procedure. Finally, combining DAS-ELISA in a first round, and triplex RT-PCR for doubtful samples, appeared the best way to achieve a reliable diagnosis of these viruses.  相似文献   

15.
16.
The red spider mite Tetranychus evansi can cause up to 90% yield losses to tomato crops. Mechanisms and causes of plant resistance to this pest could contribute to improved planning of plant breeding programs that prevent damage by this pest. It is known that the morphology and chemical compounds present in tomato plants are important to Tetranychus spp. success. This study aims at evaluating the resistance of 84 arbitrarily chosen tomato accessions – obtained from the Horticulture Germplasm of the Universidade Federal de Viçosa (HGB-UFV), Minas Gerais State, Brazil – to T. evansi. We evaluated the number of spider mites per leaf disk, number of trichomes/mm2, and the concentration of hydrocarbons of leaf disk. A significant difference in the number of T. evansi adults/leaf disk was found among accessions. The resistance mechanism of the HGB-UFV accessions was determined to be antixenosis. Accessions 2004, 2098, 2121, and 2100 had higher trichome density and the lowest adult T. evansi per tomato leaf disk. For this reason, these accessions should be chosen as sources of resistance in plant breeding programs. The hydrocarbons C11, C13, and C22 had a negative correlation with T. evansi adults per leaf disk.  相似文献   

17.
18.
Pepino mosaic virus (PepMV) was shown to be efficiently transmitted between tomato plants grown in a closed recirculating hydroponic system. PepMV was detected in all plant parts after transmission via contaminated nutrient solution using ELISA, immunocapture RT‐PCR, RT‐PCR, electron microscopy, and by inoculation to indicator plants. Detection of PepMV in nutrient solution was only possible after concentration by ultracentrifugation followed by RT‐PCR. Roots tested positive for PepMV 1–3 weeks after inoculation, and subsequently a rapid spread from the roots into the young leaves and developing fruits was found within 1 week. PepMV was only occasionally detected in the older leaves. None of the infected plants showed any symptoms on fruits, leaves or other organs. Pre‐infection of roots of tomato cv. Hildares with Pythium aphanidermatum significantly delayed PepMV root infections. When mechanically inoculated with PepMV at the 2–4 leaf stage, yield loss was observed in all plants. However, only plants of cv. Castle Rock recorded significant yield losses when infected via contaminated nutrient solution. Yield losses induced by infection with PepMV and/or P. aphanidermatum ranged from 0·4 up to 40% depending on experimental conditions.  相似文献   

19.
20.
The effects of timing and method of application of Penicillium oxalicum on the control of fusarium wilt of tomato were investigated. Application of P. oxalicum to tomato seedlings in seedbeds reduced disease caused by Fusarium oxysporum f.sp. lycopersici in a growth chamber by 45–49% and in glasshouse experiments by 22–69%. Disease suppression was maintained for 60–100 days after inoculation with the pathogen in the glasshouse. No disease reduction was observed in tomato plants where P. oxalicum was applied to seeds. Treatment with P. oxalicum did not affect the population of F. oxysporum f.sp. lycopersici in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号