首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
梯形渠道砼衬砌冻胀破坏的力学模型研究   总被引:42,自引:26,他引:16  
通过对梯形渠道砼衬砌冻胀破坏机理的分析,指出了渠坡衬砌板的计算简图为在法向冻结力、切向冻结力、法向冻胀力及衬砌板约束力作用下的两端简支梁;渠底衬砌板和两衬砌板都属压弯组合变形构件。提出了梯形渠道砼衬砌冻胀破坏的力学模型,并解出了渠坡衬砌板、渠底衬砌板控制内力及最大拉应力计算公式,结合砼板抗裂条件给出了冻胀力、胀裂部位、冻胀抗裂衬砌板厚度及抗冻胀破坏验算的一系列计算方法。指出了衬砌板上除重力以外的各种冻结力、冻胀力及相互约束力的大小及方向都是相互依存,最终都可以表达为最大切向冻结力的函数,而最大冻结力则是反映土质、负温及水分状况的综合指标,只要根据经验或实验确定了最大冻结力,力学模型就可求解。工程计算表明该模型是安全合理、简单实用的。  相似文献   

2.
因冬季水面冻结,寒区渠道的停水期最长可达半年,对渠道输水效益的发挥和当地经济发展影响巨大。为延长寒区渠道冬季的输水时长,研究团队前期提出了长距离输水渠道电热防冰冻技术,并开展了室内模型试验。在前期模型试验的基础上,研发了3种铝制传热装置,选取集肤发热电缆,设计了电源控制和加热功率控制电路,在新疆635工程50 km处的退水渠上建立了现场试验段,进行了历时一个冬季的现场试验观测。同时,理论推导了保持加热区渠水不结冰的加热功率计算式。现场试验结果表明,所设计的电加热系统可以保证渠道冬季输水时不形成岸冰,有效延长渠道冬季运行时间;所设计的传热板传热效率较高,环境温度为-20 ℃时,维持加热装置附近5 cm范围内的水体不结冰,所需要的加热功率为120 W/m;环境温度为−15 ℃时其所需的加热功率为84 W/m,与保障输油工程冬季正常运行的加热功率相比,装置能耗较低。推导的不同环境温度下加热功率的计算式,可以准确计算保障渠道冬季运行的加热功率,为加热电路容量设计提供理论基础。  相似文献   

3.
为克服现有冬季输水梯形渠道冻胀力学模型未充分考虑冻结区与水下非冻结区差异,以及未考虑土体连续性的不足,该研究根据冻土与非冻土剪切刚度的不同,冻结区采用Pasternak双参数弹性地基梁模型,而非冻结区采用Winkler模型,综合Pasternak模型考虑土体连续性及Winkler模型易于求解、所需参数少的优点,提出联合Winkler-Pasternak模型的冬季输水梯形渠道冻胀力学分析方法。以新疆玛纳斯河流域某冬季输水梯形渠道为例,计算渠坡衬砌板法向变形,并将本文模型、Winkler模型、Pasternak模型计算结果与观测值进行了对比分析,最后计算了衬砌板截面弯矩及上表面应力分布。结果表明:衬砌板法向变形可分为冻胀段、沉降段及冻胀-沉降过渡段三个部分,三种模型计算结果均能较好地反映衬砌板法向位移基本变化趋势,且本文模型计算结果与实测值更加接近,表明了模型合理性。衬砌板易开裂位置位于冻土区距离水位线10.0%~23.3%坡板长处,与工程实际相符。本研究可为寒区冬季输水梯形渠道抗冻胀设计提供科学参考与理论依据。  相似文献   

4.
弧底梯形渠道砼衬砌冻胀破坏的力学模型研究   总被引:3,自引:21,他引:3  
弧底梯形渠道以其抗冻胀性能及水力特性良好,在北方寒旱地区得到广泛应用,但该种形式衬砌的结构计算仍无力学模型,该衬砌体的设计只能凭经验选取,而无法量化.该文通过对弧底梯形渠道砼衬砌冻胀破坏机理及破坏特征的分析,指出了弧底梯形渠道砼衬砌整体结构的计算简图是在法向冻胀力及切向冻结力和重力共同作用下的薄壳拱形结构,就局部受力来看属压弯组合变形问题.通过恰当假设及简化,提出了该砼衬砌整体结构冻胀破坏的力学模型,求出了其冻胀控制内力及最大拉应力的计算公式,并结合砼板抗裂条件,给出了胀裂部位、衬砌板厚及抗冻胀破坏验算的一系列计算方法.理论分析阐明了弧底梯形砼衬砌结构因法向冻胀力数值小、分布均、恢复力大,因此,整体适应变形及抗冻胀能力强,从而更优于梯形断面.实例计算表明该模型安全合理、简单实用.  相似文献   

5.
为探讨开放系统中梯形混凝土衬砌渠道的冻胀问题,根据衬砌板与冻土地基的相互关系,采用 Winkler弹性地基板理论建立了考虑冻胀力和冻结力作用的衬砌板冻胀破坏力学模型,使用解析法得到了衬砌板变形和内力解,对不同地下水埋深、衬砌板几何参数的影响规律进行了分析。通过与已有现场观测值和计算值进行对比,验证了弹性地基板理论计算结果的正确性。研究结果表明:坡板在非均匀分布的冻胀力作用下,挠度、弯矩和剪力也表现为非均匀分布,挠度最大值在坡顶距坡脚2/3处,弯矩最大值靠近底板位置,拉应力分布与内力分布规律一致,与已有研究结果吻合。与梁理论相比,板理论计算结果表明衬砌板的挠度和内力沿板宽方向为非均匀分布,挠度和弯矩在自由边界(纵向伸缩缝)处增大,扭矩主要分布在衬砌板的拐角处。切向冻结力对渠道冻胀影响较小,在原渠道工况下,不考虑切向冻结力与考虑最大切向冻结力之间,最大挠度相差0.7 mm。针对不同地下水位的渠道,给出了衬砌板的安全厚度,可为现浇混凝土梯形渠道的抗冻胀设计提供参考和理论依据。  相似文献   

6.
在线弹性断裂力学的基础上,运用已有的渠道砼衬砌冻胀结构力学模型,考虑各种冻胀力的作用,通过合理的假设和简化,将砼衬砌板断裂看作是(Ⅰ+Ⅱ)复合型(张拉型+剪切型)裂纹的扩展问题,提出了适用于渠道混凝土衬砌板的冻胀断裂力学破坏准则,建立了渠道阴坡、阳坡和渠底3个不同位置砼衬砌板的冻胀断裂力学模型及砼衬砌板厚度设计方法。运用渠道砼衬砌体冻胀断裂力学模型不仅可以计算出阴坡、阳坡和渠底的砼衬砌板厚度,而且实例应用表明,通过渠道砼衬砌冻胀断裂力学模型指导渠道砼衬砌体设计是一种符合实际工程简单实际有效的方法。  相似文献   

7.
考虑冻土双向冻胀与衬砌板冻缩的大型渠道冻胀力学模型   总被引:2,自引:2,他引:0  
由于大型渠道断面大、渠坡长,渠基冻土沿坡长方向的切向冻胀及衬砌板的冻缩变形不可忽略,该文把大型渠道衬砌板的冻胀破坏视为两者共同作用的结果,结合冻土的Winkler弹性地基假设,并考虑冻土冻胀变形的双向冻胀差异,提出一种开放系统梯形渠道衬砌板法向和切向冻胀力的计算方法及内力计算公式。基于弹性地基理论推导了衬砌板的冻缩应力表达式,并由迭加原理提出大型混凝土梯形渠道衬砌板的抗裂验算方法。以甘肃靖会灌区某梯形渠道为原型,分析了衬砌板各截面内力和冻缩应力的分布规律,进而确定了各截面最大拉应力的分布规律及危险截面位置。对综合考虑冻土双向冻胀和衬砌板冻缩及仅考虑法向冻胀的2种情形进行对比分析表明,基于前者的衬砌板最大拉应力为2.134 MPa,而基于后者计算的相应值仅为1.494 MPa,与前者相比偏小、偏不安全。因此,在大型渠道的抗冻胀设计中建议综合考虑冻土双向冻胀和衬砌板冻缩变形的影响。  相似文献   

8.
随着冬季用水量的增加,越来越多的输水工程在冬季冰盖下输水,冰盖下输水已经成为一种常态化输水方式,但目前对明渠正常水深的显式计算方法的研究主要针对不结冰渠道的,缺少对冰盖下输水时正常水深的显式计算方面的研究。该文推导了梯形断面冰盖下输水时正常水深和流量关系,提出了正常水深的简易显式迭代算法,并经过证明,此迭代算法是收敛的。用同样的方法,推导了抛物线形断面冰盖下输水时正常水深和流量关系,提出了计算正常水深的简易显式迭代算法。算例表明,该文提出的冰盖下梯形断面和抛物线形断面的显式迭代算法具有形式简单、计算量小、精度高,收敛性好的特点,一般需要3~5次迭代就可使误差小于0.01 m,当增大迭代次数时,误差进一步减小。研究为冰盖下输水渠道正常水深计算提供了便捷的计算方法,对冰期输水渠道的设计及运行管理具有理论和实践意义。  相似文献   

9.
为探明渠道渗漏对两岸农田水土环境的影响,在东风分干渠两岸距渠道50、150、300、500 m处分别设置4个观测断面,选择夏灌和秋浇两次典型渠道输水过程,观测输水前后地下水埋深、离子组成和土壤盐分变化情况。结果表明:秋浇期间渠道输水前后地下水矿化度表现为显著性差异(P<0.05),渠道衬砌前、后地下水总溶解性固体分别上升33.17%和10.05%,衬砌后秋浇期埋深变化速率较衬砌前降低14.89%,夏灌期降低64.22%。由于灌溉水入渗淋洗和离子交换作用,地下水阳离子由Na+逐渐向Mg2+和Ca2+变化,阴离子由HCO3-和Cl-逐渐向SO42-变化,水化学类型由SO4·Cl-Mg·Na型逐渐向HCO3·SO4-Ca·Mg型变化。渠道输水对50~150 m半径内的土壤盐分影响最大,输水后耕作层(0~40 cm)土壤表现为积盐,积盐量约为0.30 g·kg-1,但深层土壤含盐量变化不大,渠道衬砌前夏灌期各土层(0~20、20~40、40~100 cm)积盐率分别为-10.82%、4.48%、  相似文献   

10.
为探究渠道衬砌与冻土接触面间存在的冻结约束、相对滑动与分离等接触作用对渠道衬砌冻胀破坏的影响,该研究以整体式U型渠道冻胀破坏监测试验为原型,构建了考虑接触和不考虑接触两类渠道冻胀模型,结合现场试验结果评估模型的合理性,并分析衬砌的冻胀变形与受力变化过程。结果表明:相比于不考虑接触模型,考虑接触模型的模拟结果更符合现场试验情况。在边坡处,考虑接触模型的法向应力峰值与试验监测峰值接近,不考虑接触模型的法向应力峰值可达前两者的3.3倍。试验与考虑接触模型的渠底法向应力基本为0,而不考虑接触模型中则存在持续增大的拉应力。现场试验的衬砌-冻土接触面间存在渠底分离与渠坡相对滑动过程,因此需由考虑接触模型模拟分析该过程。在试验与考虑接触模型中,渠底处衬砌与基土由于发生分离而产生空隙,此后悬空衬砌与渠坡基土发生相对滑动,释放了冻胀基土对衬砌的挤压力。考虑接触模型中的相对滑动改变了衬砌应力的发展趋势,由不考虑接触模型的“增力”变为考虑接触模拟的“卸力”。与不考虑接触模型相比,考虑接触模型的衬砌上、下表面正应力峰值分别降低了903%和164%,下表面切向力峰值降低了248%。在渠道冻胀模型中考虑接触作用更加合理,研究可为寒区渠道防冻胀设计与结构优化提供参考。  相似文献   

11.
研究土体冻胀对渠道混凝土衬砌结构的影响,对于保障季节性冻土地区渠道输水效率具有重要意义。以三板拼接式小型U形渠道混凝土衬砌结构为对象,研究其在冻胀作用下的受力状态。依据叠加原理将冻胀视为重力、切向冻结力、法向冻结力及法向冻胀力的共同作用,利用结构整体及局部的平衡关系,根据渠道的结构型式、破坏特征及原型观测结果,建立了衬砌结构的冻胀破坏力学模型,给出了便于设计应用的计算公式。对野外观测中的某渠道各部位内力计算结果表明,三板拼接式小型U形渠道混凝土衬砌结构以压弯为主,与实际破坏特征相吻合。刚性接缝处承受较大的轴力和剪力,是结构受力的薄弱位置。为减轻冻胀破坏程度,进一步建议衬砌板直线段倾角α在[22,26]度间取值,坡板弧段圆心角θ略大于U形渠底圆心半角,法向冻结力的合力作用点为从渠顶沿直线段向下2/3处。研究结果可以为季冻区三拼式小型U形混凝土衬砌渠道的设计提供参考依据。  相似文献   

12.
为了探究寒区高地下水位引起基土和衬砌板耦合非均匀变形对梯形渠道衬砌内力变化影响规律,该研究在前期提出的弹性地基梁模型基础上,将衬砌板与基土相互作用效应分解为基土不均匀自由冻胀位移、衬砌板受到冻土反作用产生的位移和边坡衬砌板坡脚约束产生的相对转动位移,从而建立了满足两端变形协调的弹性地基梁模型。以甘肃省高液限土壤,地下水位5 m地区的边坡系数为1的渠道为例,探究不同边坡衬砌板长度和不均匀冻胀基土之间的相互作用。结果表明,边坡衬砌板长度每增加1m,冻胀反力最大值增大142%,弯矩最大值平均增大223%,弯矩最大值点会从原来的距坡脚1/3左右处向坡脚偏移。以边坡衬砌板长度为4 m为例,探究了基土均匀冻胀和不均匀冻胀对边坡衬砌板影响的差异,得出基土不均匀冻胀的冻胀反力最大值和弯矩最大值,分别比基土均匀冻胀大264%和170%。因此,在寒区高水位地区进行渠道抗冻胀衬砌设计时,宜按基土非均匀冻胀弹性地基梁模型计算。  相似文献   

13.
开放系统预制混凝土梯形渠道冻胀破坏力学模型及验证   总被引:6,自引:5,他引:1  
预制混凝土衬砌渠道在中国北方寒冷地区得到普遍应用,而其在高地下水位条件下的冻胀力学分析尚无简捷、可靠的方法。该文假定渠道基土服从Winkler假设,从而在特定地区相似的土质、气候条件下衬砌板各点的基土冻胀强度仅与相应点的水分补给强度有关,结合冻胀力、基土冻胀率和地下水埋深三者相互间的函数关系,提出了一种计算渠道衬砌冻胀受力分布的方法。将其应用到一类预制板尺寸适中的预制混凝土衬砌梯形渠道中,建立了冻胀破坏力学模型。结合力学分析和工程实践,对预制混凝土衬砌结构可能发生的冻胀破坏形式和原因进行了分类,并确定了相应的冻胀破坏验算控制截面,提出了相应的冻胀破坏判断准则。采用单位荷载法提出了一种对板间接缝处法向冻胀位移进行直接验算的方法。最后,结合工程实例进行了计算,结果表明,模型合理可靠,可为工程设计提供一定的参考和理论依据。  相似文献   

14.
为了探究渠道基土在冻胀过程中的非线性变形特性对渠道衬砌冻胀的影响,基于冻土三轴试验结果,建立考虑围压和温度的邓肯-张本构模型,参考室内三轴试验测定基床系数方法,应用数值模拟法建立冻胀反力系数随被约束冻胀量变化的计算式,并基于有限差分法离散弹性地基梁平衡微分方程。模型考虑衬砌不同点因被约束冻胀量不同引起冻胀反力系数不同的取值问题,克服以往模型中冻胀反力系数取常量的不足。应用解析解验证模型的合理性,探究冻胀反力系数分别为变量与常量时在梯形渠道衬砌冻胀力学响应计算结果上的差异。结果表明,对于边坡和渠底衬砌板,常量冻胀反力系数计算出的最大冻胀反力是变量的1.43倍,计算出的弯矩最大值平均是变量的1.12倍。因此在采用弹性地基梁理论分析渠道衬砌冻胀问题时,若冻胀反力系数采用常量,不考虑冻土的非线性变形,会使得计算结果偏大。研究结果可为大型梯形渠道衬砌抗冻胀设计提供参考。  相似文献   

15.
南水北调中线工程总干渠冰期输水调控仿真研究   总被引:1,自引:1,他引:0  
冰情演变数值模拟是解决南水北调中线工程冰期输水安全与效益问题的重要手段。该文建立了南水北调中线工程总干渠冰期输水调控仿真模型,包含明渠非恒定流、浮冰盖下非恒定流、水温、冰花输移、封冻、冰盖增厚、融冰和闸门调节等仿真功能,且推荐京石段水面热交换系数取值18 W/(m2•℃),冰面热交换系数取值26 W/(m2•℃)为参数较优取值,参数率定工况下水温平均绝对误差为0.07 ℃,冰盖厚度平均绝对误差为0.67 cm,封冻时刻误差小于1 d,表明该模型在水温、封冻时刻、冰盖厚度等方面的模拟具有一定的准确度,可为相关研究提供参数取值参考。同时在京石段工程上应用该模型,进一步证实了模型及参数取值在大尺度冰情模拟上具有一定适用度,模型具备模拟冰情演变全过程及对应水力响应和闸门群调控过程的功能,揭示了渠系冰期输水水力响应变化特性,认为PI控制器可实现冰期水力响应控制和维护运行状态稳定作用。  相似文献   

16.
为解决大尺度农业水资源规划中遇到的渠道渗漏估算精度低且估算方法不符合渠道渗漏机理问题,该研究在对前人的研究成果与渠道渗漏关键要素进行分析基础上提出了渠道渗漏估算方法。根据提出的渠道渗漏估算方法,渠道渗漏系数通常是随渠道引水量变化的单调函数,传统方法中使用固定的渠系渗漏系数方法在渠道引水量变化时会对渠道渗漏量有一定程度的低估和高估。为进一步验证不同的渠道渗漏估算方法对于农业水资源优化配置的影响,以甘肃省黑河中游17个大中型灌区的水资源优化配置问题为例,建立了农业水资源多目标随机规划模型对有限水资源进行合理分配。模型同时选择了渠道渗漏估算方法与传统的固定系数方法。优化结果显示,使用固定渗漏系数的传统方法不能体现黑河中游灌区干支渠的渠道渗漏系数随渠首引水量的动态变化关系,使用固定渗漏系数方法可能会导致对渗漏量的估计产生10%以上的偏差,进而影响实际的田间可用水量、预期产量、预期收益的估计,使得优化目标不能真正实现。同时,对比研究发现,当可用地表水量发生改变时,渠道渗漏估算方法可以更好反映出渠道渗漏率动态变化,为农业水资源规划提供更加精确的水量信息,增加了水资源规划方案的有效性与可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号