首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Small seed tubers of 1–5 g, 5–10 g and 10–20 g were planted at the same sprout densities as standard size seed tubers of 40–60 g in order to give similar stem densities. Early ground cover by foliage, total yield, and yield of tubers >45 mm were consistently greater in plots planted with larger seed tubers. The effect of seed tuber size on yield and tuber number per stem varied between years but 1–5 g seed tubers always gave lower yields per stem than larger seed tubers. Reducing the spacing between rows from 90 cm to 60 cm and maintaining the same sprout density was more effective in increasing yields from small seed tubers than increasing sprout density from 20 to 40 sprouts per m2 by reducing plant spacing within the row.  相似文献   

2.
Summary Multiplication factors and progeny yield variation in crops from minitubers of five weight classes (ranging from 0.13–0.25 g to 2.00–3.99 g) and conventional seed tubers were studied in field experiments in three years. Multiplication factors were calculated as the number and weight of progeny tubers produced per planted tuber or per unit planted tuber weight. They were lower for the lighter minitubers when calculated per tuber and higher when calculated per weight. Yield variation was described by coefficients of variation for the number and weight of progeny tubers produced. Variation over individual plants of a crop was higher in stands from the lighter minitubers. Variation over plots within a field was sometimes higher for the lighter minitubers, but variation over years was similar for all minituber classes. Variation over plots in progeny tuber weight was higher for minitubers than for conventional tubers.  相似文献   

3.
Summary Field performance of five fresh weight classes of minitubers ranging from 0.13–0.25 g to 2.00–3.99 g and conventional seed tubers was studied in a short growing season (79 or 82 days) in two years. The heavier minitubers gave a more regular emergence, faster ground cover soon after emergence, higher dry-matter yields, and higher fresh tuber yields. Radiation conversion coefficient (RCC) did not differ. Higher tuber yields resulted from more radiation intercepted due to a faster ground cover, and a higher harvest index. All minitubers produced plants with one primary stem. In one experiment when heavier minitubers had long sprouts, time to 50% emergence decreased with tuber weight, whereas dry-matter concentration of progeny tubers increased. Conventional tubers appeared superior to minitubers in all characteristics mentioned except RCC, which was similar. Differences in performance between minitubers and conventional tubers were attributed to weight and age of seed tubers, presprouting method and crop husbandry.  相似文献   

4.
Summary The production of large volumes of vitroplantlets and greenhouse tubers for increasing the rate of multiplication at the start of seed programmes provides the opportunity of reducing the total number of field generations grown before the seed moves into commerce. This implementation is especially useful for countries where high quality potato seed tubers cannot be produced because there are no vector-free production areas. This review covers the following steps: a) laboratory production of microplantlets and microtubers; b) minituber production in the glasshouse; c) storage and dormancy of micro- and minitubers; d) field performance of micro- and minitubers compared with conventional seed tubers; e) incorporation of the mentioned propagules in seed production systems. Many optimized protocols are already available for propagating plantlets, inducing microtubers and obtaining minitubers in the glasshouse at all periods of the year. Advanced molecular approaches techniques (RFLP and RAPD) to detect genetic variation in the progeny of these propagules have been described. Investigations carried out in this field have shown genetic stability, with the propagules usually reproducing plants true-to-type and tubers without deviants. By contrast, variations were demonstrated in DNA extracted from old suspension cell culture. Field trials assessed a lower yield potential crops from in vitro propagules compared with conventional seed tubers., mainly due to slow early crop development and the failure of plants caused by early stress after emergence. This may cause problems when the growing season is short because of the necessity for planting late to avoid night frosts and the mandatory haulm killing dates, common in many seed producing areas. Strategies for improving the field performance of micro- and minitubers are discussed. The most promising crop husbandry techniques appear to be: a) using tubers of a suitable physiological age, properly presprouted and encapsulated; b) optimizing the time application of fertilizer and irrigation, and c) using floating films. Outside the classical seed tuber areas of Northern Europe where the length of the growing period for pre-basic seed is usually not more than 80 days, the growing season is long enough to obtain reasonable yields even from micro- and minitubers.  相似文献   

5.
Summary Dry-matter concentration and dormancy were studied in minitubers of cvs Agria and Liseta, using five fresh weight classes (<0.50 g, 0.50–0.99 g, 1.00–1.99 g, 2.00–2.99 g and ≥3.00 g) and three successive harvests of the same plantlets. The average dry-matter concentration increased with tuber weight for tubers from the second and third harvests. In minitubers ≥0.5 g, dry-matter concentration was higher in tubers from later harvests. The dormant period (days from harvest to 50% sprouting) was longer in minitubers with lower than higher weights, and longer in tubers from the first harvest than from later harvests. A cold-storage period of 6 weeks, starting 14 days after harvest, reduced the dormant period by an average of 11 days.  相似文献   

6.
Summary Performance of 20 potato genotypes was studied for seven agronomic characters in crops raised from minitubers and normal seed tubers. Correlation coefficients were computed between minituber crop and normal seed crop in order to study the selection efficiency at minituber crop level. The performance of normal seed crop was significantly better than the minituber crop for various characters including tuber yield and its components. Correlation coefficients between minituber and normal seed crop were significant for various characters except number of stems and number of tubers. Highest correlation coefficient (r=0.86) was for tuber yield followed by average tuber weight (r=0.67) and number of nodes (r=0.63). The results suggest that selection for tuber yield can be practised at the minituber crop level in potato breeding programmes  相似文献   

7.
Summary In five field trials with the cultivars Gloria (early), Bintje (mid-early) Désirée (mid-late) and Morene (late), crops grown from conventional 28–35 or 35–45 mm seed were compared with crops grown from microtubers, of various sizes and from various sources, that had been producedin vitro. The following means to quicken initial crop development from the micropropagated material were tested: large microtubers, plastic soil cover, and transplanting of plantlets grown from microtubers pre-planted in a glasshouse. Crops grown from microtubers weighing less than half a gram yielded much less than crops grown from conventional seed crops but their yields were increased by each treatment. With the later-maturing cultivars, which generally produce few tubers per plant, the yields within seed grades from plants grown from transplanted microtuber plants were comparable with those of conventional crops. Reasons are given, why direct planting of microtubers, with or without plastic foil, is not a practical option.  相似文献   

8.
以马铃薯晚熟品种“下寨65”为试验材料,研究了离体诱导微型薯直播田间繁殖块茎繁殖脱毒田间1~5代种薯的质量和效率。结果表明,生育阶段比同品种网室繁殖脱毒小薯同代脱毒种薯略迟;生长势、株高、茎粗、主茎分枝数、单株叶面积、根系数、匍匐茎数和匍匐茎长度等生长发育指标,PVX、PVY、PLRV和PVA等重要病毒害发病率及病情指数,干腐病和软腐病发病率,晚疫病发病率和叶面枯死率相同;未发现环腐病和黑经病。单薯重量平均45.1g,随田间种植代数增加而增大;单株结薯数、单位面积结薯数逐代减小,脱毒田间1~4代单株产量和单位面积产量逐代增加,繁殖效率与脱毒小薯相同,故离体诱导微型薯田间繁殖块茎繁殖脱毒种薯是经济有效且切实可行的。  相似文献   

9.
Summary Minitubers can be produced in large quantities by repeated harvesting of tubers from in vitro propagated plantlets at 4, 7 and 10 weeks after transplanting to the glasshouse at high plant densities. Yield parameters of minitubers can be manipulated by crop husbandry. By supplying nutrients or using a square plant arrangement, minituber yield increased. Effects on numbers of tubers were cultivar-dependent. Changing plant density from 50 to 800 plants per m2 or the minimal diameter of harvested tubers from 5 to 12 mm did not significantly affect tuber yield per m2. Higher plant densities resulted in more tubers per m2 but fewer tubers per plant. Removing smaller tubers greatly increased the number of small tubers, but did not affect yield and number of tubers in larger grades. Crop husbandry techniques affected minituber yield mainly through their effects on leaf area duration, and the number of minitubers through their effects on growth of tubers to a harvestable size.  相似文献   

10.
Currently in vitro plantlets and microtubers provide the basis for pre-base production of potato seeds, from which minitubers are produced under covers – they serve later as seed material to be planted in the field. The aim of the research was to determine the possibility for multiplication of material produced in vitro directly in field conditions. The research assessed PVY, PVM and PLRV infection of potato tubers derived from plants grown directly from in vitro plantlets, microtubers, minitubers and traditional seed potatoes planted in the field at different times. Moreover, testing in laboratory conditions, the susceptibility of these plants to virus infection was determined for the case of artificial inoculation of Myzus persicae and Aphis nasturtii. It was found that the infection of tubers derived from in vitro plantlets and microtubers was greater than that of seed potatoes and minitubers. Yet it seems that the reason for their higher infection level resulted not from the plant’s sensitivity or its greater attractiveness to aphids but from a largely unknown cause. Earlier planting of microtubers and in vitro plantlets in the field in case of the more resistant cultivar and certainly later in relation to the main time of planting had an impact on limiting the PVY and PVM infection of potato tubers. Hence multiplication of microtubers and in vitro plantlets in field conditions could be very economical using cultivars which are relatively resistant to viruses. However, adopting a later than usual planting period (end of June) and applying an additional protective cover (such as non-woven agricultural fabric) in the first period of a plant’s growth, promotes multiplication of microtubers and in vitro plantlets in field conditions for cultivars with low resistance levels.  相似文献   

11.
Despite many reports of thein vitro production of microtubers, little is known about plant growth and yield from microtubers planted in the field. This study clarified differences in growth and yields between potato plants grown in the field from microtubers and from conventional seed tubers. The experiments were performed at Hokkaido University, Japan, over four years. Conventional seed tubers of about 50 g and microtubers of two sizes (0.5–1.0 g and 1.0–3.0 g) of the latematurity cultivar Norin 1 were planted, and plant growth and tuber yields were analyzed. The microtuber plants had a lower initial increase in root and leaf area index than conventional seed tuber plants, but had the same leaf area index after about 40 days from emergence. The first tuber formation in microtuber plants was about 7 days later than in conventional seed tuber plants, while tuber bulking occurred about 14 days later in microtuber plants. Consequently, the onset of tuber weight increase was later in microtuber plants, but the rate of increase thereafter was similar between conventional seed tuber and microtuber plants. At harvest the tuber fresh weight of microtuber plants was 82% that of conventional tuber plants, suggesting a potential for using microtubers for field planting.  相似文献   

12.
Potato seed pieces were hand planted with different spacings in the row and percentages of doubles to determine the effects on total yield and tuber size distribution. The objective was to determine acceptable performance levels for commercial potato planters. Average tuber size increased as the percentage of double seed pieces decreased or as the in-row spacing between single seed pieces increased. Yield of tubers smaller than 113 g was the most sensitive parameter and they increased as in-row spacing decreased and as the percentage of double seed pieces increased. Yield of tubers larger than 283 g increased as in-row spacing increased but only for the first year. Total yield was not affected by the change of in-row spacing or the percentage of doubles.  相似文献   

13.
Chemical agents may be used to overcome dormancy in potato tubers so as to permit early planting. In this paper, the effect of carbon disulphide on sprouting and related metabolic processes in potato tubers grown from true potato seed (TPS) was investigated. Carbon disulphide was applied to potato tubers derived from TPS, at a rate of 20 ml m?3 container volume for 72 h. It accelerated tuber sprouting and increased tuber weight loss. It also caused an increase in the respiration rate, as well as ethylene emission from the tubers during the first 6 days after treatment. The respiration rate of carbon disulphide-treated tubers remained at a higher level than that of untreated controls for 35 days after treatment. In addition, carbon disulphide increased the concentrations of the soluble sugars sucrose and fructose, but not glucose, in the tuber tissues (buds, parenchyma). These findings suggest that carbon disulphide releases potato minitubers from dormancy and that dormancy breakage is associated with changes in tuber metabolism prior to the visible sprouting.  相似文献   

14.
Summary In many seed potato producing areas, micro- and minitubers are too small for direct planting as seed tubers in the field. Such use of these propagules can, however, be feasible if the crop's growth and development can be advanced. Increasing light interception, harvest index and yield of useable progeny tubers has been proved possible with plastic mulch and pre-planting of small tubers in a greenhouse. High amounts of nitrogen (up to 180 kg ha−1) or deep planting (up to 9 cm) were less effective. Using older or pre-sprouted micro- or minitubers may be beneficial, because this might increase the number of sprouts per mother tuber (and thus stems per plant) or advance the growth of sprouts or stems. However, this would require even more careful management, due to the weakness of these sprouts and stems. Micro- and minitubers should be as large as feasible when used for direct planting in the field.  相似文献   

15.
Small minitubers (1.3 to 1.9 cm diameter), produced in the greenhouse from tissue culture plantlets are usually discarded because they are undersized for field planting. They have potential as a means of expanding the production of basic nuclear potato seedstocks. Field trials were conducted to evaluate the performance of greenhouse-produced minitubers at 15 and 30 cm spacings, with one or two minitubers/hill, and with or without encapsulation in a moist ball of artificial greenhouse peat-lite mix. All minitubers were green-sprouted for about two weeks under 16 hr/day fluorescent lighting before planting. Encapsulation in moist peat-lite mix significantly increased total yield by an average of 44% over minitubers without the soil mix. Independent of encapsulation, closer seed spacing and two minitubers/hill increased yields by an average of 35% and 20%, respectively, compared to wider spacing and one minituber/hill. Yields of encapsulated minitubers compared favorably with cut (50 gm) and whole (80 gm) seed, averaging 103% of the cut and 87% of the whole seed yields, respectively. These results indicate that small minitubers can be used effectively to expand production of basic nuclear seedstocks.  相似文献   

16.
《Field Crops Research》1987,16(1):19-31
Response of cassava to row spacing and plant population density (0.62 plants m−2 in 180-cm rows; 1.23 plants m−2 in 90-, 180-, 270-, and 270- plus 90-cm (i.e. paired rows); and 2.46 plants m−2 in 90- and 180-cm rows), and to soybean intercrop at two row spacings of cassava (90 and 270 cm) was studied at a high latitude (27°S) in south-east Queensland, Australia, where low temperature limits a growing season to 9 months. Detailed observations were made in sole crops on leaf canopy structure and light penetration in the three row spacings at the medium density to allow an estimation of light availability for an intercrop between cassava rows.The low plant density or the 270-cm row plants produced the lowest total dry matter and tuber yield at harvest, while the two higher densities or the two narrower rows produced similar total and tuber dry weight. Intercropped cassava produced a similar tuber yield to the sole crop at the corresponding spatial arrangement, but total dry matter was lower in the former.Leaf area index was similar among the 90-, 180- and 270-cm row spacings in sole crops throughout the growth period. However, leaf area was unevenly distributed horizontally for a longer time as row spacing increased. This resulted in light penetrating the inter-row space for a longer period in wider rows in sole crops, more than 50% full sunlight reaching soil level for 90, 120 and 130 days after planting in the 90-, 180- and 270-cm rows, respectively. This light environment would be available for an intercrop if cassava growth is not affected by the intercrop. The results for cassava intercropped with soybean show that in fact cassava growth was reduced by the associated soybean, and hence light available for the soybean growth would have been more than that estimated above.  相似文献   

17.
Summary The duration of dormancy of seed potatoes varies between years and between origins. Therefore, the effects of conditions during crop growth on dormancy of progeny tubers were studied. The effect of nitrogen during tuber bulking on the duration of dormancy was investigated in three field experiments with two cultivars. In addition to an application of 125 kg N/ha at planting, top dressings of 0–150 kg N/ha were given about 2 weeks after tuber initiation. Haulm was pulled about 4 weeks later. The effect of nitrogen rate at planting was also examined in one experiment. Nitrogen top dressings shortened dormancy in all experiments by 5–8 days. An increased nitrogen rate at planting resulted in a shorter dormancy when the duration of dormancy was expressed in days after tuber initiation, but not when it was expressed in days after haulm pulling, probably because extra nitrogen also delayed tuber initiation.  相似文献   

18.
Potato production from rooted apical cuttings or from small tubers (l–20g) produced in high density beds has great potential in Asia. This is particularly important in non-traditional warmer environments. This research was conducted to assess the feasibility of producing many small tubers in high density beds. A second objective compared tubers from beds with transplanted rooted cuttings and traditional seed tubers for growth and yield in the field. Tuberlet production in beds exceeded 2000/m2 with a density of 1000 plants/m2 under optimal growing conditions while under high temperatures only about 1.25 tuberlets/plant were produced. In field experiments, transplanted cuttings yielded 20 t/ha in the mid and high elevation areas, only slightly less than tuberlets of 5–10g while at the hot site, yields were generally only 8 to 10 t/ha for both materials. Larger healthy seed tubers produced significantly higher yields at the low and high elevation sites. Tuberlets of 1–5g were also able to give yields of 20 t/ha in the mid-elevation site. These results indicate that cuttings and small tuberlets are two ways of growing potatoes which need to be further evaluated for socioeconomic assessment by farmers.  相似文献   

19.
《Field Crops Research》2006,95(1):89-96
Tuber yields of potato plants grown from microtubers in fields are more variable than yields from conventional seed tubers (CT). One reason could be their higher susceptibility to water stress. This study clarified the effect of soil water stress from 1 month after emergence on the growth and yield of plants grown from conventional seed tubers and microtubers in fields. Microtubers (0.5–3 g) and conventional seed tubers (50 g) were grown in Hokkaido, Japan, over three field seasons. One month after emergence, poly-shelters were placed over the plots to prevent rainfall, and either irrigated (wet plot) or non-irrigated (dry plot) treatments were formed. At mid-flowering (about 50 days after emergence) leaf area index (LAI) in microtuber plants was decreased relatively more due to soil water stress than LAI in conventional seed tuber plants. However, at maximum shoot growth (about 80 days after emergence) both microtuber and conventional seed tuber plants had a similar relative decrease in LAI due to soil water stress. At mid-flowering and maximum shoot growth microtuber and conventional seed tuber plants had reduced stomatal conductance due to soil water stress, but the reduction in stomatal conductance was greater in conventional seed tuber plants than in microtuber plants. Microtuber and conventional seed tuber plants had similar root development at maximum shoot growth. Tuber production from mid-flowering until plant maturity was similarly affected by soil water stress in microtuber and conventional seed tuber plants. At harvest, plants affected by soil water stress had about 87% of the tuber dry weight of irrigated plants. We conclude, that the greater variation on tuber yield of microtuber plants cannot be attributed to soil water stress from 1 month after emergence.  相似文献   

20.
本研究以马铃薯极早熟品种“东农303”脱毒种薯为试验材料,将种薯分成(20±5)g和(30±5)g两组,分别按5个密度进行种植(行距均为70cm,株距分别为12.5、15.0、17.5、20,0和22.5cm).试验结果表明,在哈尔滨的自然条件下,马铃薯块茎产量和单位面积块茎数目随着种植密度的增大而增加,单个块茎重量则随着密度的增加而减少.大种薯(30±5)g播种可以获得较高的块茎产量.在本试验中,种薯重量为(30±5)g、株12.5和15.0cm时,获得了较高的块茎产量和较多的块茎数.通过对植株地上部鲜重和叶面积指数变化的分析,表明高密度群体具有发育快、生长旺盛的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号