共查询到16条相似文献,搜索用时 15 毫秒
1.
Moisture and treading treatments were imposed on intact turves that were relocated to a glasshouse after being removed from three hill pastures of different soil fertility in the North Island of New Zealand. The experiment consisted of a 2‐month stress phase, where the treatments were wetting (W), wetting and treading (WT), drying (D) and control (C). In this phase, herbage accumulation rate, tiller density and leaf extension rate were lower on the D turves, and herbage accumulation rate and tiller density were lower on the WT turves than for the C turves. Herbage accumulation rate was higher on the W treatment than on the C treatment. In the 2‐month recovery phase, herbage accumulation rate and leaf extension rate on the D turves were higher than those of the C treatment. Herbage accumulation rate and tiller density took longer to recover on the WT turves but by the end of the recovery period tiller density on these turves exceeded that of the C turves and the original tiller densities on the WT turves. Changes (increase or decrease) in leaf extension rate were associated with the W treatment and tiller density with the WT treatment. Moisture was limiting on the D and C turves, but on the W and WT turves, where moisture was adequate for plant growth, nutrients were limiting, notably phosphorus on the W and WT turves and sulphur on the W turves. The D treatment turves recovered very quickly once the stress was removed but the WT turves were slower to recover. Under the experimental conditions applied, the hill pasture turves were more resilient to the drying treatment than the wetting and treading treatment. 相似文献
2.
Impact of deferred grazing and fertilizer on herbage production,soil seed reserve and nutritive value of native pastures in steep hill country of southern Australia 下载免费PDF全文
Developing sustainable grazing management systems based on perennial species is critical to preventing land degradation in marginal land classes. A field study was conducted from 2002 to 2006 to identify the impacts of deferred grazing (no defoliation of pastures for a period generally from spring to autumn) and fertilizer application on herbage accumulation, soil seed reserve and nutritive value in a hill pasture in western Victoria, Australia. Three deferred grazing strategies were used: short‐term deferred grazing (no defoliation between October and January), long‐term deferred grazing (no defoliation from October to the autumn break) and optimized deferred grazing (withholding time from grazing commenced between annual grass stem elongation and seed head emergence and concluded in February/March). These treatments were applied with two fertilizer levels (with or without fertilizer at 50 kg phosphorus ha?1 and 2000 kg lime ha?1 applied in year 1 only) in a factorial arrangement and two additional treatments: continuous grazing (CG) and no grazing (NG) in year 1. The deferred grazing treatments on average produced herbage dry matter of 4773 kg ha?1, the NG produced 4583 kg ha?1 and the CG produced 3183 kg ha?1 in year 4 (2005–06) of the experiment. Deferred grazing treatments with and without fertilizer application produced an average of 5135 and 4411 kg DM ha?1 respectively. Averaged over 4 years, deferred grazing increased the germinable seed pool of perennial grasses by 200% and annual grasses by 50% (except optimized deferred grazing that considerably decreased the annual grass seed pool) compared with the CG. The best of the deferred grazing strategies increased the digestibility of pastures by 7% compared with the CG. The results demonstrated that deferred grazing from spring to autumn followed by rotational grazing could be an effective tool to increase herbage production and soil seed pool and improve the digestibility of native pastures in the steep hill country of southern Australia. 相似文献
3.
Effects of shrub encroachment on herbage production and nutritive value in semi-arid Mediterranean grasslands 总被引:1,自引:0,他引:1
There is limited information on the effects of the increase in the density of shrubs on herbage production and nutritive value of natural grasslands in the Mediterranean region, currently facing major land use changes. Herbage production of drymatter (herbaceous fractions, of plant functional groups and by species), crude protein (CP), neutral‐detergent fibre (NDF), acid‐detergent fibre (ADF), acid‐detergent lignin (ADL) and hemicellulose concentrations and in vitro organic matter digestibility were determined at the time of peak of annual growth across four types of grassland vegetation each characterized by different shrub cover regimes. A sharp reduction in herbage production and a reduction in nutritive value were found as a result of the increase in shrub cover. These changes appeared to be closely related to the shift in plant functional groups detected as shrub density increased. Herbage production from grasses and legumes was found to be more sensitive to shrub cover changes than herbage production from forbs, whereas, as grassland types became denser, annual species were gradually replaced by perennials and C4 grasses by C3 ones. The impact of shrub encroachment on Mediterranean grasslands is discussed in relation to their use by livestock. 相似文献
4.
I. F. López J. Hodgson D. I. Hedderley† I. Valentine M. G. Lambert‡ 《Grass and Forage Science》2003,58(4):339-349
The objective of the study was to evaluate the grazing behaviour by sheep in hill country paddocks in New Zealand which had received two long‐term fertilization and stocking rate treatments [high fertility–high stocking rate (HH); low fertility–low stocking rate (LL)]. Herbage accumulation and selective grazing were evaluated within low slope (LS), medium slope (MS) and high slope (HS) categories. Transects lines were placed and tillers of Agrostis capillaris and Lolium perenne in the LS category; A. capillaris, Anthoxanthum odoratum and L. perenne in the MS category; and A. capillaris and A. odoratum in the HS category were marked. The leaf length of each marked tiller was measured and used to determine selective grazing over 3 weeks during each season. The highest herbage accumulation rates were during spring and the lowest in summer and winter. The LS category showed the highest herbage accumulation rates and HS the lowest. Except for autumn, the marked tillers were more frequently grazed in the HH than in the LL paddock. During summer, autumn and spring, grazing frequency in the slope categories was in the order LS > MS > HS. During winter sheep did not discriminate between slope category. During summer, autumn and spring, sheep did not selectively graze the species studied but this was not the case during winter. Overall, sheep selectively grazed L. perenne. In all the seasons L. perenne consistently had the longest leaves but within species there was no consistent relationship between leaf length and probability of being grazed. Selective grazing changed through the year according to herbage accumulation rate. Sheep concentrated grazing in the category LS when herbage accumulation rate was high, but they did not discriminate between slope categories in winter when herbage accumulation rate was low. 相似文献
5.
Warm‐season pasture residue may create problems for no‐till overseeding with cool‐season grasses in the USA Southern Plains. Removal of residue to facilitate overseeding, however, represents additional cost and labour that may not be available on small livestock farms. Field experiments were undertaken to assess the effects of above‐surface residues of warm‐season pasture averaging 1·62, 2·48 or 3·36 t DM ha?1 on establishment and herbage production of Italian ryegrass (Lolium multiflorum) or tall fescue (Festuca arundinacea) overseeded by broadcasting or by no‐till drilling into dormant warm‐season pasture. On average, no‐till drilling was more effective than broadcasting in establishing both grass species, but it was no more effective than broadcasting when used with the greatest amount of residue. Cool‐season grass production was increased by 0·16 when no‐till drilled, but combined yearly total herbage production of cool‐ and warm‐season grasses was increased by 0·07 when cool‐season grasses were established by broadcasting. Amount of residue at sowing did not significantly affect herbage yield of cool‐season grass, but increased residue in autumn resulted in a 0·16 increase in total herbage production in the year following sowing. Residue amount did not affect over‐winter survival of grass seedlings, and productivity benefits of increased residue are small compared with reduced harvest arising from underutilization of warm‐season pasture residue in autumn. 相似文献
6.
The changes in dry matter (DM) yield, botanical composition and nutritive value of herbage to ruminants of two wet grasslands, Arrhenatherum elatius grassland (Experiment 1) and a Molinia caerulea fen meadow (Experiment 2), in which a range of cutting and fertilizer treatments were imposed in 1999, were assessed after 4–7 years of treatment imposition. Both experiments had a split‐plot design with four replicates. In Experiment 1 the three main‐plot cutting treatments were two cuts with a delayed first cut, three cuts and four cuts during the growing season of each year. In Experiment 2 the cutting treatments were two cuts with a traditional harvest time, two cuts with a delayed first cut and three cuts. The four sub‐plot fertilizer treatments were an unfertilized control, application of a phosphorus and potassium (PK) fertilizer, application of a nitrogen (N) and PK fertilizer to the first cut only (N1PK) and application of PK plus N applied to each of two, three or four cuts (Nc PK). Application of fertilizer influenced yield and botanical composition of herbage more than the cutting treatments while the opposite occurred for nutritive value of the herbage. Application of fertilizer increased the proportion of tall grasses in Experiment 1 and forbs in Experiment 2. The proportion of Equisetum palustre, present only in Experiment 1, was reduced from 0·33 to less than 0·01 by increased cutting frequency together with the NPK fertilizer treatments. In Experiment 1 diversity of vascular plants was negatively affected only by the four‐cuts treatment while on both wet grasslands other cutting and fertilizer application treatments had no effect. Changes in DM yield of herbage caused by the cutting and fertilizer application treatments were similar for both vegetation types with DM yield increased significantly by fertilizer application but only slightly or not reduced by increasing the cutting frequency. Nutritive value of herbage was positively correlated with cutting frequency and was most influenced at the first cut. 相似文献
7.
P. Schönbach H. Wan M. Gierus R. Loges K. Müller L. Lin A. Susenbeth F. Taube 《Grass and Forage Science》2012,67(4):535-545
The present study highlights the effects of sheep grazing and precipitation on herbage and animal performance in a grazed steppe of Inner Mongolia. Experimental data were collected during grazing periods of four consecutive years (2005–2008), and effects were analysed across a gradient of seven grazing intensities. Variation in annual precipitation, reflected by the effect of ‘year’, was the major factor affecting herbage; i.e., the production and nutritive value of herbage increased with increasing precipitation. Herbage parameters were also affected by grazing intensity, as herbage production (HP) and herbage nutritive yields decreased, while herbage nutritive values increased with increasing grazing intensity. The grazing‐induced decrease in herbage nutritive yields suggests that decreases in HP offset the positive effect of grazing on the nutritive value. Liveweight gain (LWG) was predominantly affected by grazing intensity, as LWG per sheep and per ha decreased and increased, respectively, with increasing grazing intensity. However, responses varied among years: LWG per sheep was maximized by light grazing in the drought year and by moderate grazing the wet year. Our results showed that herbage shortage at high grazing intensities reduces LWG per sheep and thus diminishes responses in LWG per ha. Nevertheless, the highest grazing intensity provides highest animal production per ha in the short term; however, this is not sustainable in the mid‐ and long term because decreasing HP induces degradation processes. Based on our results, a reduction in grazing intensity that still provides 78% of the maximum LWG per ha meets the requirements of a sustainable grazing management. 相似文献
8.
Jan Gaisler Lenka Pavl Chukwudi Nwaogu Klra Pavl Michal Hejcman Vilm V. Pavl 《Grass and Forage Science》2019,74(3):463-475
A shortage of available livestock for utilizing grassland biomass in Central Europe is challenging for the management of both semi‐natural grasslands and previously intensified (limed, fertilized and reseeded) upland grasslands. An alternative method of grassland management is mulching, in which aboveground biomass is cut, crushed and subsequently spread on the surface. This paper reports on an experiment to compare three different mulching frequencies (one, two and three times per year) with an unmanaged treatment and traditional management of two cuts per year (control) on a previously improved upland meadow. Plant species composition was monitored over 13 years. Traditional management of two cuts with biomass removal was the most suitable method for maintaining plant species richness and diversity, and both were reduced significantly in the once‐mulched and especially in the unmanaged treatment. Tall dicotyledonous weeds such as Urtica dioica, Cirsium arvense and Aegopodium podagraria were promoted by the unmanaged treatment and by mulching once a year. Higher frequency of defoliation had positive effects on the spread of short forbs such as Taraxacum spp., Plantago lanceolata and Trifolium repens. After eight years, there were changes in sward structure in the unmanaged and mulched‐once‐a‐year treatments, with increase in the tall/short species ratio. In conclusion, repeated mulching cannot substitute fully for traditional two‐cut management in improved upland meadows without decreasing plant species richness and diversity, and changing the sward structure. Although mulching once a year may prevent invasion by shrubs and trees, it also supports the spread of weedy species similar to no management. 相似文献
9.
Livestock grazing can be a means to maintain biodiversity in grasslands, but the outcome for vegetation structure and species composition depends on livestock type and grazing regime. This study aims at disentangling the effects of plant functional‐group abundance and livestock type on the above‐ and below‐ground biomass and N allocation in temperate pastures. We investigated the effects of cattle, sheep and mixed stocking on above‐ground biomass (AGB) and belowground biomass (BGB) and plant N pools in a replicated grazing experiment in two pasture community types with different plant functional‐group abundance (diverse vs. grass‐dominated swards). In the six treatments, AGB was reduced up to 80% compared with an ungrazed control. Cattle reduced AGB to a larger extent than sheep in diverse pastures (80 vs 44% reduction) while sheep grazing tended to do so in grass‐dominated pastures (57 vs 46% reduction); mixed stocking led to intermediate values. Grazing reduced AGB more than the N pool in AGB, thus lowering the biomass C/N ratio relative to the ungrazed control. Neither BGB nor the N pool in BGB differed between the grazing treatments and the control plots. We conclude that livestock type and functional‐group abundance are interacting factors that influence plant biomass and N pools in swards of managed temperate pastures. The contrasting biomass removal rates of cattle and sheep could be used to increase the structural heterogeneity and total plant species pool of pastures by keeping different livestock species in neighbouring patches. 相似文献
10.
Perennial ryegrass (Lolium perenne L.) infected with a novel endophyte (AR37 or AR1), Wild‐type endophyte or no endophyte (Nil) was sown with white clover (Trifolium repens L.) in autumn 2005. The pastures were rotationally grazed by dairy cows from 2005–2009. Annual dry matter (DM) yield did not differ but AR37 pastures had a higher ryegrass tiller density, especially after the 2008 summer drought (+130%), and less white clover than did AR1 pastures. Concentrations of alkaloids produced by the Wild‐type association (lolitrem B, ergovaline) followed the same seasonal trends as did the AR37 alkaloids (epoxy‐janthitrems) but summer drought reduced concentrations of lolitrem B and epoxy‐janthitrems to less than half the mid‐summer (February) peak concentrations in the other years. Insect pests were monitored annually between 2006 and 2009. Tiller damage by Argentine stem weevil (Listronotus bonariensis (Kuschel)) was significantly reduced by all endophyte treatments. African black beetle (Heteronychus arator (F.)) populations in soil samples increased during the experiment with Nil > AR1 > Wild‐type = AR37. Root aphid (Aploneura lentisci (Pass.)) infestations followed the pattern AR1 > Nil > Wild‐type = AR37. A lower pest pressure from all insect pests in AR37 pastures is likely to have contributed to this treatment having the highest ryegrass tiller densities. 相似文献
11.
Evaluation of the effects of ewe prolificacy potential and stocking rate on herbage production,utilization, quality and sward morphology in a temperate grazing system 下载免费PDF全文
This study investigated the effect of ewe prolificacy potential (PP; predicted number of lambs born ewe?1 year?1), stocking rate (SR; ewes/ha) and their interaction on herbage dry matter (DM) production, utilization, quality and sward morphology within a temperate grass‐based lamb production system. The study had a 2 × 3 factorial design, consisting of two ewe PP as dictated by sire breed (180 medium prolificacy potential (MP—Suffolk crossbred) and 180 high prolificacy potential ewes (HP—Belclare crossbred)) and three SR: low (LSR; 10 ewes/ha), medium (MSR; 12 ewes/ha) and high (HSR: 14 ewes/ha). Each treatment was managed in a rotational grazing system, with LSR, MSR and HSR treatments grazing to target post‐grazing sward heights (PGSH) of 4.55, 4.15 and 3.75 cm respectively. Herbage DM production (above target PGSH) and utilization were highest at the HSR, intermediate at the MSR and lowest at the LSR (p < .001). Ewe PP had no effect on herbage DM production, utilization, quality or sward morphology (p > .05). The proportion of leaf in the sward (above target PGSH) was 4% greater in MSR and HSR compared with LSR (p < .05). In conclusion, findings demonstrate the potential to support increased ewe PP through the selection of ewe genotypes of a genetically higher PP and lower mature live weight and increased SR within a temperate grass‐based lamb production system. 相似文献
12.
Five pastures in an Mediterranean environment in southern Italy were fertilized for 6 years (1993–1998) with nitrogen (N) fertilizer, phosphorus (P) fertilizer and two levels low (L) and high (H) of combined nitrogen and phosphorus fertilizer (N‐P), and compared with a no‐fertilizer control treatment, and the effects on soil variables, dry matter (DM) yield of herbage and floristic composition of the pastures measured. From 1998–2002, half of each plot was fertilized with the same treatments (continued treatment) while the other half received no fertilizer (discontinued treatment). In the year 2001–2002, the plots on the discontinued fertilizer treatments and the plots on the control treatment were used to evaluate the residual effects of the fertilizer treatments. The P and N‐P fertilizer continued and discontinued treatments, in comparison to the control treatment, had a higher content of available P2O5 in the soil while under the N fertilizer treatment it decreased. The N and P fertilizer treatments and the residual effects of these treatments led to higher DM yields and proportions of Gramineae and Leguminosae, respectively, compared to the control treatment. Furthermore, differences in the nutritive value of the herbage and floristic composition were observed between the N‐P fertilizer treatments and the control treatment. The residual effect of the N, P and N‐P fertilizer treatments increased DM yield proportionately by 0.063, 0.385 and 0.404, respectively, and reduced the crude protein content of the herbage. The residual effects of the fertilizer treatments on milk forage units (MFU) were 261 for N, 1107 for P and 1003 MFU ha?1 for N–P fertilizer treatments. Among fertilizers, the residual effect of the N‐P fertilizer treatment promoted an increase in DM yield but produced little variation in floristic composition of the pasture. In general, the fertilizer treatments increased DM yield and nutritive value of herbage and reduced floristic composition in pastures on these Mediterranean sites. 相似文献
13.
Otávio Goulart de Almeida Carlos Guilherme Silveira Pedreira Solange Garcia Holschuch Gabriel Baracat Pedroso Junior Issamu Yasuoka Valdson José da Silva 《Grass and Forage Science》2023,78(2):288-295
Rotational stocking (RS) is generally associated with the intensification of pasture-based animal production systems, although many studies have shown little advantage over continuous stocking (CS). The objective of this research was to describe and explain the effects of two average canopy heights (20 and 30 cm) and three stocking methods (CS; rotational stocking with lenient defoliation, RSL; and rotational stocking with moderate defoliation, RSM) on forage accumulation (FA), vertical distribution of plant-part components, and nutritive value of ‘Mulato II’ hybrid brachiariagrass (Brachiaria spp. syn. Urochloa spp.) during two summer rainy seasons in Piracicaba, São Paulo, Brazil. Pastures were maintained at average canopy height of 20 and 30 cm under CS, and treatments under RSL and RSM were imposed by variations of ±20 and 30% of the average canopy heights, representing defoliation intensities of 33 and 47% of the pre-graze heights, respectively. The FA was not affected by CS, RSL, RSM stocking methods, averaging 8090 kg DM ha−1 year−1. Canopy bulk density and distribution of plant-part components in the canopy profile were better at the average canopy height of 20 cm, accompanied by the greater nutritive value. The leaf bulk density was generally greater in RSM compared to CS. Pastures under CS had greater crude protein and in vitro digestible matter, and lesser neutral detergent fibre concentrations. Mulato II brachiariagrass should be managed at an average height of 20 cm under CS. 相似文献
14.
A small‐plot experiment was carried out in Northern Ireland on a predominantly perennial ryegrass sward over the period July 1993 to March 1994 to investigate the effect of timing and rate of fertilizer nitrogen (N) application on herbage mass and its chemical composition over the winter period. Eighty treatment combinations, involving four N fertilizer application dates (28 July, 9 and 30 August and 20 September 1993), four rates of N fertilizer (0, 30, 60 and 90 kg N ha?1) and five harvest dates (1 October, 1 November, 1 December 1993, 1 February and 1 March 1994), were replicated three times in a randomized block design experiment. N application increased herbage mass at each of the harvest dates, but in general there was a decrease in response to N with increasing rate of N and delay in time of application. Mean responses to N applications were 13·0, 11·5 and 9·5 kg DM kg?1 N at 30, 60 and 90 kg N ha?1 respectively. Delaying N application, which also reduced the length of the period of growth, reduced the mean response to N fertilizer from 14·3 to 7·4 kg DM kg?1 N for N applied on 28 July and 20 September respectively. Increasing rate of N application increased the N concentration and reduced the dry‐matter (DM) content and water‐soluble carbohydrate (WSC) concentration of the herbage but had little effect on the acid‐detergent fibre (ADF) concentration. Delaying N application increased N concentration and reduced DM content of the herbage. The effect of date of N application on WSC concentration varied between harvests. A decrease in herbage mass occurred from November onwards which was associated with a decrease in the proportion of live leaf and stem material and an increase in the proportion of dead material in the sward. It is concluded that there is considerable potential to increase the herbage mass available for autumn/early winter grazing by applying up to 60 kg N ha?1 in early September. 相似文献
15.
Although the process of reforestation of grassland has been widely studied in Europe, little is known about the effect of deforestation on grassland development. Thus, the specific objective of this study was to evaluate early changes in plant species composition, functional group, yield and biomass quality after deforestation of long‐term abandoned pastures. The experiment was established immediately after deforestation on sparse herbaceous vegetation (mean initial cover 27%) with the following treatments: grazing management only (G0), cutting and grazing aftermath (CG), grazing after seeding of grassland mixture (GS), grazing after a burning treatment in which branches were burned after deforestation (GB) and unmanaged control (U). Very rapid recovery of bare ground by germination and/or sprouting of grassland species was similar under all types of grazing management. Total plant species richness increased in all managed treatments except GB. Similarities according to redundancy analyses in plant species composition were found among G0, CG and GB treatments, especially for forbs with correlated rosette or creeping growth. The woody species, tall grasses and tall forbs had higher abundance in the U treatment. The restoration of grassland following deforestation of formerly reforested grassland area by grazing management was a relatively fast process, and swards were created after 3 years. The highest biomass yield was observed under treatments GS and GB. Forage quality of all managed treatments was sufficient for the demands of beef cattle grazing. However, for subsequent grassland preservation, some type of grazing management is necessary to prevent reforestation, which can occur immediately after deforestation in unmanaged places. 相似文献