首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
针对目前在复杂环境下苹果树叶病害检测准确度低、鲁棒性差、计算量大等问题,提出一种改进的基于YOLOv5s苹果树叶病害的检测方法。首先,该方法在YOLOv5s网络基础上,选择考虑方向性的SIoU边框损失函数替代CIoU边框损失函数,使网络训练和推理过程更快,更准确。其次,在特征图转换成固定大小的特征向量的过程中,使用了简单化的快速金字塔池化(SimSPPF)替换快速金字塔池化(SPPF)模块,在不影响效率的情况下丢失的信息更少。最后在主干网络中使用BoTNet(bottleneck transformers)注意力机制,使网络准确的学习到每种病害的独有特征,并且使网络收敛更快。结果表明,相比于基准网络YOLOv5s,改进后的YOLOv5s网络mAP精度为86.5%,计算量为15.5GFLOPs,模型权重大小为13.1 MB,相对于基准YOLOv5s,平均精度提升了6.3百分点、计算量降低了0.3GFLOPs、模型权重压缩了1 MB。并适用于遮挡、阴影、强光、模糊的复杂环境。本研究所提出的方法,在降低了网络大小、权重、计算量的情况下提高了复杂环境下苹果树叶病害的检测精度,且对复杂环境具有一...  相似文献   

2.
为了解决现有的农作物病害检测方法对不同番茄叶片病害检测的精度低、效果差的问题,提出一种基于YOLOv5网络模型改进的番茄叶片病害检测模型YOLOv5s-TLD。首先在原YOLOv5s模型的Backbone中构建DCAM注意力机制模块,通过制定双通道注意力和空间注意力机制加强模型对番茄叶片病理特征的提取能力,并减弱模型受复杂背景特征的影响,以提高模型对不同种类病害的检测精度和分类精度;然后应用融合Swin Transformer的C3STR模块替换原网络第6层的C3模块,强化模型在多尺度上建模的能力,实现模型对小尺寸的番茄叶片病害残差特征的高精度学习;再运用BiFPN加权双向特征金字塔网络替换原YOLOv5模型Head的PANet路径聚合网络,该网络采用跨尺度特征融合和可学习权重的方式融合模型不同层次的特征,在增强网络的特征融合能力的同时使网络获得更多的特征信息,以提高模型的感受野和特征表达能力;最后进行不同模型的检测对比试验,并在实际复杂场景下进行番茄叶片病害检测试验。试验结果表明:YOLOv5s-TLD模型平均精度均值和召回率分别为97.7%和96.3%,较原YOLOv5s模型平均精...  相似文献   

3.
虾脊兰(Calanthe discolor Lindl.)炭疽病严重影响作物品质,必须在种植区进行海量植株的快速准确识别。然而由于背景环境复杂、种植密集与病叶形态的多样,传统的人工及机器学习识别均难于在精度与速度上满足要求。针对这一问题,本文提出了一种改进的虾脊兰炭疽病识别方法。本方法 YOLOv5s (You Only Live Once v5s)网络作为基础,引入注意力机制以提升病变部位的识别能力,利用样本变换方法适应多叶片形态的多样性,并针对改进了冗余的边界框的消除机制降低了误判与漏判。在实验中,本文构建了虾脊兰样本数据集作为测试数据,并将本方法与传统的深度目标识别方法进行对比,在测试数据集上平均准确率最高达95.4%,模型存储空间为13.78MB,每秒传输帧数为91f/s。平均准确率比FasterR-CNN、YOLOv3、YOLOv4、YOLOv5l、YOLOv5s分别高出0.97%、8.06%、1.82%、0.58%、1.81%。结果表明本文提出的方法在识别精度、识别速度上均获得了较大的提升,并仅需较小的模型部署,以上特征使得本方法更加适用于虾脊兰炭疽病识别的实际工作。  相似文献   

4.
针对现有检测模型不能满足在自然环境中准确识别多种类柑橘病虫害的问题,提出一种基于改进YOLOv5s模型的常见柑橘病虫害检测方法。改进模型引入ConvNeXtV2模型,构建一个CXV2模块替换YOLOv5s的C3模块,增强提取特征的多样性;添加了动态检测头DYHEAD,提高模型对不同空间尺度、不同任务目标的处理能力;采用CARAFE上采样模块,提高特征提取效率。结果显示,改进后的YOLOv5s-CDC的召回率和平均精度均值分别为81.6%、87.3%,比原模型分别提高了4.9、3.4百分点。与其他YOLO系列模型在多个场景下的检测对比,具有更高的准确率和较强的鲁棒性。结果表明,该方法可用于自然复杂环境下的柑橘病虫害的检测。  相似文献   

5.
针对自然环境中,人工目视解译苹果叶部病害耗时耗力、人为主观因素强的问题。本研究提出了一种融合自注意力机制和Transformer模块的目标检测算法——BCE-YOLOv5,实现对自然环境下对苹果叶片病虫害的自动识别与检测。该算法首先使用BotNet、ConvNeXt模块分别替换Backbone网络和Neck网络的CSP结构,增加自注意力机制对目标的特征提取能力。通过将改进的CBAM引入YOLOv5的特征融合网络之后,使注意力机制对特征融合信息更加地关注。最后,用α-IoU损失函数替换IoU损失函数,使得网络在模型训练过程中收敛的更加稳定。BCE-YOLOv5算法在传统算法YOLOv5基础上平均精准率均值提升了2.9百分点,并且改进后的算法的模型大小和计算量较传统算法分别减小了0.2 M和0.9 GFLOPs。平均精度均值比YOLOv4s、YOLOv6s、YOLOx-s和YOLOv7模型分别高2.5、1.3、3.5、2.2百分点。该方法能快速准确识别苹果叶部病害,为苹果种植过程中提供智能化管理做参考。  相似文献   

6.
为了实现自然环境下疏果前苹果的快速识别和精确定位,满足果园智能化种植需求,提出了一种基于改进的YOLOv5深度学习的检测模型。首先,为了解决苹果的尺度大小不一带来的问题,改进目标检测层,在YOLOv5的第17层之后对特征图进行上采样,在第20层将网络提取到的特征图与Backbone网络中的第2层特征图进行融合操作,以生成不同尺寸的检测层。其次,为了克服复杂环境的影响,改进特征融合网络,使用BiFPN(Bidirectional Feature Pyramid Network))进行特征融合,来更有效地提取目标信息。最后,将采集到的苹果图像进行不同网络模型检测效果对比试验。试验表明,改进的模型经过8 274幅图像训练,在2 759幅测试集上的检测准确率为94.2%,召回率为95.2%,F1值为94.7%;相比YOLOv3、YOLOv4、原YOLOv5网络,准确率分别提高了4.4%、7.0%、2.3%,F1值分别提高6.1%、6.5%、2.6%;相比YOLOv3、YOLOv4网络,图像的检测速度分别提高了13.5、21.4 ms/幅。结果表明,在...  相似文献   

7.
为了快速准确地检测出小目标生物(海参、扇贝、海星和海胆)在复杂水下环境的位置及所属种类,提出一种基于改进YOLOv5s的小目标生物检测算法。在特征提取阶段,引入基于多头自注意力设计的自注意力残差模块,强化网络全局建模能力的同时,强化目标特征信息;在特征融合阶段,将特征融合网络调整为添加横向连接的双向特征金字塔结构,增强网络融合不同阶段特征信息的能力;在检测阶段,舍弃大目标检测尺度并添加小目标的检测尺度,提升小目标生物的检测精度;最后,引入α–CIoU损失函数作为模型边界框回归损失函数,提高边界框回归精度,进而提高算法检测准确率。定性试验中,几乎所有肉眼可见的水产品目标都被改进模型检出,并正确标记,体现了改进算法的有效性。α值选取试验中,α值为2.0时效果最佳,平均精度均值(mAP)均优于其他值的,达到0.857,较α值为1.0时的提升了0.016。消融试验中,添加任一优化方法均会提升改进模型的检测精度,最终改进模型的mAP达0.873,较原模型的提升了0.032,模型参数量减少了26.8%,仅有5 M。对比试验中,改进模型的mAP较Faster RCNN、YOLOv3、YOLOv4、YOLOv5s、YOLOvX、SSD、NAS–FCOS、改进YOLOv5等的提升了0.020以上;改进模型在本地服务器的检测速度达139帧/s,较YOLOv5s的提升了14帧/s,略逊于以检测速度著称的SSD模型的。可见,改进模型能满足轻量和实时性要求。改进模型也成功部署到安卓移动设备中。  相似文献   

8.
针对复杂环境下目前现有的玉米病虫害检测方法的精度不理想、模型复杂、难以在移动端部署等问题,本研究提出了基于轻量化改进型YOLOv5s的玉米病虫害检测方法。首先,采用轻量级网络GhostNet替换原始YOLOv5s模型中特征提取网络和特征融合网络的卷积层,降低模型的计算量和参数量,提高运行速度,以满足移动端的部署要求;其次,为弥补GhostNet所带来的检测精度下降缺陷,在模型的主干特征提取网络中引入注意力机制,更加全面地评估特征权值,以增强玉米病虫害的特征,减弱无关信息的干扰,提升检测性能;最后,将模型的损失函数由CIOU替换为EIOU,以增强模型对目标的精确定位能力,从而提升模型的收敛速度和回归精度。试验结果表明,改进模型相比原始YOLOv5s模型在对供试玉米病虫害检测中,P、R和mAP分别提高了1.9个百分点、2.2个百分点和2.0个百分点,分别达到了94.6%、80.2%和88.8%;在保持较高检测精度的同时,模型的计算量、参数量和模型大小分别减少了50.6%、52.9%和50.4%,解决了检测模型在移动端的部署问题。  相似文献   

9.
为提高多目标和雾天环境下的海上船舶识别准确率,提出一种基于改进YOLOv5深度学习的海上船舶识别模型(SE-NMS-YOLOv5),该模型结合暗通道去雾算法(Dark channel),并融合了SE(squeeze-and-excitation)注意力机制模块和改进非极大值抑制模型,对船舶数据集进行训练和测试。结果表明:在船舶识别任务上,SE-NMS-YOLOv5模型的准确率、召回率和F1值分别为90.6%、89.9%、90.5%,检测效果比YOLOv5模型分别提升了6.3%、4.8%、5.8%,比YOLOv4模型分别提升了19.1%、19.0%、19.3%;在雾天船舶识别任务上,SE-NMS-YOLOv5-Dark channel模型的准确率、召回率和F1值分别为88.1%、87.2%、87.6%,比SE-NMS-YOLOv5模型的检测结果分别提升了13.8%、13.3%、13.5%。研究表明,SE-NMS-YOLOv5海上船舶识别模型有效地解决了多目标和雾天条件下,海上船舶检测准确率低的问题,提升了船舶检测和识别的整体效果。  相似文献   

10.
为了解决电动车驾乘人员头盔佩戴检测问题,提出了一种基于改进YOLOv5s模型的电动车头盔佩戴检测方法。该方法以YOLOv5s模型为基础,首先使用GhostBottleneck模块替换YOLOv5s中的卷积模块以减少参数量;其次设计了GhostCSP-Bottleneck来优化特征提取结构;最后在主干网络增加注意力机制提升检测精度。实验结果表明,改进后的模型平均准确率均值为84.2%,较YOLOv5s提升了1.3个百分点;模型参数量和体积分别压缩为原来的51.39%和47.95%,在小目标和密集目标场景下具有较好的泛化性;将模型移植到NVIDIA Jetson Xavier NX开发板上,检测速度达到28.2 FPS,满足检测的实时性和准确性要求。  相似文献   

11.
苹果轮纹病发生规律及条件的研究   总被引:3,自引:0,他引:3  
1997~2000年开展了负载量、施肥水平对苹果轮纹病的影响试验,并对辽宁省苹果轮纹病发生规律及条件进行了调查研究.结果表明,枝果比过小导致负载量过大,加重轮纹病的发生,枝果比(5~6)∶1的病情指数较低,且有较高的产量和较好的质量.施肥水平比正常量增加0.5或0.75倍不但有利于减轻轮纹病的发生,而且产量显著增加.富士系、元帅系等品种为高感品种,国光、珊夏等少数品种为中度或轻度感病品种,鸡冠为抗病品种.降雨特别是7、8月降雨量大加重粗皮病发生.土壤质地较轻、容重较小、有机质和全N含量高是减轻轮纹病发生的重要条件.连续环剥或过量应用PP333加重轮纹病的发生.  相似文献   

12.
基于安卓的动物疫病远程诊断系统设计与开发   总被引:1,自引:0,他引:1  
包巍 《农业网络信息》2012,(7):29-31,54
为了更好地助力于飞速发展的福建省养殖业,依托日益普及的移动3G通讯技术,设计开发了基于安卓的动物疫病远程诊断系统。从动物疫病远程诊断系统的总体设计思路、系统实现的方式方法及最终所实行的功能等几方面进行阐述,说明了该系统具有简单实用,方便易推广的特点,它终将成为全省广大养殖户和农业专家工作的好助手。  相似文献   

13.
基于Android智能移动终端的农资安全监管系统设计与实现   总被引:2,自引:0,他引:2  
在农资市场监管部门执法过程中,针对检查手段信息化和现场证据采集便捷、及时、有效的现实需求,综合采用基于Android平台的移动互联网技术、Web Service技术、QR二维码技术,构建农资市场安全监管的业务模型,在此模型基础上研发了基于Android移动终端的农资安全监管系统,并在北京市某区成功应用示范。  相似文献   

14.
随着目前互联网技术和移动智能终端设备的发展,传统的书面选课答疑移植到智能终端上已成为必然。现通过Android平台师生选课答疑系统的设计与实现过程,使用Java语言处Eclipse集成开发环境进行开发,解决了学生随时随地可以进行选课提问操作,教师可以及时解答,提高了效率。  相似文献   

15.
通过对植物叶片进行分类,在植物种类鉴别研究中有着重要的意义.在传统的植物叶片分类中,大多都是在PC机上构建叶片分类系统.该研究基于Android操作系统手机平台,构建了结合图像特征识别技术的植物叶片分类系统,设计了系统的主界面及相关操作界面,在VS开发环境下利用OpenCV中图像处理的相关类函数,实现图像处理的过程,最终通过在Android开发环境下调用本地C++代码的方式实现整个系统.  相似文献   

16.
针对国内禽蛋制品加工过程中,散装蛋水中上料时筐装蛋搬运自动化程度低的问题,设计一种自动上料机器人的视觉定位方案。该方案采用YOLOv5s和图像处理相结合的方法,在复杂环境中对散装禽蛋筐进行定位识别。建立最佳分割阈值T与图像平均灰度值M之间的关系模型,使用动态阈值分割法对图像中的堆垛整体进行分割,通过堆垛最小外接矩形的长宽比区分2种筐装禽蛋堆垛类型,堆垛类型识别准确率为100%。使用YOLOv5s对堆垛顶层的单个蛋筐进行定位识别,模型识别精确率为98.48%,检测单幅图片用时为0.005 4 s。根据YOLOv5s输出的定位结果对图片进行裁剪,通过图像分割将蛋筐边框分割出来并用Canny算子检测其边缘信息,计算所有蛋筐旋转角度,平均角度误差为0.41°。结合蛋筐高度得出筐装禽蛋堆垛中所有蛋筐的位姿信息。结果表明,基于YOLOv5s和图像处理的筐装禽蛋定位方法可以准确识别出筐装禽蛋堆垛中所有蛋筐的位姿信息,该系统具有较好的鲁棒性和可行性。  相似文献   

17.
笔者基于Android手机终端,设计一套智能手机GPS的魔芋软腐病防治系统,该系统可获取农户所处地区的经纬度等信息并进行数据分析,对魔芋软腐病防治的实际问题给予专业性解答,再将该地区的魔芋软腐病防治方案智能推荐给农户,以便种植户对魔芋软腐病进行防治。  相似文献   

18.
为了快速、准确地实现对人工影响天气作业的响应,建立了一种基于Android的智能移动作业终端系统,详细介绍了该系统的总体框架、主要功能、操作流程,并重点围绕基本指令信息收发、移动GIS平台应用、视频传输应用3个方面,分别就其中的一些关键技术点如自适应心跳包、矢量栅格数据的传输及显示、终端GIS坐标转换、视频编码器的裁剪和优化、流媒体传输优化及差错控制进行了阐述.初步试验结果表明,该系统的特点及优势均较明显.  相似文献   

19.
【目的】构建融合YOLOv5s与改进Criminisi算法的农业遥感图像去云方法,为云层干扰环境下地表信息获取、地表物的解译等研究提供支持。【方法】首先使用基于容差的暗通道先验(dark channel prior,DCP)算法去除雾和部分薄云,以提升图像整体对比度与云层边缘清晰度;然后融合YOLOv5s深度学习网络进行云层区域阈值分割,实现云层蒙版的快速精确自动提取;最后通过样本块大小自适应调整策略对Criminisi算法进行改进,实现遥感图像的有效去云修复处理。通过对含不同大小云层的遥感图像进行去云试验,并利用信息熵、峰值信噪比(peak signal-to-noise ratio,PSNR)、均方误差(mean-square error,MSE)和结构相似性(structural similarity index measure,SSIM)4个指标对去云结果进行评价,以验证本研究算法的有效性。【结果】采用融合YOLOv5s和自适应样本块的改进Criminisi算法对8幅含云图像进行了修复,修复后图像的平均PSNR为21.01,平均SSIM为0.77;并对57幅模拟加云图像进行修复,其平均PSNR为28.59,平均SSIM为0.93,表明将改进Criminisi算法应用于遥感图像去云研究是可行的。在此基础上,对本研究算法的适用性以及阴影对去云效果影响的研究表明,不同大小和位置的云层干扰造成未知区域不确定度较大,对修复效果影响较为严重;阴影区域与云区域相接时存在阴影块填充,修复效果尚有待提升。【结论】融合YOLOv5s与改进Criminisi算法的去云方法可有效修复云层遮挡区域,同时保留较为真实的地表信息,可用于农业遥感信息精细感知研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号