首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对在生物反应器中用微载体连续灌注培养Marc-145细胞生产猪繁殖与呼吸综合征病毒的制备技术进行了研究.在14 L体积的生物反应器中,加入含10 g/L微载体的细胞培养基DMEM,接种Marc-145细胞至细胞浓度为1×105/mL,培养4d后细胞可生长至5~7×106/mL,然后以感染复数(MOI)为0.01接种PRRSV PC株病毒,接毒后36 h开始收获,连续收获3d左右,收获的病毒滴度范围在106.0~ 1073TCID50/mL之间,将收获的病毒液加入适量的保护剂,经冷冻干燥制备成疫苗,无菌、支原体等项目的检验均合格,3批疫苗的免疫保护率均为5/5.实验表明,用生物反应器微载体灌注培养Marc-145细胞制备PRRS疫苗工艺可行.  相似文献   

2.
研究表明,PCV2仅在PK15等少数哺乳动物细胞上增殖,但由于PCV2毒力弱,且不产生细胞病变,获得高滴度病毒难度较大~([1])。因此,PCV2的培养滴度高低已成为制约现有疫苗质量的关键瓶颈之一。为建立在生物反应器内微载体逐级放大培养PK-15细胞和增殖PCV2技术,本研究以德国Sartorius14 L生物反应器微载体悬浮培养PK-15细胞,对PK-15细胞初始接种密度、搅拌转速、微载体浓度、PCV2接毒时间、接毒剂量、收毒时间等工艺参数进行了摸索和优化~([2-3])。结果表明:3 g/L的微载体和60 r/min的搅拌转速下,采用0.5×10~6cells/mL的初始接种密度操作工艺可获得最佳PK-15细胞生长效能。细胞生长后6 h接毒,采用感染复数(MOI)为0.5的接毒比例,细胞接毒后在微载体上生长96 h可获得最高的PCV2增殖滴度10~(8.5)TCID_(50)/mL,利用该工艺,经过消化转移将PK-15细胞从14 L反应器放大至42 L反应器,微载体上细胞贴附均匀、生长旺盛,42 L反应器中培养72 h细胞密度可达39.0×10~5 cells/mL,病毒滴度10~(8.3)TCID_(50)/mL,应用生物反应器培养PCV2滴度较常规转瓶培养工艺提高了近10倍。进一步表明PCV2悬浮培养放大与接毒工艺稳定,为下一步实现工业级规模化生产奠定基础。  相似文献   

3.
为了建立高致病性猪繁殖与呼吸综合征病毒(HP-PRRSV)的Marc-145微载体细胞悬浮培养工艺以提高HPPRRSV抗原效价,以BC-7L生物反应器微载体悬浮培养Marc-145细胞,对HP-PRRSV接毒时间、接毒剂量、维持液血清浓度、溶氧量参数、病毒增殖温度等工艺参数进行了摸索和优化。通过细胞悬浮培养逐级放大工艺,在BC-100L生物反应器中培养Marc-145细胞,以优化后HP-PRRSV悬浮培养工艺进行3个批次的病毒悬浮培养。结果在Marc-145细胞微载体悬浮培养的第4天按照感染复数(multiplicity of infection,MOI)为0.1的剂量接毒,接毒后以2%新生牛血清的维持液进行维持培养,溶氧参数设置为40%,最佳培养温度为37℃,最佳收获病毒时间为70~74 h。BC-100L生物反应器中培养的3批病毒增殖曲线与BC-7L培养的病毒增殖曲线相近,在接毒后72 h左右达到病毒效价高峰,病毒含量均不低于108.0TCID50/m L。表明HP-PRRSV悬浮培养工艺稳定,可以实现逐级放大、规模化生产。  相似文献   

4.
为优化猪瘟病毒(CSFV)的BT细胞悬浮培养工艺以提高CSFV抗原含量,采用2 L生物反应器对BT细胞的最佳接种密度、CSFV的最佳接种剂量进行了摸索和优化,采用优化的工艺参数,进行了BT细胞5倍消化放大工艺验证,同时对比了BT细胞悬浮培养工艺与转瓶培养工艺增殖CSFV的差异。结果表明,在3 g/L微载体浓度下,采用1.5×10~5个/mg的细胞初始接种密度,培养72 h可获得最佳细胞密度;采用MOI(感染复数)为0.5的接种剂量可收获≥106.8FAID_(50)/mL的CSFV抗原;BT细胞从2 L到10 L生物反应器的5倍消化放大工艺验证试验,3批细胞培养96 h均能达到4.0×10~6个/mL以上;悬浮培养工艺增殖的CSFV抗原含量约是转瓶培养工艺的15倍。以上试验为猪瘟疫苗的生物反应器规模化生产奠定了基础。  相似文献   

5.
为了大规模生产猪传染性胃肠炎病毒抗原,试验采用生物反应器及微载体进行ST细胞的培养,待微载体上的ST细胞长满至单层后接种猪传染性胃肠炎病毒(TGEV).共使用生物反应器培养3批TGEV抗原,每批培养过程中分别调节初始细胞密度至2.14×106个/mL、1.83×106个/mL和2.02×106个/mL,微载体浓度为3g/L、6 g/L和9 g/L.结果表明应用生物反应器及微载体培养得到抗原的病毒含量均达到108.0 TCID50/mL,明显高于转瓶培养的病毒含量.  相似文献   

6.
参照小型生物反应器悬浮培养MDCK细胞的pH值、溶氧、温度等最优工艺参数,结合6 000 L罐体搅拌桨叶、挡板、气体分布器等情况,在5 L、25 L、125 L、600 L、3 000 L、6 000 L罐体上进行反应器逐级放大培养试验,建立MDCK悬浮细胞生物反应器放大培养工艺。结果显示:取摇瓶悬浮培养的MDCK细胞用生物反应器连续放大培养,细胞大小均一,细胞倍增时间为22~24 h,细胞增殖最大密度可达9.61×106个/mL。MDCK细胞能适应生物反应器连续放大规模化培养,用小型生物反应器优化获得的培养体系参数经拟合修正后,适用于大型6 000 L生物反应器培养MDCK细胞。  相似文献   

7.
从细胞接种密度、病毒接毒量、培养基三个方面进行研究和优化,并进行放大培养,建立了猪瘟病毒的微载体悬浮培养工艺:细胞接种密度为每个微载体15个细胞,病毒接毒量0.05 MOI,采用DMEM/F12培养基进行培养和细胞消化瓶批式消化分散细胞,培养的细胞可以完成生物反应器10 L到50 L的放大,培养的病毒含量达到7.6 l...  相似文献   

8.
为了在Marc-145细胞上获得更高滴度的猪繁殖与呼吸综合征病毒(PRRSV)TJM株,对细胞培养条件、细胞接种量、微载体的用量以及病毒培养时间等条件进行了优化。结果表明,利用生物反应器悬浮培养Marc-145细胞在血清为金源康且含量为10%、培养基为DMEM、细胞接种密度为20~30细胞/球、微载体为5 g等条件下生长状态最好;病毒最佳培养时间为27~36 h,病毒增殖效果好且能够达到最高的病毒滴度。本试验为微载体培养条件下大规模生产PRRSV-TJM株疫苗奠定了一定理论基础。  相似文献   

9.
通过研究搅拌程序,细胞接种密度,微载体浓度与细胞生长的关系,探索Marc-145细胞在微载体上的生长条件,并测定猪繁殖与呼吸综合征病毒在微载体培养的细胞上的TCID50。结果表明:细胞接种密度为4.28×105 cells/mL时,病毒滴度可达到107.5TCID50,这说明利用微载体繁殖PRRSV是可行的,为猪繁殖与呼吸综合征疫苗的大规模生产奠定实验基础。  相似文献   

10.
应用激流式生物反应器培养Marc-145细胞生产高致病性猪繁殖与呼吸综合征病毒,并通过工艺优化,实现了病毒抗原的高效生产。首先将Marc-145细胞用含6 0mL/L牛血清的DMEM培养液复苏放大培养,当细胞量达到3×109时,接种入反应器中。先用细胞生长液培养,当细胞达到最大量时更换生长液为维持液,并接种HP-PRRSV。整个过程采用流加方式,每8h采样测定培养上清中葡萄糖浓度。接种病毒后,每24h测定培养上清HP-PRRSV滴度。6个批次细胞生长至88h,糖耗达到最高水平。连续3个批次种毒后培养至96h,上清中HP-PRRSV滴度达到最高,平均约为每106.4 TCID50/0.1mL。因此,认为应用激流式生物反应器进行细胞培养,通过过程工艺优化,可以实现HP-PRRSV抗原的高滴度生产。  相似文献   

11.
为开发适合Marc-145细胞生长的无血清悬浮培养基,试验将贴壁Marc-145细胞转入Celer-S001培养基中进行悬浮适应,通过混料试验和水解物筛选试验获得适应Marc-145细胞快速扩增的无血清悬浮培养基,对悬浮培养的Marc-145细胞进行猪繁殖与呼吸综合征病毒感染并检测病毒效含量,评价悬浮培养的Marc-145细胞的病毒扩增能力。结果表明:Marc-145细胞可以在Celer-S001培养基中悬浮培养,其比生长速率为(0.25±0.06)/d;适应Marc-145细胞快速扩增的最优无血清悬浮培养基由B3和B8培养基以0.54∶0.46比例混合,并添加2 g/L的水解物H3构成,Marc-145细胞的比生长速率为(0.51±0.03)/d,密度为3.73×106 cells/mL;细胞接毒后的病毒含量最高可达(5.25±0.25)lgTCID50/mL,表明细胞仍然保持着病毒扩增能力。说明试验成功开发了适合Marc-145细胞生长的无血清悬浮培养基,Marc-145细胞在该培养基中生长良好,具有病毒扩增能力。  相似文献   

12.
为建立新城疫病毒在BHK-21细胞的无血清全悬浮培养工艺以获得高滴度和高纯度的新城疫悬浮培养抗原,通过悬浮培养驯化和筛选获得了形态良好、稳定传代的BHK-21-sc悬浮细胞株;该细胞以初始密度0.5×10~6 cells/mL接种,培养72 h可增殖到6×10~6cells/mL,细胞活率达95%。以5 L生物反应器悬浮培养BHK-21-sc细胞,对鸡新城疫病毒La Sota株的接毒剂量、TPCK胰酶添加浓度、病毒培养温度、收获时间等工艺参数进行了摸索和优化;并在5L-16L-50L生物反应器中进行逐级放大,以优化后的鸡新城疫悬浮培养工艺进行3个批次病毒悬浮培养。最终确定鸡新城疫病毒La Sota株接种BHK-21-sc悬浮细胞株的悬浮培养工艺:BHK-21-sc细胞悬浮培养的第3天按照感染复数(multiplicity of infection,MOI)为0.005接种病毒,并添加终浓度为5μg/mL的TPCK胰酶,于33℃培养72 h后收获病毒液。应用该悬浮培养工艺在5、16、50 L反应器上悬浮培养BHK-21-sc悬浮细胞株生产鸡新城疫病毒HA滴度不低于9log2,病毒含量不低于10~(6.0)TCID_(50)/0.1mL。表明BHK-21-sc细胞无血清全悬浮生产鸡新城疫病毒工艺稳定,可以实现逐级放大和规模化生产。  相似文献   

13.
为了实现鸡新城疫病毒HN2018株(基因Ⅶ型)在乳仓鼠肾(BHK-21)细胞上的无血清规模化培养,本试验采用悬浮培养技术驯化和筛选了1株能够稳定传代的BHK-21-xh悬浮细胞株;使用该细胞以初始密度为100×104个/mL接种摇瓶进行培养,并对摇瓶培养鸡新城疫病毒HN2018株的接毒细胞密度、培养温度、接毒量、收毒时间等工艺参数进行摸索和优化;利用摇瓶优化的病毒培养工艺,在10和100 L生物反应器中逐级放大培养BHK-21-xh悬浮细胞,接种鸡新城疫病毒;采用生物反应器悬浮培养的鸡新城疫病毒HN2018株细胞毒与鸡胚毒分别制备成灭活疫苗,免疫SPF鸡进行免疫效力的比较。结果显示,在摇瓶中培养72 h细胞密度均不低于800×104个/mL,细胞活率均不低于96%;按照BHK-21-xh细胞密度不低于800×104个/mL,病毒感染复数(MOI)为0.216进行接毒,同时添加终浓度为20μg/mL的胰蛋白酶,于35℃温度条件下培养64~72 h收获病毒液,鸡新城疫悬浮培养细胞毒红细胞凝集(HA)效价最高能够达到10log...  相似文献   

14.
正微载体悬浮培养高致病性猪繁殖与呼吸综合征病毒是提升该疫苗产品质量的重要工艺技术,细胞微载体悬浮培养不仅可以提高单位体积内的细胞量、提高病毒产品效价,同时还具有劳动成本低、产品批间差异小等优点。在提升并保证病毒含量的基础上降低微载体的使用浓度,是生产部门提质降本的方向。我公司利用5L和50L生物反应器微载体悬浮培养Marc145细胞,对接毒时细胞活力、细胞密度的选择、接毒剂量、病毒收获时机等工艺参数优化基础上,进行了微载体使用浓度的比较,确定了适合的微载体使用浓度,达  相似文献   

15.
本试验旨在探讨微载体生物反应器使用不同PK15细胞密度培养猪圆环病毒2型的效果,对比不同细胞密度培养出的抗原效价,从而选择最佳细胞密度培养猪圆环病毒2型,提升猪圆环病毒2型抗原效价。在生物反应器细胞上罐时分别按每个微载体20、30、40、50个细胞的细胞密度接种至4台相同的生物反应器罐中进行培养,每罐均按相同的条件培养,在分别培养4 h、24 h、48 h、96 h时取样观察细胞的生长状态并统计细胞密度,当大部分载体细胞脱落70%时收获抗原,并留样检测其抗原效价。结果显示:每个微载体40个细胞的细胞密度上罐培养的效果最好,表现在4 h时细胞贴附微载体较均匀,24 h时90%微载体长满单层细胞,48 h时细胞生长致密,细胞密度增长8倍,72 h时细胞增长7倍,最终收获抗原效价最高达到107.5TCID50/m L。结果表明:每个微载体40个细胞的接种密度上罐,培养效果最好,效价最高。因此,在微载体生物反应器上培养猪圆环病毒2型时,选择合适的细胞密度接种是保证培养高效价病毒的一个重要前提。  相似文献   

16.
为了实现非洲绿猴肾细胞(Vero细胞)在生物反应器中的大规模生产,并使其可在以Vero细胞为细胞基质的病毒疫苗生产中应用,试验采用控制变量法对Vero细胞微载体悬浮培养相关参数进行逐一摸索研究。结果表明:在3~5 g微载体、1 L培养体系中,使用DMEM培养基、血清浓度为8%~10%、初始接种密度为30~50个/球,采用灌流式培养方式可使细胞达到最佳状态。说明成功建立了Vero细胞生物反应器的微载体悬浮培养工艺。  相似文献   

17.
微载体培养PK-15细胞试验条件的优化   总被引:1,自引:0,他引:1  
为了优化PK-15细胞在微载体上的生长条件,在微载体浓度5 mg/mL、低糖DMEM+100 mL/L NBS培养液条件下,观察4.5×104cells/mL和8.7×104cells/mL的细胞接种密度对细胞生长的影响;在低糖DMEM+100 mL/L NBS培养液、接种密度5×104cells/mg条件下,观察3、5、10 mg/mL微载体浓度对细胞生长的影响;在3 mg/mL微载体浓度条件下、接种密度25×104cells/mL,观察MEM、高糖DMEM和低糖DMEM培养基对细胞生长的影响。结果表明,以微载体接种细胞密度4.5×104cells/mg、微载体浓度5 mg/mL在低糖DMEM培养基中培养方式效果最为理想。优化的培养工艺适用于PK-15细胞的生产。  相似文献   

18.
将Siat7e基因转染ST细胞,筛选,驯化得到一株可悬浮培养的ST细胞株,此株细胞能够稳定连续传代,适应无血清、高密度培养,最高密度可达6×106/mL,从摇瓶放大至生物反应器,生长稳定;采用驯化的全悬浮ST细胞培养伪狂犬病毒,从接毒时细胞密度、接毒量、收获时间三个方面优化了伪狂犬病毒的培养参数,确定接毒时细胞密度为2.0×106/mL~3.0×106/mL,接毒量为0.1 MOI~1 MOI,收毒时间为接毒后24 h~36 h。经过50 L生物反应器3个批次的工艺验证,培养的病毒含量均不低于109.0TCID50/mL,说明驯化的ST全悬浮细胞适合伪狂犬病毒的培养。  相似文献   

19.
通过对LMH细胞进行驯化,获得一株可全悬浮培养的LMH细胞,命名为LMH-S。此细胞可适应无血清、高密度悬浮培养,以初始细胞密度0.5×106/mL~1×106/mL接种,细胞密度最高达6×106/mL。研究确定生物反应器悬浮培养LMH-S细胞制备FAdV-4抗原的最优参数为:接毒时细胞密度2×106/mL~3×106/mL、接毒量0.1MOI~1MOI、接毒后48 h~72 h收毒,所获抗原病毒含量不低于109.25TCID50/mL。试验鸡分别免疫0.02 mL、0.05 mL、0.1 mL、0.3 mL疫苗,攻毒保护率分别为9/10、10/10、10/10、10/10,表明疫苗有效性良好。本试验成功建立了LMH全悬浮培养细胞株,确定了FAdV-4抗原的生物反应器悬浮培养工艺,验证了悬浮培养抗原的免疫原性,为高效FAdV-4灭活疫苗的研制奠定了基础。  相似文献   

20.
为了优化生物反应器全悬浮培养技术制备猪流行性腹泻病毒(ZJ/15株)的工艺,试验首先通过摇瓶培养对病毒接种时的细胞密度、胰酶浓度、接毒剂量和收毒时间等培养条件进行优化;之后按照摇瓶培养确认的工艺进行生物反应器全悬浮培养工艺验证,同时对pH值、溶氧值(DO)、转速等培养参数进行优化,以病毒含量(TCID50)为指标,最终筛选出在15L生物反应器中培养猪流行性腹泻病毒(ZJ/15株)的最优条件,并进一步在50L生物反应器中进行工艺验证,将病毒液灭活后稀释至1×107.0 TCID50/mL免疫怀孕75~90d的健康易感初怀母猪,在分娩当日,采集母猪和仔猪血清,并对分娩的3日龄仔猪攻毒进行免疫原性试验。结果表明:猪流行性腹泻病毒(ZJ/15株)在摇瓶上的最适培养条件为当细胞密度达到6×106 个/mL以上时,用含胰酶(终浓度为20μg/mL)的无血清培养基将细胞密度稀释至2×106 个/mL,按感染复数(MOI)=0.1接毒,130 r/min摇床振荡培养36h可收获病毒液,病毒含量...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号