首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
小麦农艺性状的主基因+多基因遗传分析   总被引:1,自引:0,他引:1  
为明确小麦重要农艺性状的遗传组成,并筛选适于QTL的性状,以西农817和中国春为亲本,构建F2、F3群体,采用P1、P2、F1、F2、F3五世代联合分析方法,研究了株高、有效分蘖、小穗数、穗粒数、穗长、穗下节间距、小穗着生密度等产量相关性状的遗传模型.结果表明,7个性状不仅受基因的控制,同时也受到不同程度的环境影响.其中,穗长、穗粒数符合多基因遗传模型,无主基因存在;株高、小穗数、小穗着生密度符合一对加显性主基因+加性-显性多基因混合遗传模型;穗下节间距符合一对完全显性主基因+加性-显性多基因模型;有效分蘖符合一对负向完全显性主基因+加性-显性多基因模型.  相似文献   

2.
宁麦9号×镇麦168小麦F2群体产量相关性状的遗传模型分析   总被引:1,自引:0,他引:1  
为给小麦遗传育种中产量性状改良提供参考,利用相关性分析和植物数量性状主效基因与微效多基因混合遗传模型对(宁麦9号×镇麦168)F2代162个单株的有效穗数、株高、穗长、总小穗数、穗粒数以及单株粒重进行了联合分离分析。结果表明,该群体农艺性状均属于受多基因控制的数量性状,其中有效穗数和单株粒重仅受微效多基因调控,株高和总小穗数符合“两对加性-显性-上位性主基因”+“加性-显性多基因”混合遗传,而穗长和穗粒数则符合“两对加性主基因”+“加性-显性多基因”混合遗传。株高、穗长和总小穗数3个性状的主基因遗传力分别为64.98%、51.22%和47.12%,可能存在效应较大的QTL。  相似文献   

3.
利用先玉335品种(PH6WC×PH4CV)P1、P2、F_1、B1、B2、F2共6个世代,运用主基因+多基因遗传模型和六世代联合分析方法,进行农艺性状株高、穗位高、穗重、穗粒重、穗轴重、穗长、穗行数、秃尖长、百粒重、出籽率的遗传分析。结果表明,株高、穗重、穗粒重、穗轴重、穗长、穗行数6个性状均为2对主基因加、显、上+多基因加、显混合遗传模型;秃尖长、百粒重两个性状为2对主基因加、显、上+多基因加、显、上混合遗传模型;穗位高为1对主基因加性+多基因加、显混合遗传模型;出籽率为多基因加、显、上遗传模型。株高、穗轴重、百粒重以主基因遗传为主、多基因遗传为辅。穗重、穗粒重、穗行数以主基因遗传为主;穗长主基因遗传、多基因遗传同等重要;秃尖长以多基因遗传为主,主基因遗传为辅;穗位高、出籽率多基因起决定作用。  相似文献   

4.
太湖流域粳稻地方品种产量相关性状的遗传分析   总被引:8,自引:0,他引:8  
采用主基因+多基因混合遗传模型,对亲本穗部性状差异较大的3个杂交组合,大头稻/呆长青(组合Ⅰ)、老来红/盐粳2号(组合Ⅱ)和呆长青/上海青(组合Ⅲ)的后裔世代的产量相关性状进行了遗传分离分析,得到了这些性状的最适遗传模型。结果表明:组合Ⅰ每穗总粒数的最适遗传模型为一对主基因+加性 显性多基因混合模型,而组合Ⅱ、Ⅲ为一对完全显性主基因+加性 显性多基因遗传模型;组合Ⅱ、Ⅲ的单株有效穗数受一对主基因控制,组合Ⅰ则受两对主基因控制;组合Ⅰ、Ⅱ千粒重的遗传模型为两对主基因+多基因模型,组合Ⅲ为一对主基因+多基因遗传模型;每穗实粒数为两对主基因遗传模型。选用P1、P2、F1、B1、B2、F2六世代联合分离分析方法,相比于单个分离世代的分析方法,增加了试验的精确度,保证了分析结果的准确性,并可鉴别多基因的存在。根据试验结果,分析了不同性状、不同组合的育种策略。  相似文献   

5.
为了解大麦籽粒淀粉含量的遗传规律,以Noso Nijo×泰兴9425杂种F1花药培养的191个DH系及其亲本为材料,利用植物数量性状主基因+多基因混合遗传模型分析大麦籽粒淀粉含量的遗传规律。结果表明,2010和2012年大麦直链淀粉含量分别符合两对连锁抑制作用主基因模型(B-2-9)和两对连锁互补作用主基因+加性多基因遗传模型(E-2-7),支链淀粉含量分别符合两对抑制作用主基因+加性多基因遗传模型(E-1-9)和两对连锁显性-上位性作用主基因+加性多基因遗传模型(E-2-4),支/直比均符合两对抑制作用主基因模型(B-1-9),总淀粉含量均符合三对等比例加性作用主基因+加性多基因遗传模型(G-2)。  相似文献   

6.
烤烟易烤性遗传分析   总被引:2,自引:0,他引:2  
应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对烤烟杂交组合中烟100×翠碧1号的P1,P2,F1,B1,B2和F26个世代群体烟叶易烤性性状进行了联合分析。结果表明:烤烟烟叶易烤性性状的遗传符合2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型(E 1),同时两对主基因间存在互作效应,且显性效应值相近,表现出负向不完全显性。主基因遗传率以B1最高,达78.17%,B2与F2相差不大,分别为63.68%和65.61%,表现出较高的主基因遗传效应;多基因遗传率以B2最高,为7.51%,其次是F2(6.84%),B1最低(0.88%)。主基因+多基因效应决定了各分离世代易烤性性状变异的71.19%~79.06%。  相似文献   

7.
玉米种子休眠性数量遗传体系的判别   总被引:5,自引:0,他引:5  
运用植物数量性状主基因 多基因混合遗传模型的方法对普通玉米自交系R08与A318杂交组合的P1、P2、F1和F2∶34个世代群体的种子休眠性进行了分析。结果表明:R08×A318组合种子休眠性的遗传符合一对加性-显性主基因 加性-显性-上位性多基因模型(D-0模型)。在F2∶3家系世代,主基因方差为0.9455,多基因方差为0.1196。主基因遗传率在F2∶3家系群体中为72.49%,多基因遗传率为9.17%。  相似文献   

8.
粳稻穗角和每穗颖花数的遗传分析   总被引:15,自引:2,他引:15  
 调查了粳稻直立穗品种丙8979与弯曲穗品种C堡杂交组合的P1、P2、F1、F2四个世代(2002年)和P1、P2、F1、F2、F2∶3五个世代(2003年)的穗角和每穗颖花数的表型分布。运用主基因+多基因混合遗传模型和分离世代加不分离世代联合分析的方法,对这两个性状进行了遗传分析。结果表明,穗角和每穗颖花数性状均受2对主基因+多基因共同控制。独立的2对主基因和多基因都存在加性 显性 上位性效应。穗角性状以主基因遗传为主;每穗颖花数性状以多基因遗传为主。  相似文献   

9.
为明确非1B/1R和1B/1R 类型小麦K 型雄性不育系穗长和小穗数的遗传规律,利用非1B/1R类型KTSP732A和1B/1R类型K3314A 两种K型不育系材料,采用主基因+多基因混合遗传模型分析法,对穗长和小穗数两类性状进行单世代和多世代混合分离分析.结果显示,非1B/1R类型KTSP732A和1B/1R类型K3314A穗长性状均符合加性-显性-上位性多基因模型(C-0),无主基因存在;非1B/1R类型KTSP732A的小穗数性状符合两对等显性主基因+加性-显性多基因混合模型(E-6),主基因遗传率为40.7%;而1B/1R类型K3314A的控制小穗数性状基因类型与非1B/1R不同,该类型无主基因存在,也符合加性-显性-上位性多基因模型(C-0).  相似文献   

10.
普通小麦籽粒性状的主基因+多基因遗传模型分析   总被引:4,自引:0,他引:4  
为给小麦遗传育种中籽粒性状改良提供参考,以小麦大粒品系0911-46为母本与小粒品系42杂交产生P1、P2 、F1 、BC1 、BC2 和F2共4个世代6个群体,应用主基因+多基因混合遗传模型多世代联合分析方法分析了小麦粒重、粒长、粒宽、粒厚的遗传特点。结果表明,千粒重、粒宽、粒厚都符合2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型。2对粒重主基因都具有正向加性效应,可以增加粒重,但其互作效应有正有负且互相抵消,对粒重影响不大。粒宽和粒厚的显性效应为正向作用,有利于增加籽粒体积。粒长符合加性-显性-上位性多基因模型,无主基因。千粒重主基因+多基因遗传率在BC1、BC2、F2三个分离世代分别为88.02%、78.53%、87.82%;粒长多基因遗传率在3个分离世代分别为71.95%、61.64%、62.93%;粒宽主基因+多基因遗传率在3个分离世代分别为43.90%、32.69%和68.47%;粒厚主基因+多基因遗传率在3个世代分别为50.01%、42.86%和68.63%。所有籽粒性状中以粒重的遗传力最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号