首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
DNMT1, the major maintenance DNA methyltransferase in animals, helps to regulate gene expression, genome imprinting, and X-chromosome inactivation. We report on the crystal structure of a productive covalent mouse DNMT1(731-1602)-DNA complex containing a central hemimethylated CpG site. The methyl group of methylcytosine is positioned within a shallow hydrophobic concave surface, whereas the cytosine on the target strand is looped out and covalently anchored within the catalytic pocket. The DNA is distorted at the hemimethylated CpG step, with side chains from catalytic and recognition loops inserting through both grooves to fill an intercalation-type cavity associated with a dual base flip-out on partner strands. Structural and biochemical data establish how a combination of active and autoinhibitory mechanisms ensures the high fidelity of DNMT1-mediated maintenance DNA methylation.  相似文献   

2.
Genomic sequencing and methylation analysis by ligation mediated PCR   总被引:72,自引:0,他引:72  
Genomic sequencing permits studies of in vivo DNA methylation and protein-DNA interactions, but its use has been limited because of the complexity of the mammalian genome. A newly developed genomic sequencing procedure in which a ligation mediated polymerase chain reaction (PCR) is used generates high quality, reproducible sequence ladders starting with only 1 microgram of uncloned mammalian DNA per reaction. Different sequence ladders can be created simultaneously by inclusion of multiple primers and visualized separately by rehybridization. Relatively little radioactivity is needed for hybridization and exposure times are short. Methylation patterns in genomic DNA are readily detectable; for example, 17 CpG dinucleotides in the 5' region of human X-linked PGK-1 (phosphoglycerate kinase 1) were found to be methylated on an inactive human X chromosome, but unmethylated on an active X chromosome.  相似文献   

3.
UHRF1 plays a role in maintaining DNA methylation in mammalian cells   总被引:1,自引:0,他引:1  
Epigenetic inheritance in mammals relies in part on robust propagation of DNA methylation patterns throughout development. We show that the protein UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1), also known as NP95 in mouse and ICBP90 in human, is required for maintaining DNA methylation. UHRF1 colocalizes with the maintenance DNA methyltransferase protein DNMT1 throughout S phase. UHRF1 appears to tether DNMT1 to chromatin through its direct interaction with DNMT1. Furthermore UHRF1 contains a methyl DNA binding domain, the SRA (SET and RING associated) domain, that shows strong preferential binding to hemimethylated CG sites, the physiological substrate for DNMT1. These data suggest that UHRF1 may help recruit DNMT1 to hemimethylated DNA to facilitate faithful maintenance of DNA methylation.  相似文献   

4.
Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2   总被引:1,自引:0,他引:1  
The sequence and the structure of DNA methyltransferase-2 (Dnmt2) bear close affinities to authentic DNA cytosine methyltransferases. A combined genetic and biochemical approach revealed that human DNMT2 did not methylate DNA but instead methylated a small RNA; mass spectrometry showed that this RNA is aspartic acid transfer RNA (tRNA(Asp)) and that DNMT2 specifically methylated cytosine 38 in the anticodon loop. The function of DNMT2 is highly conserved, and human DNMT2 protein restored methylation in vitro to tRNA(Asp) from Dnmt2-deficient strains of mouse, Arabidopsis thaliana, and Drosophila melanogaster in a manner that was dependent on preexisting patterns of modified nucleosides. Indirect sequence recognition is also a feature of eukaryotic DNA methyltransferases, which may have arisen from a Dnmt2-like RNA methyltransferase.  相似文献   

5.
This study was designed to clone cDNA of goat DNA methyltransferase 1(DNMT1) gene,to screen an effective shRNAproducing vector targeting goat DNA methyltransferase 1 and to improve the developmental competence of goat nuclear transfer embryos by decreasing the DNMT1 expression in donor cells.In this study,PCR primers were designed against regions of high homology between bovine and sheep sequences and then used to amplify the larger portions of the coding regions.Next,3 RNAi oligonucleotides were designed based on the cloned sequences and inserted into pRNAT-U6.1/Neo vector,acquiring 3 new vectors,respectively termed pRNAD1,pRNAD2 and pRNAD3.Then the positive cells were sorted by flow cytometry after transfection and detected by real-time PCR analysis and sodium bisulfite genomic sequencing.Finally,the developmental rates of nuclear transfer(NT) embryos generated using donor cells with and without the effective shRNA vector respectively,as well as in vitro fertilization(IVF) embryos were observed and recorded.The results showed that the coding regions of goat DNA methyltransferase 1 gene was successfully cloned(GenBank no.FJ617538).Furthermore,an effective interfering shRNA(pRNAD2) was obtained,with its interference effect being 47.88%.Finally,NT embryos with shRNA vector harbored better developmental competence during morula and blastocyst stage compared to controls(P 〈 0.05),reaching the similar rates to IVF embryos(P 〉 0.05).In conclusion,goat DNA methyltransferase 1 gene cDNA was cloned and sequenced,an effective shRNA vector responsible for inhibiting DNA methyltransferase 1 expression was developed and the developmental competence of goat nuclear transfer morulae and blastcysts was significantly improved,which provided a feasible pathway for improving goat nuclear transfer embryo development competence by decreasing the methylation level in donor cells through RNAi-mediated manner.  相似文献   

6.
选取健康1日龄雏鸡200只,随机分为2组,低硒组(饲料硒含量为0.033 mg·kg-1)和对照组(饲料硒含量为0.15 mg·kg-1),分别于0、15、25、35、45、55日龄取胸肌、翅肌、腿肌组织,高效液相色谱法检测DNA总甲基化水平,实时荧光定量PCR方法检测DNA甲基转移酶1(DNMT1)、DNA甲基转移酶3A(DNMT3A)、DNA甲基转移酶3B(DNMT3B)mRNA表达水平.结果表明,DNA总甲基化水平整体呈降低趋势,低硒组与对照组相比DNMT1、DNMT3A mRNA表达量先增加后减少,DNMT3B各组均低于正常组并且随日龄增加组内呈降低趋势.硒缺乏可导致鸡肌肉组织DNA甲基化水平降低.  相似文献   

7.
Epigenetic decisions in mammalian germ cells   总被引:1,自引:0,他引:1  
  相似文献   

8.
CpG—DNA特征结构与其免疫刺激特性的关系   总被引:1,自引:0,他引:1  
CpG-DNA是一些具有免疫激活功能的以未甲基化的CpG基序为核心的DNA序列,它包括含CpG基序的人工合成的寡聚脱氧核苷酸(oligodeoxynucleotides,ODN)和自然界中细菌、病毒、无脊椎动物等低等生物的基因组DNA。CpG基序(CpG motifs)是指一类以非甲基化的胞嘧啶和鸟嘌呤核苷酸为核心的寡聚脱氧核糖核苷酸,其碱基排列大多遵循以下规律:5’端为2个嘌呤,3’端为2个嘧啶。研究表明,这种序列可激活多种免疫效应细胞,其特征结构如CpG核心、侧翼序列、骨架长度等都对其免疫刺激特性有重要影响。本文就其特征结构与免疫刺激特性的关系作一介绍。  相似文献   

9.
10.
The fragile X syndrome, a common cause of inherited mental retardation, is characterized by an unusual mode of inheritance. Phenotypic expression has been linked to abnormal cytosine methylation of a single CpG island, at or very near the fragile site. Probes adjacent to this island detected very localized DNA rearrangements that constituted the fragile X mutations, and whose target was a 550-base pair GC-rich fragment. Normal transmitting males had a 150- to 400-base pair insertion that was inherited by their daughters either unchanged, or with small differences in size. Fragile X-positive individuals in the next generation had much larger fragments that differed among siblings and showed a generally heterogeneous pattern indicating somatic mutation. The mutated allele appeared unmethylated in normal transmitting males, methylated only on the inactive X chromosome in their daughters, and totally methylated in most fragile X males. However, some males had a mosaic pattern. Expression of the fragile X syndrome thus appears to result from a two-step mutation as well as a highly localized methylation. Carriers of the fragile X mutation can easily be detected regardless of sex or phenotypic expression, and rare apparent false negatives may result from genetic heterogeneity or misdiagnosis.  相似文献   

11.
采用RT–PCR技术扩增和克隆鸭Myo G基因启动子,并对其启动子序列进行生物信息学分析,采用Sequenom Mass Array技术检测Cp G岛在鸭肌肉组织中的甲基化水平,用q RT–PCR检测Myo G基因的表达量。结果表明,扩增得到鸭Myo G基因启动子序列2 730 bp,对启动子序列预测后,发现存在2个Cp G岛,其中Cp G岛(–2 536~–1 997 bp)存在5个转录因子结合位点和多个真核生物结构元件。甲基化检测结果表明:在鸭的个体和组织水平上,启动子甲基化率均未聚类在一起;Cp G位点甲基化频率存在个体差异,22%Cp G位点的甲基化频率与Myo G的m RNA表达量呈负相关(P0.05),78%Cp G位点的甲基化频率呈正相关(P0.05),其中,腿肌甲基化位点Cp G_1、Cp G_26.27.28.29的甲基化频率与Myo G基因表达水平均呈显著相关(P0.05)。Myo G基因在鸭与在哺乳动物中的转录调控机制存在差异。试验中发现多个影响鸭Myo G基因转录的潜在甲基化位点,其中Cp G_1与Cp G_26.27.28.29能通过DNA甲基化修饰影响Myo G基因在鸭腿肌中的转录。本研究结果可为鸭Myo G基因转录调控提供参考依据。  相似文献   

12.
13.
14.
蒋自立 《安徽农业科学》2009,37(12):5386-5389
DNA甲基化是表观遗传修饰的重要形式之一,植物DNA甲基化及其引起的转基因沉默现象的研究对植物基因工程领域的发展有着举足轻重的作用。介绍了植物DNA甲基化作用机理及其过程中至关重要的3种胞嘧啶甲基转移酶:MET1甲基转移酶家族、染色质甲基化酶(CMT)和结构域重排甲基转移酶(DRM),并阐述了植物DNA甲基化的相关机制,包括RNA介导的DNA甲基化(RdMD)、组蛋白修饰与DNA甲基化和DNA去甲基化。通过分析植物转基因沉默现象与DNA甲基化的关系,提出了克服由DNA甲基化引起的转基因沉默的相关对策。  相似文献   

15.
Epigenetic reprogramming in mammalian development   总被引:1,自引:0,他引:1  
Reik W  Dean W  Walter J 《Science (New York, N.Y.)》2001,293(5532):1089-1093
DNA methylation is a major epigenetic modification of the genome that regulates crucial aspects of its function. Genomic methylation patterns in somatic differentiated cells are generally stable and heritable. However, in mammals there are at least two developmental periods-in germ cells and in preimplantation embryos-in which methylation patterns are reprogrammed genome wide, generating cells with a broad developmental potential. Epigenetic reprogramming in germ cells is critical for imprinting; reprogramming in early embryos also affects imprinting. Reprogramming is likely to have a crucial role in establishing nuclear totipotency in normal development and in cloned animals, and in the erasure of acquired epigenetic information. A role of reprogramming in stem cell differentiation is also envisaged. DNA methylation is one of the best-studied epigenetic modifications of DNA in all unicellular and multicellular organisms. In mammals and other vertebrates, methylation occurs predominantly at the symmetrical dinucleotide CpG (1-4). Symmetrical methylation and the discovery of a DNA methyltransferase that prefers a hemimethylated substrate, Dnmt1 (4), suggested a mechanism by which specific patterns of methylation in the genome could be maintained. Patterns imposed on the genome at defined developmental time points in precursor cells could be maintained by Dnmt1, and would lead to predetermined programs of gene expression during development in descendants of the precursor cells (5, 6). This provided a means to explain how patterns of differentiation could be maintained by populations of cells. In addition, specific demethylation events in differentiated tissues could then lead to further changes in gene expression as needed. Neat and convincing as this model is, it is still largely unsubstantiated. While effects of methylation on expression of specific genes, particularly imprinted ones (7) and some retrotransposons (8), have been demonstrated in vivo, it is still unclear whether or not methylation is involved in the control of gene expression during normal development (9-13). Although enzymes have been identified that can methylate DNA de novo (Dnmt3a and Dnmt3b) (14), it is unknown how specific patterns of methylation are established in the genome. Mechanisms for active demethylation have been suggested, but no enzymes have been identified that carry out this function in vivo (15-17). Genomewide alterations in methylation-brought about, for example, by knockouts of the methylase genes-result in embryo lethality or developmental defects, but the basis for abnormal development still remains to be discovered (7, 14). What is clear, however, is that in mammals there are developmental periods of genomewide reprogramming of methylation patterns in vivo. Typically, a substantial part of the genome is demethylated, and after some time remethylated, in a cell- or tissue-specific pattern. The developmental dynamics of these reprogramming events, as well as some of the enzymatic mechanisms involved and the biological purposes, are beginning to be understood. Here we look at what is known about reprogramming in mammals and discuss how it might relate to developmental potency and imprinting.  相似文献   

16.
17.
The Arabidopsis gene DDM1 is required to maintain DNA methylation levels and is responsible for transposon and transgene silencing. However, rather than encoding a DNA methyltransferase, DDM1 has similarity to the SWI/SNF family of adenosine triphosphate-dependent chromatin remodeling genes, suggesting an indirect role in DNA methylation. Here we show that DDM1 is also required to maintain histone H3 methylation patterns. In wild-type heterochromatin, transposons and silent genes are associated with histone H3 methylated at lysine 9, whereas known genes are preferentially associated with methylated lysine 4. In ddm1 heterochromatin, DNA methylation is lost, and methylation of lysine 9 is largely replaced by methylation of lysine 4. Because DNA methylation has recently been shown to depend on histone H3 lysine 9 methylation, our results suggest that transposon methylation may be guided by histone H3 methylation in plant genomes. This would account for the epigenetic inheritance of hypomethylated DNA once histone H3 methylation patterns are altered.  相似文献   

18.
Hellman A  Chess A 《Science (New York, N.Y.)》2007,315(5815):1141-1143
Differential DNA methylation is important for the epigenetic regulation of gene expression. Allele-specific methylation of the inactive X chromosome has been demonstrated at promoter CpG islands, but the overall pattern of methylation on the active X(Xa) and inactive X (Xi) chromosomes is unknown. We performed allele-specific analysis of more than 1000 informative loci along the human X chromosome. The Xa displays more than two times as much allele-specific methylation as Xi. This methylation is concentrated at gene bodies, affecting multiple neighboring CpGs. Before X inactivation, all of these Xa gene body-methylated sites are biallelically methylated. Thus, a bipartite methylation-demethylation program results in Xa-specific hypomethylation at gene promoters and hypermethylation at gene bodies. These results suggest a relationship between global methylation and expression potentiality.  相似文献   

19.
二氧化硫胁迫诱导拟南芥NIT2基因DNA甲基化修饰   总被引:1,自引:1,他引:0  
DNA甲基化是一种重要的表观遗传修饰形式。利用亚硫酸氢盐修饰后测序法和甲基化敏感性限制性内切酶-PCR(MSRE-PCR)法,研究SO2胁迫对拟南芥腈水解酶(NIT2)基因序列中胞嘧啶甲基化状态的影响,分析甲基化特征改变在植物胁迫应答过程中的作用。研究发现,30 mg.m-3的SO2连续熏气3 d后,拟南芥植株地上组织细胞中NIT2基因启动子区域CG和CHH(H为C,A或T)位点甲基化水平下降,总甲基化水平降低,但未检出编码区5′端目的片段中CCGG位点甲基化状态的改变。RT-PCR分析表明,SO2胁迫组拟南芥植株地上组织细胞中NIT2基因的转录水平高于对照组。研究结果表明,SO2胁迫导致拟南芥NIT2基因启动子区甲基化水平降低,NIT2基因转录上调,说明SO2胁迫能诱发拟南芥基因胞嘧啶甲基化水平改变,启动子区甲基化水平的降低可能与防御基因的诱导表达有关,胞嘧啶甲基化修饰参与了植物的抗逆生理过程。  相似文献   

20.
表观遗传学为分子遗传学研究的一个新热点。DNA甲基化是表观遗传学的核心领域之一,近年来获得了迅速的发展。概述了真核生物DNA甲基化的模式特点、参与DNA甲基化模式改变与维持的酶类及DNA甲基化分析的方法等,同时对DNA甲基化的生物学效应,如基因表达调控和生物进化调节进行了讨论,并对不同效应的应用前景进行了简要探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号