首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In general, soils and their pore size systems are assumed to be rigid during the loss of water on drying. In reality, it is not the case for most soils, especially for soils with high quantities of clay or organic matter. As a result of shrinking, there are changes in the bulk density, the porosity, the pore size distribution, and the hydraulic properties of these soils. Currently, only a few methods enable the shrinkage behavior of soil samples to be determined while simultaneously quantifying the corresponding soil hydraulic properties. Either the methods need proprietary software for data processing, the equipment used is expensive or the calculation of the hydraulic properties is executed by inverse modelling. The aim of this study was to develop an alternative, simplified method for the simultaneous and automatic determination of the soil hydraulic properties, taking shrinkage into account. The HYPROP® evaporative device was combined with a circumference meter. A preliminary investigation found that the diameter of the cylindrical samples used for the HYPROP decreased linearly during evaporation from the bottom to the top. To sum up, recording the perimeter change in the middle position of the sample during drying‐out, together with the corresponding tension and water content, was sufficient to determine the hydraulic functions taking shrinkage into account. Measurements are presented for 6 samples which are different in texture and geological origin. The maximum shrinkage (19.5% by vol. between saturation and 5,000 hPa) was measured in the peat samples. The minimum shrinkage was quantified at 0.68% by vol. for the silty loam samples from Chile. The advantages of the method presented are: (1) the water retention curve and the hydraulic conductivity function can be determined simultaneously in the range between saturation and close to the wilting point, at a high resolution and taking into consideration shrinkage; (2) the method and device are simple and robust to use; (3) little time is required for measurement, between 3 and at most 10 d; (4) the functions are described over the whole tension range, using more than 100 user‐defined data points; (5) the evaluation of the volumetric soil water content measurement in shrinking soils is improved; and (6) common data models can be fitted to the hydraulic data as well as to the shrinkage data.  相似文献   

2.
Knowledge of hydraulic functions is required for various hydrological and plant‐physiological studies. The evaporation method is frequently used for the simultaneous determination of hydraulic functions of unsaturated soil samples, i.e., the water‐retention curve and hydraulic‐conductivity function. All methodic variants of the evaporation method suffer from the limitation that the hydraulic functions can only be determined to a mean tension of ≈ 60 kPa. This is caused by the limited measurement range of the tensiometers of typically 80 kPa on the dry end. We present a new, cost‐ and time‐saving approach which overcomes this restriction. Using the air‐entry pressure of the tensiometer's porous ceramic cup as additional defined tension value allows the quantification of hydraulic functions up to close to the wilting point. The procedure is described, uncertainties are discussed, and measured as well as simulated test results are presented for soil samples of various origins, different textures (sand, loam, silt, clay, and peat) and variable dry bulk density. The experimental setup followed the system HYPROP which is a commercial device with vertically aligned tensiometers that is optimized to perform evaporation measurements. During the experiment leaked water from the tensiometer interior wets the surrounding soil of the tensiometer cup and can lead to a tension retardation as shown by simulation results. This effect is negligible when the tensiometers are embedded vertically. For coarsely textured soils and horizontal tensiometer alignment, however, the retardation must be considered for data evaluation.  相似文献   

3.
Sustainable, environmentally friendly and resource-saving water and nutrient management in horticulture requires knowledge of the suitability of horticultural substrates for each specific application. One specific element is their hydraulic performance. To meet this requirement, methods are needed (1) to measure the hydraulic properties and (2) to evaluate the hydraulic quality of the horticultural substrates. The aim of this study was (1) to test the extended evaporation method and the HYPROP systems for quantifying the substrate’s hydraulic properties (the water retention curve, the unsaturated hydraulic conductivity function, the shrinkage dynamics, the bulk density), and (2) to develop a rating framework for assessing the hydraulic suitability of the substrates. The hydraulic evaluation was split into cultivation under free drainage in the ground and cultivation in containers. The hydraulic criteria related to high-quality horticultural substrates were defined as the amount of easily plant-available water, the air capacity and the height of capillary rise. Limiting factors could be water repellency effects and shrinkage. The rating framework consists of five classes between non-satisfactory and very good. It was tested on 23 commercial horticultural substrates. Both the measurement methods for quantifying soil hydraulic properties and the evaluation procedure proved applicable.  相似文献   

4.
可耕种坡地的土壤水力参数非均质性变化   总被引:3,自引:0,他引:3  
The spatial variations of the soil hydraulic properties were mainly considered in vertical direction. The objectives of this study were to measure water-retention curves, θ(ψ), and unsaturated hydraulic conductivity functions, K(ψ), of the soils sampled at different slope positions in three directions, namely, in vertical direction, along the slope and along the contour, and to determine the effects of sampling direction and slope position of two soil catenas. At the upper slope positions, the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content, 0, at a certain soil water potential (-1 500 kPa 〈 ψ 〈 -10 kPa) and had the greatest unsaturated hydraulic conductivity, K, at ψ 〉 -10 kPa. At the lower slope positions, K at ψ〉 -10 kPa was smaller in the vertical direction than in the direction along the slope. The deep soils (100 110 cm) had similar soil hydraulic properties in all the three directions. The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity. These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.  相似文献   

5.
25年长期定位不同施肥措施对关中塿土水力学性质的影响   总被引:3,自引:2,他引:3  
土壤水力学性质和功能的变化是评价长期施肥是否维持土壤可持续健康发展的重要方面。该研究通过采取"国家黄土肥力与肥料效益监测基地"的表层原状土壤,分析测定了撂荒(LH)、休闲(XX)、不施肥(CK)、单施氮肥(N)、氮磷钾肥(NPK)和有机肥与氮磷钾肥配施(MNPK)6个处理的土壤水分特征曲线、饱和导水率和紧实度等指标,评价了长期定位施肥对土壤基本物理性质和水力学性质的影响。结果表明:1)与CK、N和NPK处理相比,MNPK处理显著提高了土壤有机碳、饱和导水率和孔隙度,而降低了土壤容重和紧实度(P0.05)。2)不同施肥处理之间的土壤水分特征曲线表现出一定的差异,其土壤持水能力强弱为:XXN≈NPKCKMNPKLH;MNPK处理较CK、N和NPK处理持水能力分别提高2.57%、3.33%和7.34%;V-G模型拟合结果表明残余含水量(θ_r)、饱和含水量(θ_s)和进气值倒数(a)都存在一定程度的差异,θ_r在MNPK处理最大,XX最小;θ_s在N处理最大,MNPK次之,CK最小。进气值(1/a)在XX处理最大,LH最小。3)当量孔隙的分布主要在9μm大孔隙范围内,其次是0.2μm小孔隙范围,0.2~9μm之间的中孔隙分布较少。综上,MNPK有助于改善土壤结构,提高土壤持水性,降低土壤容重和紧实度,有助于作物生长和高产,是关中地区较为适宜的施肥措施。  相似文献   

6.
利用土壤传递函数估算土壤水力学特性研究进展   总被引:1,自引:0,他引:1  
N. G. PATIL  S. K. SINGH 《土壤圈》2016,26(4):417-430
Characterization of soil hydraulic properties is important to environment management; however, it is well recognized that it is laborious, time-consuming and expensive to directly measure soil hydraulic properties. This paper reviews the development of pedotransfer functions (PTFs) used as an alternative tool to estimate soil hydraulic properties during the last two decades. Modern soil survey techniques like satellite imagery/remote sensing has been used in developing PTFs. Compared to mechanistic approaches, empirical relationships between physical properties and hydraulic properties have received wide preference for predicting soil hydraulic properties. Many PTFs based on different parametric functions can be found in the literature. A number of researchers have pursued a universal function that can describe water retention characteristics of all types of soils, but no single function can be termed generic though van Genuchten (VG) function has been the most widely adopted. Most of the reported parametric PTFs focus on estimation of VG parameters to obtain water retention curve (WRC). A number of physical, morphological and chemical properties have been used as predictor variables in PTFs. Conventionally, regression algorithms/techniques (statistical/neural regression) have been used for calibrating PTFs. However, there are reports of utilizing data mining techniques, e.g., pattern recognition and genetic algorithm. It is inferred that it is critical to refine the data used for calibration to improve the accuracy and reliability of the PTFs. Many statistical indices, including root mean square error (RMSE), index of agreement (d), maximum absolute error (ME), mean absolute error (MAE), coefficient of determination (r2) and correlation coefficient (r), have been used by different researchers to evaluate and validate PTFs. It is argued that being location specific, research interest in PTFs will continue till generic PTFs are developed and validated. In future studies, improved methods will be required to extract information from the existing database.  相似文献   

7.
Simplified algebraic equations are derived to calculate directly the Brooks and Corey model parameters using data obtained from one‐step outflow experiments and saturated hydraulic conductivity. The suggested method has been demonstrated only for horticultural substrates and is verified experimentally for four substrates with satisfactory agreement of the results.  相似文献   

8.
Two experimental procedures were used to determine both hydraulic properties, soil water retention θ(h) curve and unsaturated hydraulic conductivity K(θ), of a sand sample. Knowledge of hydraulic properties is essential, since they generally control soil water dynamics. A steady-state laboratory method was used for the simultaneous determination of θ(h) and K(θ). A one-step outflow method was used for the determination of diffusivity D(θ) and subsequently K(θ) from soil water retention data which were measured independently on the same sample and using the same apparatus. The comparison of K(θ) measured values from the above-mentioned methods showed very good agreement of the results. Also, the comparison between the experimental K(θ) and θ(h) functions and the predictions obtained using retention curve (RETC) code by simultaneous fit of experimental soil water retention and hydraulic conductivity data from outflow data, assuming the Mualem-van Genuchten model, showed very good agreement. It is noted that the main disadvantage of the one-step outflow method is the weakness to predict K(θ) values near saturation. This disadvantage could be overcome using RETC code with the above procedures, since the K(θ) values between the predictive approach and the steady-state method were similar.  相似文献   

9.
The large dryland area of the Loess Plateau (China) is subject of developing strategies for a sustainable crop production, e.g., by modifications of nutrient management affecting soil quality and crop productivity. A 19 y long‐term experiment was employed to evaluate the effects of fertilization regimes on soil organic C (SOC) dynamics, soil physical properties, and wheat yield. The SOC content in the top 20 cm soil layer remained unchanged over time under the unfertilized plot (CK), whereas it significantly increased under both inorganic N, P, and K fertilizers (NPK) and combined manure (M) with NPK (MNPK) treatments. After 18 y, the SOC in the MNPK and NPK treatments remained significantly higher than in the control in the top 20 cm and top 10 cm soil layers, respectively. The MNPK‐treated soil retained significant more water than CK at tension ranges from 0 to 0.25 kPa and from 8 to 33 kPa for the 0–5 cm layer. The MNPK‐treated soil also retained markedly more water than the NPK‐treated and CK soils at tensions from 0 to 0.75 kPa and more water than CK from 100 to 300 kPa for the 10–15 cm layer. There were no significant differences of saturated hydraulic conductivity between three treatments both at 0–5 and 10–15 cm depths. In contrast, the unsaturated hydraulic conductivity in the MNPK plot was lower than in the CK plot at depths of 0–5 cm and 10–15 cm. On average, wheat yields were similar under MNPK and NPK treatments and significantly higher than under the CK treatment. Thus, considering soil‐quality conservation and sustainable crop productivity, reasonably combined application of NPK and organic manure is a better nutrient‐management option in this rainfed wheat–fallow cropping system.  相似文献   

10.
Vegetation restoration efforts (planting trees and grass) have been effective in controlling soil erosion on the Loess Plateau (NW China). Shifts in land cover result in modifications of soil properties. Yet, whether the hydraulic properties have also been improved by vegetation restoration is still not clear. The objective of this paper was to understand how vegetation restoration alters soil structure and related soil hydraulic properties such as permeability and soil water storage capacity. Three adjacent sites with similar soil texture, soil type, and topography, but different land cover (black locust forest, grassland, and cropland) were selected in a typical small catchment in the middle reaches of the Yellow River (Loess Plateau). Seasonal variation of soil hydraulic properties in topsoil and subsoil were examined. Our study revealed that land‐use type had a significant impact on field‐saturated, near‐saturated hydraulic conductivity, and soil water characteristics. Specifically, conversion from cropland to grass or forests promotes infiltration capacity as a result of increased saturated hydraulic conductivity, air capacity, and macroporosity. Moreover, conversion from cropland to forest tends to promote the creation of mesopores, which increase soil water‐storage capacity. Tillage of cropland created temporarily well‐structured topsoil but compacted subsoil as indicated by low subsoil saturated hydraulic conductivity, air capacity, and plant‐available water capacity. No impact of land cover conversion on unsaturated hydraulic conductivities at suction > 300 cm was found indicating that changes in land cover do not affect functional meso‐ and microporosity. Our work demonstrates that changes in soil hydraulic properties resulting from soil conservation efforts need to be considered when soil conservation measures shall be implemented in water‐limited regions. For ensuring the sustainability of such measures, the impact of soil conversion on water resources and hydrological processes needs to be further investigated.  相似文献   

11.
Soil hydraulic properties as related to soil structure   总被引:5,自引:0,他引:5  
  相似文献   

12.
Knowledge of hydraulic properties is essential for understanding water movement in soil. However, very few data on these properties are available from the Loess Plateau of China. We determined the hydraulic properties of two silty loam soils on agricultural land at sites in Mizhi and Heyang in the region. Undisturbed soil cores were collected from seven layers to one meter depth to determine saturated hydraulic conductivity, soil water retention curves and unsaturated hydraulic conductivity (by the hot-air method). Additional field methods (internal drainage and Guelph permeameter) were applied at the Heyang site to compare differences between methods. Soil water retention curves were flatter at Mizhi than at Heyang. Water contents at saturation and wilting point (1500 kPa) were higher at Heyang than at Mizhi. However, unsaturated hydraulic conductivity was lower at Heyang than at Mizhi, with maximum differences of more than six orders of magnitude. Nevertheless, the two soils had similar saturated hydraulic conductivities of about 60 cm day− 1. Comparison between the methods showed that soil water retention curves obtained in the laboratory generally agreed well with the field data. Field-saturated conductivities had similar values to those obtained using the soil core method. Unsaturated hydraulic conductivities predicted by the Brooks–Corey model were closer to field data than corresponding values predicted by the van Genuchten model.  相似文献   

13.
施用生物炭对紫色土坡耕地耕层土壤水力学性质的影响   总被引:13,自引:8,他引:13  
该研究通过野外坡耕地小区施用1%秸秆生物炭1年后的对比试验,揭示生物炭对川中丘陵区紫色土耕作层土壤水力学参数、大孔隙度及其对饱和导水率的贡献率所产生的影响。试验设对照区与施用生物炭区2个处理,各处理有3个平行小区,耕作层土壤分为表层和亚表层(2~7和7~12 cm)。比较2个处理小区试验结果,可以发现:1)施用生物炭导致植物难以利用的土壤滞留水和易流失的结构性孔隙水的含量(θstr)下降,而基质性孔隙中植物有效水含量显著提高(P0.05),由(0.058±0.003)cm3/cm3增加至(0.085±0.002)cm3/cm3;2)表层和亚表层土壤中对产流起主要贡献的半径125μm的总有效孔隙度分别平均增加54%和8%,其中孔径500μm的孔隙增加最为明显,高达110%和355%;3)表层和亚表层土壤的饱和导水率分别平均增加45%和35%。研究证明,施用生物炭,一方面,能增加土壤有效水的持水量,有利于植物抗旱;另一方面,提高土壤导水率,有利于水分入渗,从而减少地表径流及土壤侵蚀的发生。  相似文献   

14.
Cover crops (CCs) can improve soil hydraulic properties prior to termination, but their effects on soil hydraulic properties during the growing season are less known. The objective of this study was to investigate the influence of no-till CC on the soil hydraulic properties during the commodity crop growing season in Murfreesboro, USA. The CCs included hairy vetch (Vicia villosa Roth.), crimson clover (Trifolium incarnatum L.), winter wheat (Triticum aestivum L.), winter peas (Lathyrus hirsutus L.), oats (Avena sativa), triticale (Triticale hexaploide Lart.), barley (Hordeum vulgare L.) and flax (Linum usitatissimum L.). The cash crop grown was corn (Zea mays). Soil samples were collected using a cylindrical core (55 mm inside diameter, 60 mm long) at 0–10, 10–20, and 20–30 cm depths during April (prior to CC termination), May, June and July. Results showed that soil bulk density (Db) was 23%, 12%, 11% and 10% higher under no cover crop (NCC) compared with CC management during April – July, respectively. This suggests a lower rate of soil consolidation under CC management even after several rainfall events. Four months after CC termination, macroporosity and total porosity were 306 and 50% higher, respectively, under CC compared with NCC management. Therefore, saturated hydraulic conductivity (Ksat) during July was two times higher under CC management compared with NCC management and this can affect increase water infiltration and conservation during the growing season. Due to CC root-induced improvement in macroporosity, CCs had 64% higher volumetric water content (θ) at saturation during July compared with NCC management. Cover crops can improve soil hydraulic properties and these benefits can persist for up to four months after termination.  相似文献   

15.
Tillage management can affect crop growth by altering the pore size distribution, pore geometry and hydraulic properties of soil. In the present communication, the effect of different tillage management viz., conventional tillage (CT), minimum tillage (MT) and zero-tillage (ZT) and different crop rotations viz. [(soybean–wheat (S–W), soybean–lentil (S–L) and soybean–pea (S–P)] on pore size distribution and soil hydraulic conductivities [saturated hydraulic conductivity (Ksat) and unsaturated hydraulic conductivity {k(h)}] of a sandy clay loam soil was studied after 4 years prior to the experiment. Soil cores were collected after 4 year of the experiment at an interval of 75 mm up to 300 mm soil depth for measuring soil bulk density, soil water retention constant (b), pore size distribution, Ksat and k(h). Nine pressure levels (from 2 to 1500 kPa) were used to calculate pore size distribution and k(h). It was observed that b values at all the studied soil depths were higher under ZT than those observed under CT irrespective of the crop rotations. The values of soil bulk density observed under ZT were higher in 0–75 mm soil depth in all the crop rotations. But, among the crop rotations, soils under S–P and S–L rotations showed relatively lower bulk density values than S–W rotation. Average values of the volume fraction of total porosity with pores <7.5 μm in diameter (effective pores for retaining plant available water) were 0.557, 0.636 and 0.628 m3 m−3 under CT, MT and ZT; and 0.592, 0.610 and 0.626 m3 m−3 under S–W, S–L and S–P, respectively. In contrast, the average values of the volume fraction of total porosity with pores >150 μm in diameter (pores draining freely with gravity) were 0.124, 0.096 and 0.095 m3 m−3 under CT, MT and ZT; and 0.110, 0.104 and 0.101 m3 m−3 under S–W, S–L and S–P, respectively. Saturated hydraulic conductivity values in all the studied soil depths were significantly greater under ZT than those under CT (range from 300 to 344 mm day−1). The observed k(h) values at 0–75 mm soil depth under ZT were significantly higher than those computed under CT at all the suction levels, except at −10, −100 and −400 kPa suction. Among the crop rotations, S–P rotation recorded significantly higher k(h) values than those under S–W and S–L rotations up to −40 kPa suction. The interaction effects of tillage and crop rotations affecting the k(h) values were found significant at all the soil water suctions. Both S–L and S–P rotations resulted in better soil water retention and transmission properties under ZT.  相似文献   

16.
17.
18.
基于遗传算法的土壤水分运动参数识别   总被引:1,自引:0,他引:1  
土壤水分运动参数的识别是研究土壤水分运动的基础。该文以反映土壤含水率实测值和计算值吻合程度的均方差最小为优化目标,以土壤导水率和扩散率经验参数上下限为约束条件,建立了土壤水分运动参数识别的优化计算模型。采用遗传算法和田间均质土壤一维非饱和运动数值计算相结合的方法,获得土壤导水率和扩散率经验参数最优值。经验证计算,土壤含水率实测值和计算值吻合程度较高,表明这一方法是可行的。  相似文献   

19.
以水面蒸发量为参考推求土壤实际蒸发量的数学模型   总被引:2,自引:3,他引:2  
为了准确估算土壤在实际条件下的蒸发量,该文以水面蒸发量为参考,结合能量平衡方程及微气象学方法,推导计算土壤实际蒸发量的数学模型.结果表明所建模型所需参数为水面及蒸发土壤表面的日最高温度和日平均温度、水面日蒸发量、风速等.模型的验证结果表明计算的土壤蒸发量与实测蒸发量比较吻合(R2=0.90).模型所引入的参考蒸发面使其避开了土壤蒸发复杂的物理本质,从而使得对土壤蒸发的计算变得简单易行.  相似文献   

20.
盘式吸渗仪测定土壤导水率的两种新方法   总被引:3,自引:2,他引:3  
应用盘式吸渗仪测定田间土壤导水率具有快速简单的优点,但是测定结果的计算处理比较繁琐,寻求简单的计算方法是广泛应用盘式吸渗仪的关键问题。该文改变盘式吸渗仪测定土壤导水率的三维入渗过程为一维入渗过程,简化了测定结果的计算处理。结果显示:两种不同的一维入渗过程达到的稳定入渗率和导水率之间有很好的线性关系,但是三维过程计算的导水率大于一维过程。双套盘吸渗仪一维过程计算导水率与稳定入渗率一致性较好,但是和三维稳态、瞬态方法计算结果之间差异明显,因此在应用这些方法时需要适当调整参数,建议使用双套盘吸渗仪快速测定田间土壤导水率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号