首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One hundred eighty crossbred cows were assigned to one of six native range pastures during two winters to evaluate forage and supplement intake as affected by liquid supplement (yr 1: 50% crude protein, 84% from urea; yr 2: 57% crude protein, 91% from urea) delivery method and cow age (2, 3, 4, 5, or 6 yr). Treatments were: 1) no supplement (Control); 2) a lick-wheel feeder containing liquid supplement (ADLIB); and 3) a computer-controlled lick-wheel feeder that dispensed 0.9 kg x cow(-1) x d(-1) of liquid supplement (average 0.5 kg of dry matter x cow(-1) x d(-1); Restricted). Each treatment was applied to two pastures. Forage digestibility was increased (P = 0.03) by supplementation. Supplemented cows lost less (P = 0.05) body condition than unsupplemented cows (average -0.3 vs -0.6). Blood urea nitrogen (BUN) was highest (P = 0.001) for ADLIB (8.7 mg/dL), intermediate for Restricted (6.2 mg/dL), and lowest for Control (2.3 mg/dL). Forage DMI was 31% higher (P = 0.01) in 1995 than in 1996, and was increased (P = 0.02) by supplementation both years. Cows supplemented with ADLIB consumed 23% more forage dry matter than Control cows, whereas Restricted cows consumed 21% more dry matter than ADLIB cows. Supplement intake by cows on ADLIB was greater (P = 0.001) than by cows on Restricted in both years. Supplement intake was lowest (P = 0.002) by 2-yr-old cows, intermediate by 3-yr-olds, and greatest by 4-, 5-, and 6-yr-old cows. Variation in supplement intake by individual cows was higher (P = 0.09) for cows in the Restricted treatment (coefficient of variation [CV] = 117%) than those on ADLIB (CV = 68%) during the first year, but did not differ between supplement treatments (average CV = 62%) in the second year. The proportions of cows consuming less than 0.3 kg/d of supplement dry matter intake (DMI) and consuming less than the target amount of supplement (0.5 kg DMI) were less (P = 0.001) for ADLIB than for Restricted during both years. ADLIB cows spent more (P = 0.001) time at the supplement feeder and had more (P < 0.002) supplement feeding bouts than Restricted cows during both years. During the first year, 2- and 3-yr-old cows spent less (P < 0.01) time at the feeder and had fewer feeding bouts per day than 6-yr-old cows. Age had no effect (P > 0.24) on feeding behavior during the second year. Supplementation of beef cows grazing winter range with 50 to 57% crude protein liquid supplement increased forage digestibility and intake. Restricting supplement access increased forage consumption and variability of supplement intake.  相似文献   

2.
Responses of a feed intake model for grazing beef cattle to changes in model parameters, forage composition, and supplementation programs with energy and protein were evaluated. Without supplements, the model systematically underpredicted intake of low-quality (low digestibility) forages and subsequent overprediction was observed for high-quality diets. In general, for a reference diet of Italian ryegrass, the model was relatively insensitive to microbial growth parameters, highly sensitive to the microbial carbohydrate composition constant, and moderately sensitive to the microbial N composition constant. Intake prediction was sensitive to changes in the microbial use rate constant for fiber but insensitive to those for protein and starch. Model predictions were highly sensitive to the amount of nondegradable fiber in each of the forages tested. Supplementation effects on forage intake were quantified by supplementing all forage diets with chemical components equivalent to that provided by 1 kg of corn grain or 1 kg of cottonseed meal. Supplementation of the forage diet with the concentrate source resulted in substitution ratios of forage to supplement intake consistent with in vivo results. As forage quality increased, substitution of concentrate for the forage increased. However, the model failed to predict the increased forage intake typically observed with protein supplementation, suggesting that it is insufficient for intake prediction in protein-limiting situations. Nevertheless, the model correctly predicted effects of energy supplementation and forage composition on forage intake, suggesting that different controls must regulate intake responses to supplemental protein.  相似文献   

3.
The effect of feed intake level (.6, 1.0, and 1.6 x maintenance energy and protein requirements, M) on splanchnic (portal-drained viscera [PDV] plus liver) metabolism was evaluated in six multicatheterized beef steers (398 +/- 27 kg), using a double 3 x 3 Latin square design. On the last day of each 21-d experimental period, six hourly blood samples were collected from arterial, portal, and hepatic vessels. Due to catheter patency, PDV fluxes were measured on five steers, and liver and splanchnic fluxes on four steers. Increasing intake elevated (P < .01) splanchnic release of total (T) amino acids (AA), through increases (P < .01) in PDV release of both essential (E) and nonessential (NE) AA, in spite of a tendency (P < .20) for increased liver removal of NEAA. The PDV release of AA N represented 27 and 51% of digested N for 1.0 and 1.6 x M, respectively. At 1.0 and 1.6 x M, the liver removed 34% of total AA released by the PDV. For individual AA, portal flux of most EAA increased (P < .05) with feed intake, and the increase (P < .10) in splanchnic flux was accompanied by increased arterial concentration for all EAA except histidine, lysine, and methionine. This suggests that these might be limiting AA for this diet. On a net basis, most individual NEAA were released by the PDV except glutamate and glutamine, which were removed by the digestive tract. There was a net removal of NEAA by the liver, except for aspartate and especially glutamate, which were released. Ammonia release by the PDV tended (P < .20) to increase with intake and represented 69, 53, and 45% of digested N at .6, 1.0, and 1.6 x M, respectively. Urea removed by the PDV, unaffected by intake, represented 32, 33, and 21% of the digested N. Arterial glucose concentration increased linearly (P < .01) with greater intake, whereas net liver and splanchnic glucose release increased in a quadratic (P < .05) manner. Net PDV glucose release represented 26% of net glucose hepatic release at 1.6 x M. Intake elevated (P < .10) both insulin and glucagon arterial concentrations, resulting from a larger increment of portal release (P < .01) than hepatic removal (P < .05). Intake-based variations in IGF-I and NEFA arterial concentrations (P < .05) were not related to changes in splanchnic metabolism. These results clearly show the crucial role of the splanchnic tissues in regulating the profile and quantity of AA and concentrations of glucose and pancreatic hormones reaching peripheral tissues.  相似文献   

4.
Two experiments were conducted to evaluate the impacts of increasing levels of supplemental soybean meal (SBM) on intake, digestion, and performance of beef cattle consuming low-quality prairie forage. In Exp. 1, ruminally fistulated beef steers (n = 20; 369 kg) were assigned to one of five treatments: control (forage only) and .08, .16, .33, and .50% BW/d of supplemental SBM (DM basis). Prairie hay (5.3% CP; 49% DIP) was offered for ad libitum consumption. Forage OM intake (FOMI) and total OM intake (TOMI) were increased (cubic, P = .01) by level of supplemental SBM, but FOMI reached a plateau when the daily level of SBM supplementation reached .16% BW. The concomitant rises in TOMI and OM digestibility (quadratic, P = .02) resulted in an increase (cubic, P = .03) in total digestible OM intake (TDOMI). In Exp. 2, spring-calving Hereford x Angus cows (n = 120; BW = 518 kg; body condition [BC] = 5.3) grazing low-quality, tall-grass-prairie forage were assigned to one of three pastures and one of eight treatments. The supplemental SBM (DM basis) was fed at .08, .12, .16, .20, .24, .32, .40, and .48% BW/d from December 2, 1996, until February 10, 1997 (beginning of the calving season). Performance seemed to reach a plateau when cows received SBM at approximately .30% BW/d. Below this level, cows lost approximately .5 unit of BC for every .1% BW decrease in the amount of supplemental SBM fed. Providing supplemental SBM is an effective means of improving forage intake, digestion, and performance of beef cattle consuming low-quality forages.  相似文献   

5.
In grazing operations, forage quality and availability are sometimes limited, and cattle are unable to consume enough nutrients from pasture forage to fulfill requirements. During such situations, supplemental or replacement feeding is necessary to meet production goals. A fundamental understanding of ruminant nutrition and forage management is helpful in deciding which feed or supplement type (ie, energy versus protein) best fits the goals of a specific beef production system. It is important to choose a delivery method and supplement form that provide the targeted amount of desired nutrients to each animal in the herd and that minimize input costs. The objective of this article is to serve as a resource for veterinarians as they provide nutritional management support to beef cow producers.  相似文献   

6.
The benefit of using genomic breeding values (GEBV) in predicting ADG, DMI, and residual feed intake for an admixed population was investigated. Phenotypic data consisting of individual daily feed intake measurements for 721 beef cattle steers tested over 5 yr was available for analysis. The animals used were an admixed population of spring-born steers, progeny of a cross between 3 sire breeds and a composite dam line. Training and validation data sets were defined by randomly splitting the data into training and testing data sets based on sire family so that there was no overlap of sires in the 2 sets. The random split was replicated to obtain 5 separate data sets. Two methods (BayesB and random regression BLUP) were used to estimate marker effects and to define marker panels and ultimately the GEBV. The accuracy of prediction (the correlation between the phenotypes and GEBV) was compared between SNP panels. Accuracy for all traits was low, ranging from 0.223 to 0.479 for marker panels with 200 SNP, and 0.114 to 0.246 for marker panels with 37,959 SNP, depending on the genomic selection method used. This was less than accuracies observed for polygenic EBV accuracies, which ranged from 0.504 to 0.602. The results obtained from this study demonstrate that the utility of genetic markers for genomic prediction of residual feed intake in beef cattle may be suboptimal. Differences in accuracy were observed between sire breeds when the random regression BLUP method was used, which may imply that the correlations obtained by this method were confounded by the ability of the selected SNP to trace breed differences. This may also suggest that prediction equations derived from such an admixed population may be useful only in populations of similar composition. Given the sample size used in this study, there is a need for increased feed intake testing if substantially greater accuracies are to be achieved.  相似文献   

7.
Two 25-d trials (late summer and early winter) were conducted to determine the influence of supplementation method on forage use and grazing behavior. Fifteen ruminally and 12 esophageally fistulated steers (316 and 400 kg, respectively) were blocked by weight and assigned randomly to one of three treatments: 1) self-feeding supplement (via Calan gates) with salt as a limiting agent; 2) daily hand-feeding supplement plus salt; and 3) daily hand-feeding supplement without salt. Supplement intake was restricted to .95 kg.steer-1.d-1 with .23 and .40 kg of salt.steer-1.d-1 during summer and winter, respectively. Neither season nor supplementation method affected forage (1.64% of BW) or total (1.89% of BW) OM intake (P greater than .10). Total OM digestibility was greater (P less than .05) in the summer, in salt-supplemented steers, and when steers were self-fed supplement. Digestibility of NDF was greater (P less than .05) in the summer than in early winter, but did not differ among treatments (P greater than .10). Fluid dilution rate was greater (P less than .05) for salt-fed and self-fed steers during the summer but similar among treatments (P greater than .10) during the winter. Total VFA concentrations did not differ among treatments during summer, but were slightly greater (P = .07) in hand-fed steers during the winter. Steers fed supplements containing salt consistently displayed lower (P less than .01) acetate:propionate ratios, and self-fed steers had lower (P less than .01) acetate:propionate ratios during the summer. Ruminal ammonia concentrations did not differ (P greater than .10) among treatments and between periods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Rates of gain and feed efficiency are important traits in most breeding programs for growing farm animals. The rate of gain (GAIN) is usually expressed over a certain age period and feed efficiency is often expressed as residual feed intake (RFI), defined as observed feed intake (FI) minus expected feed intake based on live weight (WGT) and GAIN. However, the basic traits recorded are always WGT and FI and other traits are derived from these basic records. The aim of this study was to develop a procedure for simultaneous analysis of the basic records and then derive linear traits related to feed efficiency without retorting to any approximation. A bivariate longitudinal random regression model was employed on 13,791 individual longitudinal records of WGT and FI from 2,827 bulls of six different beef breeds tested for their own performance in the period from 7 to 13 mo of age. Genetic and permanent environmental covariance functions for curves of WGT and FI were estimated using Gibbs sampling. Genetic and permanent covariance functions for curves of GAIN were estimated from the first derivative of the function for WGT and finally the covariance functions were extended to curves for RFI, based on the conditional distribution of FI given WGT and GAIN. Furthermore, the covariance functions were extended to include GAIN and RFI defined over different periods of the performance test. These periods included the whole test period as normally used when predicting breeding values for GAIN and RFI for beef bulls. Based on the presented method, breeding values and genetic parameters for derived traits such as GAIN and RFI defined longitudinally or integrated over (parts of) of the test period can be obtained from a joint analysis of the basic records. The resulting covariance functions for WGT, FI, GAIN, and RFI are usually singular but the method presented here does not suffer from the estimation problems associated with defining these traits individually before the genetic analysis. All the results are thus estimated simultaneously, and the set of parameters is consistent.  相似文献   

9.
A mathematical model to predict daily DMI and account for effects of energy supplementation on forage intake has been developed in several stages. A previously evaluated dynamic rumen model for sheep was adopted as the fermentation component of the intake model. Intake was adjusted to reach a given level of DM fill, which is the sum of the concentrations of each of the dietary fractions within the rumen. Differential equations described the rate of change of each nutrient fraction. Genetic size scaling rules based on mature body size relationships were used to adjust rate and fill parameters of the intake model from sheep to beef cattle. Nutrient fractions were partitioned into those that flow at the particulate passage rate vs the fluid passage rate. Forty-two data points representing perennial ryegrass, wheat pasture and range grasses were used to parameterize and evaluate the model. The model was relatively sensitive to the coefficient relating DMI to particulate rate of passage, the rate constant for the use of the potentially degraded fiber fraction of the forage, and to the composition constants for the amount of carbohydrate and nitrogen in the microbial mass. Relative insensitivity was observed for starch and protein nutrient use rate constants, for the coefficient relating DMI to fluid passage rate, and for constants relating to the growth of the microbial mass in the rumen. Feed intake of grazing cattle may be predicted by mechanistic models describing various nutrients' contribution to ruminal fill.  相似文献   

10.
The effects of supplementary corn silage (CS) of either 2 or 4 kg of dry matter (DM; S + 2 and S + 4, respectively) above the energy requirement for milk production and maintenance for grazing dairy cows (S) were determined. Time‐restricted grazing was used to compare the feed intake, milk production, and nitrogen and energy use of lactating cows. The experiment was carried out on two different pastures using a 3 × 3 Latin square design for each pasture. Cows were grazed for 5 h on a rotational grazing system and were fed concentrate (1 kg per 5 kg of milk yield). Herbage intake was measured using a weighing technique. To calculate the energy and nitrogen use, whole feces and urine were collected. There was no statistical effect of the pastures. Herbage intake decreased by the addition of CS (P = 0.02). The reduction of herbage DM intake per unit consumption of supplementary CS towards the S group were 0.80 and 0.45 kg for the S + 2 and S + 4 groups, respectively. The total DM intake for the S + 4 group was higher than that for the S and S + 2 groups (P = 0.02). Milk yield did not differ among treatments, even though the total DM intake for the S + 4 group was higher than that of the S and S + 2 groups. Nitrogen and energy use did not differ with the addition of CS.  相似文献   

11.
Two trials conducted in 1996-97 measured BW and body condition score changes of cows fed different sources of degradable intake protein, including dried poultry waste and soybean meal, while grazing low-quality winter forages. In Trial 1, 60 spring-calving cows (5 yr; 555 kg) were used in an individual supplementation trial. Cows were gathered three times a week, sorted into individual pens, and fed their respective supplement. Cows grazed dormant native Sandhills winter range (common pasture) and were assigned to one of six supplemental treatments: 1) no supplement, 2) urea, 3) 22% dried poultry waste + urea, 4) soybean meal, 5) 22% dried poultry waste + soybean meal, or 6) 44% dried poultry waste. All supplements were based on wheat middlings and soybean hulls and were formulated to contain 44% CP. Thirty-six cows were selected randomly (six per treatment) for a 5-d measurement of forage intake from December 16 through December 20, 1996. Cows receiving supplements gained more weight (P < 0.001) and maintained greater body condition (P < 0.001) than unsupplemented cows. Cows receiving urea gained less (P < 0.10) than cows receiving a source of natural protein, but body condition remained similar. No differences were found in daily forage or total organic matter intake (P > 0.10). In Trial 2, cows grazed corn residues. Forty-eight spring-calving cows were group-fed supplements in one of six 4-ha paddocks. Cows received supplements containing either soybean meal or dried poultry waste that were the same as the soybean meal and 44% dried poultry waste supplements fed in Trial 1; gains were not different (P > 0.10). Under the economic conditions that existed at the time of these experiments, the supplement containing dried poultry waste resulted in a savings of $.04 per cow per day and a total savings of $3.20 per cow over an 80-d period. Feeding a supplement containing dried poultry waste resulted in performance similar to that when feeding a more conventional supplement containing soybean meal.  相似文献   

12.
Because feed is the major input in pork production, conversion of feed into lean tissue at minimum costs has been a focus for improvement. Several researchers have proposed using residual feed intake (RFI) rather than feed conversion ratio (FCR) for genetic improvement of feed efficiency. Little is known about the variation in RFI in pigs. As several studies suggest a greater RFI is related to greater animal activity levels, the current study investigated the phenotypic relationship between RFI and feed intake (FI) behavior of 104 group-housed growing Duroc barrows allowed ad libitum access to feed. Feed intake, BW gain, feeding time (TIME), feeding frequency (VISITS), RFI, and FCR were calculated for 5 periods of 14, 23, 28, 21, or 23 d in length (periods 1 through 5, respectively) on animals that were between 73 to 95 d of age at the start of the testing period. Barrows that grew faster consumed more feed (P < 0.001), and barrows that consumed more feed were fatter (P < 0.01). There were no correlations between VISITS and TIME, between VISITS and FI, or between VISITS and RFI. Barrows that spent more time at the feeder, however, consumed more feed (P < 0.05) and had greater RFI in periods 1, 3, and 5 (P < 0.05). As expected, FI and FCR were highly correlated with RFI (P < 0.001). These results suggest that a greater FI rather than greater feed intake activity resulted in greater RFI values.  相似文献   

13.
A herd of 25 beef cows were offered four types of mineral blocks (A, B, C, D) with a different Ca to P ratio (A 0.6:1, B 0.8:1, C 2:1 and D 3.6:1). The Mg content was identical in all blocks whereas the Na content was equal in B, C and D, while the Na content in A block was double. The mineral block intake was monitored for 1 year, which was broken down to the grazing period (Pa) and the winter period (Wi). The intake of pasture grass and winter forage was assessed and the feed chemical composition was analysed; based on the obtained values, a macroelement balance (for Ca, P, Mg, Na and K) was calculated.The results showed the forage diet met requirements for all the observed macroelements (except in Na). The macroelement intake from forage was considerably higher than from mineral blocks. There were significant seasonal (Pa versus Wi) differences in B and C blocks intake. The consumption of D block was relatively invariable all year round; block A was refused in both seasons though it contained the highest amount of highly deficient Na.It can be concluded that mineral content in forage meets beef cattle requirements for Ca, Mg and K, P content is just satisfactory, and Na content is insufficient. It appears that cows control, to some extent, the Ca to P ratio in their diet by choosing the appropriate type of mineral block. However, the preference or refusal of some types of mineral blocks regardless of the season suggests the influence of other factors affecting mineral block intake which were not the subject of our observation.  相似文献   

14.
To establish the effect of sward height, concentrate feeding time, and restricted time for grazing on forage utilization by grazing cattle, 32 crossbred beef (24 Angus and eight Hereford) cows (632 kg BW) and calves (104 kg BW) were grouped by weight and calving date. They were assigned randomly to two sward height treatments (4 to 8 or 8 to 12 cm), replicated four times. The herbage comprised mainly Kentucky bluegrass, orchardgrass, some forbs, and white clover. The cows were restricted to 12 h/d grazing (0700 to 1900) or unrestricted to 24 h/d grazing and fed a concentrate supplement (4.1 kg DM.cow(-1).d(-1), approximately 0.65% of BW or 33% of total DMI) either at 0700 or 1800. The experiment was repeated over three 15-d periods in May, June/July, and August 2000. The herbage on high sward height pasture was higher (P = 0.06) in NDF and ADF and lower (P < 0.01) in CP than low sward height herbage. For cows restricted to 12 h/d grazing, supplementing at 0700 as opposed 1800 resulted in greater (P = 0.04) forage DMI (8.6 vs. 8.1 kg/d), whereas cows that were unrestricted showed little change (8.2 kg/d at 0700 vs. 8.4 kg/d at 1800). Supplementing at 1800 as opposed to 0700 resulted in greater (P = 0.03) herbage DM digestibility (67.7 vs. 64.5%) for cows on high sward height, whereas cows on low sward height exhibited minimal differences (65.4% at 1800 vs. 66.3% at 0700). Cows restricted to 12 h/d grazing and supplemented at 0700 as opposed to 1800 resulted in greater (P = 0.06) digestible DMI (5.0 vs. 4.7 kg/d), whereas unrestricted cows exhibited the opposite response (4.6 kg/d digestible DMI at 0700 vs. 4.9 kg/d at 1800). Supplementing at 1800 as opposed to 0700 increased the time spent grazing to a greater (P = 0.09) extent for restricted than for unrestricted cows. When forage availability or grazing time was limiting (due to a low forage allowance and restricted access to forage, respectively) supplementing concentrates at 0700 resulted in greater forage utilization and intake rate because of increased forage DMI, DM digestibility, and digestible DMI. However, when forage or grazing time was not limiting, supplementing concentrates at 1800 resulted in greater forage utilization because of increased forage DM digestibility.  相似文献   

15.
Gompertz growth functions were fitted to longitudinal measurements of daily feed intake (DFI) and BW of 586 boars and 495 gilts from a selection experiment in Yorkshire pigs for residual feed intake (RFI). The selection experiment consists of a line selected for low residual feed intake (LRFI) for 5 generations and a randomly selected control line (CTRL). The objectives of this study were to use Bayesian methods to estimate genetic parameters of the Gompertz curve parameters for DFI and BW, to evaluate the effect of selection for reduced RFI on the Gompertz parameters and shape of curves for DFI and BW, and to develop methodology for quantifying genetic variation at the level of the original phenotypes for DFI and BW based on the Bayesian analysis of the nonlinear model. Separate analyses were done for boars and gilts and for BW and DFI. A hierarchical model was specified in 2 levels: in the first level, the Gompertz function was modeled for each pig, and at the second level, a 3-trait linear mixed model was fitted to the 3 Gompertz parameters (asymptotic value, inflection point, and decay parameter), with fixed effects of line by generation and random effects of additive genetic and environmental effects. Bayesian methods were used to combine the 2 levels of modeling. A total of 30,000 random samples of the posterior distributions after convergence of Markov chains were used for inference. Posterior means of heritability within the first level of the model for the asymptotic value, inflection point, and decay parameter for DFI were 0.74, 0.66, and 0.82 for boars and 0.79, 0.70, and 0.57 for gilts; corresponding estimates for BW were 0.64, 0.58, and 0.60 for boars and 0.46, 0.35, and 0.33 for gilts. For DFI, LRFI boars had a reduced mature DFI (2.91 vs. 3.20 kg/d) and an earlier inflection point (85 vs. 95 d) compared with CTRL boars. For BW, LRFI boars had a lighter mature BW (279 vs. 317 kg), an earlier inflection point (184 vs. 198 d), and a decreased decay parameter (127 vs. 134 d) compared with CTRL boars. In contrast, LRFI gilts had a later inflection point (225 vs. 200 d) and a greater decay parameter (172 vs. 143 d) than CTRL gilts for BW. The other Gompertz curve parameters for DFI and BW for boars and gilts were considered not different between lines, with posterior probabilities of the line differences being greater than zero ranging from 0.1 to 0.9.  相似文献   

16.
A trial was conducted with 60 steers (257 kg) to determine the influence of prefast feed intake on recovery from feed and water deprivation. For 3 d, steers were fed a 35% roughage diet at 1 (LI) or 1.75% (MI) of body weight or ad libitum (AL). Steers were then deprived of feed and water for 24 h, limit-fed and watered for 24 h, deprived of feed and water for 48 h and then allowed ad libitum feed and water consumption for 2 wk. A fourth group of control steers was fed at 1.75% of body weight during the alimentation period and was not fasted. Realimentation feed intake was positively related to prefast feed intake, with the order of realimentation feed intake being AL greater than MI greater than LI (P less than .05). During deprivation, rumen volume declined (P less than .05) in AL-fed steers, but was not affected in LI and MI steers. Blood hemoglobin and serum urea-N increased during deprivation in all fasted groups. Prefast serum cholesterol levels were inversely related to prefast energy intake. During deprivation, rumen fluid total volatile fatty acid (VFA) concentrations and propionate and butyrate molar proportions declined (P less than .05) and acetate, isobutyrate and valerate + isovalerate molar proportions increased (P less than .05). Results of this study indicate that an increased prefast feed intake will provide a greater reserve of energy, water and electrolytes to the steer during deprivation and result in a shorter postfast adaptation period.  相似文献   

17.
This experiment was conducted with stocker steers to determine the effects of supplementary fiber and grain on ruminal acid concentrations and OM intake following abrupt dietary change to lush, primary-growth wheat (Triticum aestivum) pasture and to measure the effects of those supplements on weight gain at different levels of herbage mass (HM). Each of four irrigated wheat pastures (2.4, 3.6, 4.9, and 6.1 ha) was stocked with nine Angus crossbred steers (mean = 189 kg). In each pasture, three steers were individually fed a daily supplement of 11.3 g of cottonseed hulls (CSH)/kg BW(.75), three steers were fed a supplement mixture of 11.3 g CSH/kg BW(.75) and 8.5 g corn grain/kg BW(.75), and three steers remained as controls. Body weight and HM changes were measured at 28-d intervals throughout the experiment. Ruminal samples for VFA determination were collected twice during the 1st wk on pasture. Organic matter intake calculations were based on fecal output and OM digestibility estimates made during the 2nd wk on pasture. Fecal outputs were estimated from nonlinear least squares analyses using a two-compartment rumen model of excretion patterns of Yb following a single oral dose. Digestibility of OM was estimated using indigestible NDF in feed and feces as an internal marker. Dietary supplements had no detectable effect on ruminal VFA characteristics. The magnitude of changes in ruminal acetate:propionate ratios between d 3 and 7 on pasture was significantly and negatively related to ADG during the first 28-d growth measurement period. Body condition scores taken on d 0 also had a significant, negative relationship to ADG. Average fecal output was greater for steers fed supplements (36 g/kg BW(.75)) than for control steers (30 g/kg BW(.75)) (P < .03). The supplements also significantly reduced estimates of total diet OM digestibility. However, supplements had no measurable effect on BW changes. Herbage mass up to 1,000 kg/ha had a significant and positive effect on ADG, which was 1.44 kg during Period 1, when HM was apparently not limiting in any pasture. The deduced threshold level of the influence of HM on ADG was 850 kg/ha. Under the conditions of this experiment, the effects of supplemental fiber and(or) grain on fecal output and OM digestibility were detected. However, in the amounts fed, these supplements had no detectable effect on ADG at any level of HM.  相似文献   

18.
19.
Six ruminally and eight bifistulated (ruminal and esophageal) Hereford x Angus heifers were used to determine effects of pregnancy and early lactation on forage intake and utilization under grazing conditions. Three ruminally and three bifistulated heifers were bred (pregnant/lactating; P/L; average calving date was February 11, 1989); remaining heifers served as controls (C). The experiment consisted of three periods (P1 = average of 55 d before parturition; P2 = average of 12 d before parturition; P3 = average of 26 d after parturition). All heifers grazed the same 24-ha Flint Hills range pasture. Dehydrated alfalfa pellets were supplemented at .5% BW/heifer daily prepartum and at .8% BW/heifer daily postpartum. Treatment x period interactions were noted (P less than .10) for forage OM intake, ruminal capacity, indigestible ADF (IADF) fill, and grazing time but not for OM digestibility or IADF passage rate (P greater than .10). In P1 and P3, P/L heifers had greater (P less than .10) forage OM intake than C heifers, whereas no differences were noted (P greater than .10) in P2. Pregnant/lactating heifers spent less time (P less than .10) grazing than did controls in P2 and more time (P less than .10) than controls in P3. Ruminal IADF fill and ruminal capacity, as measured by water fill, tended (P = .14 and .16, respectively) to differ between the two groups in P2. Digestibility of OM was unaffected (P greater than .10) by physiological status, whereas IADF passage rate was greater (P less than .10) in P/L heifers. Only minor differences were noted for the chemical composition of diets selected by the two groups. Ruminal fermentation patterns shifted only slightly; the largest effects were in P3, when P/L heifers had greater (P less than .10) propionate and less (P less than .10) acetate (mol/100 mol) than C heifers. In summary, during the period just before parturition, differences in forage OM intake between P/L and C heifers disappeared, and ruminal fill and capacity tended to be lower for P/L heifers. Intake was 16% greater for P/L than for C heifers during the early postpartum period. Organic matter digestibility was not influenced by physiological status, even though IADF passage rates were greater for P/L heifers.  相似文献   

20.
Eight cows (7 to 9 yr old, 522 kg) and six heifers (10 mo old, 169 kg) were fed either alfalfa hay (18.7% CP) or mature brome hay (5.1% CP) to determine the effect of cattle age on apparent forage utilization. Cattle were fitted with ruminal and duodenal cannulas and were individually fed once daily (ad libitum intake, 1000). The split-plot design consisted of age (whole-plot) and two sampling periods feeding alfalfa or brome hay (subplot). Each period consisted of 28 d: d 1 to 13 for adaptation, d 13 to 20 for feed intake determination, and d 20 to 28 for sampling. Nylon bags containing NDF substrate from alfalfa or brome hay were incubated ruminally for 0, 3, 6, 12, 24, 48, 96, and 192 h to determine the rate and extent of fiber degradation. Ruminal liquid dilution rate and fermentation characteristics were conducted on d 27. Ruminal fill was determined by total evacuation at 0800 on d 28. Cows consumed more feed (BW.75; P<.01) and had greater ruminal OM fill (P = .04) but had similar fluid fill (P = .88) compared with heifers. Ruminal liquid dilution rate was greater in cows than in heifers (P<.01). The rate of in situ NDF degradation was 3 and .5% per hour greater in cows than in heifers when alfalfa and brome hay were fed, respectively (age x hay, P<.01). Ruminal NDF digestibility as a percentage of intake was greater in cows than in heifers (P<.01). Numbers of ruminal cellulolytic bacteria were not affected by treatment (P>.21). These data indicate that mature cows have a smaller ruminal fluid fill that turns over more rapidly, and this may be responsible for a faster rate of ruminal fiber degradation in cows than in young heifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号