首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The objective of this study was to estimate genetic correlations between calving difficulty score and carcass traits in Charolais and Hereford cattle, treating first and later parity calvings as different traits. Genetic correlations between birth weight and carcass traits were also estimated. Field data on 59,182 Charolais and 27,051 Hereford calvings, and carcass traits of 5,260 Charolais and 1,232 Hereford bulls, were used in bivariate linear animal model analyses. Estimated heritabilities were moderate to high (0.22 to 0.50) for direct effects on birth weight, carcass weight, and (S)EUROP (European Community scale for carcass classification) grades for carcass fleshiness and fatness. Heritabilities of 0.07 to 0.18 were estimated for maternal effect on birth weight, and for direct and maternal effects on calving difficulty score at first parity. Lower heritabilities (0.01 to 0.05) were estimated for calving difficulty score at later parities. Carcass weight was positively genetically correlated (0.11 to 0.53) with both direct and maternal effects on birth weight and with direct effects on calving difficulty score. Carcass weight was, however, weakly or negatively (-0.70 to 0.07) correlated with maternal calving difficulty score. Higher carcass fatness grade was genetically associated with lower birth weight, and in most cases, also with less difficult calving. Genetic correlations with carcass fleshiness grade were highly variable. Moderately unfavorable correlations between carcass fleshiness grade and maternal calving difficulty score at first parity were estimated for both Charolais (0.42) and Hereford (0.54). This study found certain antagonistic genetic relationships between calving performance and carcass traits for both Charolais and Hereford cattle. Both direct and maternal calving performance, as well as carcass traits, should be included in the breeding goal and selected for in beef breeds.  相似文献   

2.
The aim of this work was to analyse the genetic parameters affecting days open (DO) in beef cattle to evaluate its potential as criterion of selection. The present study characterises DO as a trait with considerable genetic variability, relative to that usually found for reproduction traits, especially for heifers and second calving cows. The estimates of heritability for the trait ranged from 0.091 for cows with 10 or more calvings to 0.197 for second calving cows. The genetic correlations estimated for DO in different parities are situated between 0.9 and 1, showing that the genes affecting the trait are substantially the same across parities of the dam. A substantial permanent environment (around 9%) seems to affect DO performance. Permanent environmental factors seem to be especially important in younger cows. Genetic correlation between DO and calving interval was positive and very high (1.0), while those between DO and gestation length and calving date were negative from low to moderate (−0.089 and −0.308, respectively). DO can be used in improvement programs of beef cattle as an early indicator of reproductive performance of the cow.  相似文献   

3.
Estimates of heritabilities and genetic correlations for calving ease over parities were obtained for the Italian Piedmontese population using animal models. Field data were calving records of 50,721 first- and 44,148 second-parity females and 142,869 records of 38,213 cows of second or later parity. Calving ability was scored in five categories and analyzed using either a univariate or a bivariate linear model, treating performance over parities as different traits. The bivariate model was used to investigate the genetic relationship between first- and second- or between first- and third-parity calving ability. All models included direct and maternal genetic effects, which were assumed to be mutually correlated. (Co)variance components were estimated using restricted maximum likelihood procedures. In the univariate analyses, the heritability for direct effects was .19 +/- .01, .10 +/- .01, and .08 +/- .004 for first, second, and second and later parities, respectively. The heritability for maternal effects was .09 +/- .01, .11 +/- .01, and .05 +/- .01, respectively. All genetic correlations between direct and maternal effects were negative, ranging from -.55 to -.43. Approximated standard errors of genetic correlations between direct and maternal effects ranged from .041 to .062. For multiparous cows, the fraction of total variance due to the permanent environment was greater than the maternal heritability. With bivariate models, direct heritability for first parity was smaller than the corresponding univariate estimate, ranging from .18 to .14. Maternal heritabilities were slightly higher than the corresponding univariate estimates. Genetic correlation between first and second parity was .998 +/- .00 for direct effects and .913 +/- .01 for maternal effects. When the bivariate model analyzed first- and third-parity calving ability, genetic correlation was .907 +/- .02 for direct effects and .979 +/- .01 for maternal effects. Residual correlations were low in all bivariate analyses, ranging from .13 for analysis of first and second parity to .07 for analysis of first and third parity. In conclusion, estimates of genetic correlations for calving ease in different parities obtained in this study were very high, but variance components and heritabilities were clearly heterogeneous over parities.  相似文献   

4.
The aim of this study was to estimate direct and maternal genetic parameters for calving difficulty score, stillbirth, and birth weight at first and later parities for Charolais and Hereford cattle in Sweden. Calving traits have long been recorded for pure-bred beef cattle in Sweden, but only birth weight has been used in the selection in order to avoid calving difficulties. Linear animal model analyses included records on birth weight for 60,309 Charolais and 30,789 Hereford calves born from 1980 to 1999, and calving traits for 74,538 Charolais and 37,077 Hereford calves born from 1980 to 2001. The frequencies of difficult calvings and stillbirths were approximately 6% at first and 1 to 2% at later parities for both breeds. Fewer than half the stillborn calves were born from difficult calvings. Heritabilities estimated for birth weight in different univariate and bivariate analyses for Charolais and Hereford calves born at first and later parities ranged from 0.44 to 0.51 for direct effects and 0.06 to 0.15 for maternal effects. Heritabilities on the observable scale for calving difficulty score of Charolais and Hereford, scored in three classes, ranged from 0.11 to 0.16 for direct and 0.07 to 0.12 for maternal effects at first parity, and lower at later parities. All estimated heritabilities for stillbirth were very low (0.002 to 0.016 on the observable scale). Direct-maternal genetic correlations were negative, with few exceptions. Genetic correlations between the traits and between parities within traits were generally moderate to high and positive. Calving difficulty score should be included in the genetic evaluation of beef breeds in Sweden, whereas progeny groups in Swedish beef populations are too small for stillbirth to be considered directly.  相似文献   

5.
6.
Most studies on feed efficiency in beef cattle have focused on performance in young animals despite the contribution of the cow herd to overall profitability of beef production systems. The objective of this study was to quantify, using a large data set, the genetic covariances between feed efficiency in growing animals measured in a performance-test station, and beef cow performance including fertility, survival, calving traits, BW, maternal weaning weight, cow price, and cull cow carcass characteristics in commercial herds. Feed efficiency data were available on 2,605 purebred bulls from 1 test station. Records on cow performance were available on up to 94,936 crossbred beef cows. Genetic covariances were estimated using animal and animal-dam linear mixed models. Results showed that selection for feed efficiency, defined as feed conversion ratio (FCR) or residual BW gain (RG), improved maternal weaning weight as evidenced by the respective genetic correlations of -0.61 and 0.57. Despite residual feed intake (RFI) being phenotypically independent of BW, a negative genetic correlation existed between RFI and cow BW (-0.23; although the SE of 0.31 was large). None of the feed efficiency traits were correlated with fertility, calving difficulty, or perinatal mortality. However, genetic correlations estimated between age at first calving and FCR (-0.55 ± 0.14), Kleiber ratio (0.33 ± 0.15), RFI (-0.29 ± 0.14), residual BW gain (0.36 ± 0.15), and relative growth rate (0.37 ± 0.15) all suggest that selection for improved efficiency may delay the age at first calving, and we speculate, using information from other studies, that this may be due to a delay in the onset of puberty. Results from this study, based on the estimated genetic correlations, suggest that selection for improved feed efficiency will have no deleterious effect on cow performance traits with the exception of delaying the age at first calving.  相似文献   

7.
The aim of the study was to estimate the genetic parameters for five composite traits and 20 individual type traits on 10 735 first‐parity Rendena dual‐purpose cows. Fixed effects included in the linear animal mixed models were herd‐year‐classifier, days in milk and age at first calving; the additive genetic effect of the animal was included as a random effect. Heritability estimates varied from 0.12 (feet) to 0.52 (stature). Genetic correlations between the individual body size traits were all ≥0.69; similar strong genetic correlations existed between traits describing similar morphological characteristics (e.g. mammary system, fleshiness). Many of the body size traits were negatively genetically correlated with animal fleshiness. Genetic trends showed that genetic merit for body size increased consistently over the last 10 years, while genetic merit for fleshiness declined. These results suggest that the characteristics of the dual‐purpose Rendena cattle are becoming more like specialized milk‐producing animals. Nonetheless, sufficient genetic variation exists to halt or reverse the deterioration in fleshiness.  相似文献   

8.
The most important maternal factor influencing calving performance is parity. Among calf factors, birth weight seems the most important. There are large differences between breeds and, generally speaking, heavier beef and dual-purpose breeds present more problems than smaller cattle. Variation in calving performance and stillbirth may be attributed to characters of both the calf and the dam. Genetic variation in calving performance and stillbirth at first calving has been demonstrated in several investigations for both the direct (calf) and the maternal character.In a Swedish investigation a heritability of 10% was found for both the direct and the maternal character. For stillbirth values were on average 3%. A strong genetic relationship was found between calving performance and birth weight as direct characters (rGD = 0.98) but for the maternal characters it was considerably weaker (rGM = 0.60). Correlations between stillbirth rate and birth weight were generally weaker, because the relationship was non-linear. Estimations of the genetic correlations between direct and maternal effects gave values between zero and ?0.5 for the characters investigated, indicating an antagonistic relationship between the genetic make-up of the cow and the calf. This implies that, in the long run, selection will not be as effective as the heritabilities suggest.A substantial improvement in calving performance and calf mortality can be achieved, however, through selection within breeds, optimal organization of breeding structures, choice of appropriate beef breeds for cross-breeding on heifers and cows, respectively, and timing calving to occur at favourable ages and in favourable seasons.  相似文献   

9.
Published information on relative performance of beef breed crosses was used to derive combined estimates of purebred breed values for predominant temperate beef breeds. The sources of information were largely from the United States, Canada, and New Zealand, although some European estimates were also included. Emphasis was on maternal traits of potential economic importance to the suckler beef production system, but some postweaning traits were also considered. The estimates were taken from comparison studies undertaken in the 1970s, 1980s and 1990s, each with representative samples of beef breeds used in temperate agriculture. Weighting factors for breed-cross estimates were derived using the number of sires and offspring that contributed to that estimate. These weights were then used in a weighted multiple regression analysis to obtain single purebred breed effects. Both direct additive and maternal additive genetic effects were estimated for preweaning traits. Important genetic differences between the breeds were shown for many of the traits. Significant regression coefficients were estimated for the effect of mature weight on calving ease, both maternal and direct additive genetic, survival to weaning direct, and birth weight direct. The breeds with greater mature weight were found to have greater maternal genetic effects for calving ease but negative direct genetic effects on calving ease. A negative effect of mature weight on the direct genetic effect of survival to weaning was observed. A cluster analysis was done using 17 breeds for which information existed on nine maternal traits. Regression was used to predict breed-cross-specific heterosis using genetic distance. Only five traits, birth weight, survival to weaning, cow fertility, and preweaning and postweaning growth rate had enough breed-cross-specific heterosis estimates to develop a prediction model. The breed biological values estimated provide a basis to predict the biological value of crossbred suckler cows and their offspring.  相似文献   

10.
This study was aimed to assess genetic parameters for 13 traits in heifers and first-parity Holstein dairy cows. Data consisted of calving and insemination dates of 14,707 Holstein dairy cows in Isfahan province of Iran. Reproductive traits included age at first service (AFS), first service to conception (FSTC), gestation length (GL), age at first calving (AFC), calving to first service (CTFS), days open (DO), calving interval (CI), number of services per conception (NS), and non-return rate at 56 days (NRR). Model equations were optimized using GLM procedure in SAS package following genetic analysis using animal models in ASREML software. Minimum and maximum departure from normal distribution for phenotypic records belonged to AFS, NRR, GL, DO, CI and AFC, NS, FSTC, CTFS, respectively. Estimated heritability varied from 0.002 (NRR) to 0.184 (GL) in heifers and from 0.003 (NRR) to 0.153 (GL) in first-parity cows. AFS, CTFS, and GL were noticeably heritable compared to other assessed traits. Estimated absolute additive genetic correlations were in the range of 0.01 (NRR and AFS) and 0.99 (NRR and NS) in heifers and 0.07 (GL and CI) to 1 (FSTC and CI) in cows. Additive genetic correlations were antagonistic between AFS and other traits, except AFC. Interestingly, NRR which has been included in sire catalogs had the highest average absolute genetic associations with other traits.  相似文献   

11.
The aim of this study was to investigate the possible superiority of a threshold-linear (TL) approach for calving day (CD) and calving success (CS) analysis in beef cattle over 2 multiple-trait (MT), censored models, considering CD at the first 3 calving opportunities. The CD observations on animals that failed to calve in the latter models were defined as cows being assigned a penalty value of 21 d beyond the last observed CD record within contemporary group (PEN model) or censored CD values that were randomly obtained from a truncated normal distribution (CEN-model). In the TL model, CD records were treated as missing if a cow failed to calve, and parameters were estimated in a TL analysis including CS traits (TLMISS-model). The models included the effects of contemporary group (herd x year of calving x mating management), age at calving, physiological status at mating (lactating or nonlactating cow), animal additive genetic effects, and residual. Field data included 6,763 calving records obtained from first, second, and third parities of 3,442 spring-calving Uruguayan Aberdeen Angus cows. Models were contrasted using a data splitting technique, analyzing correlations between predicted breeding values (PBV) for each pair of subsamples, by rank correlations between PBV obtained with the different models, and by inspecting percentage of sires selected in common using the different approaches at 10 and 25% hypothetical percentages of animals selected. Breeding value correlations of CD between the subsamples for the TLMISS approach were greater (0.67 to 0.68) than correlations for the censored MT models (0.49 to 0.54). Average correlations between PBV of CD in 1 subsample obtained by CEN (PEN, TLMISS) and PBV of CS in the other subsample were -0.53 (-0.55, -0.60) in the first calving opportunity (CO), -0.54 (-0.58, -0.63) in the second CO, and -0.50 (-0.49, -0.58) in the third CO. Rank correlations between PBV for CD in PEN and CEN were high (0.93 to 0.97), but correlations of either method with PBV of CD in TLMISS ranged from 0.50 to 0.71. Common identification of bulls for the top 10% of sires (25% of sires), when selected with PEN/CEN models or the TLMISS model, varied between 50 (44%) and 60 (52%). The use of the TL animal model for genetic evaluation seems attractive for genetic evaluation of fertility traits in beef cattle.  相似文献   

12.
A general bio-economic model for beef cattle production was used to define breeding objectives for Charolais cattle to be utilized in a variety of linked production systems. Economic weights were calculated for 16 traits (some with both direct and maternal components) in three production systems (pure-breeding and terminal crossing with beef or dairy cows) and two marketing strategies (sale or fattening of weaned surplus calves). Economic weights for the total breeding objective were calculated as weighted averages, where weights were numbers of cows expected to be mated with Charolais bulls in each production system and marketing strategy. Results suggest that the direct component of calving performance and cow longevity were of primary economic importance in all systems. Conception rate of cows and weaning weight reached about 50% of the standardized economic weight of calving performance in purebred systems with sale of weaned calves, whereas in purebred systems with fattening the economic importance of the direct component of cow conception rate, losses at calving, mature weight of cows, weaning weight, and fattening traits were of equal importance (each approximately about 20% that of calving performance). In terminal crossing systems, weaning weight was important when calves were sold at weaning, and fattening traits were important for systems selling fattened animals. The bio-economic model performed well under the conditions of this demonstration and could easily be customized for other applications.  相似文献   

13.
The aim of this paper was to estimate direct and maternal genetic parameters for calving ease (CE), birth weight (BrW), weaning weight (WW), and calving interval (CI) to assess the possibility of including this information in beef cattle improvement programs. Field data, including a total of 59,813 animals (1,390 sires and 1,147 maternal grand sires) from the Asturiana de los Valles beef cattle breed, were analyzed with a multivariate linear model. Estimates of heritability for direct genetic effects (CED, CID, BrWD, and WWD) were 0.191 +/- 0.019, 0.121 +/- 0.013, 0.390 +/- 0.030, and 0.453 +/- 0.035, respectively, whereas those for maternal genetic effects (CEM, BrWM, and WWM) were 0.140 +/- 0.015, 0.208 +/- 0.020, and 0.138 +/- 0.022, respectively. Genetic correlations between direct or maternal genetic effects across traits were, in general, positive and moderate to low. However, genetic correlation for the pair CED-BrWD was positive and high (0.604 +/- 0.064). Genetic correlations between the direct and maternal genetic effects within a trait were negative and moderate (-0.219 +/- 0.097 for CE, -0.337 +/- 0.080 for BrW, and -0.440 +/- 0.102 for WW). Genetic correlations for CED-BrWM and CED-WWM were -0.121 +/- 0.090 and -0.097 +/- 0.113, respectively. The genetic correlation for CEM-CID was unfavorable (0.485 +/- 0.078), and those for CEM-BrWD (-0.094 +/- 0.079) and CEM-WWD (-0.125 +/- 0.082) were low and negative. The genetic correlation between CID and WWM was favorable (-0.148 +/- 0.106). Overall, the data presented here support the hypothesis that maternal effects for CE and BrW are not the same and that the genetic relationships between CI and maternal effects for WW in beef cattle follow a similar pattern to that reported between CI and milk yield in dairy cattle. Moreover, the need to include direct and maternal breeding values in beef cattle selection programs is suggested.  相似文献   

14.
Calving records (n = 6,763) obtained from first, second, and third parities of 3,442 spring-calving, Uruguayan Aberdeen Angus cows were used to estimate heritabilities and genetic correlations for the linear trait calving day (CD) and the binary trait calving success (CS), using models that considered CD and CS at 3 calving opportunities as separate traits. Three approaches were defined to handle the CD observations on animals that failed to calve: 1) the cows were assigned a penalty value of 21 d beyond the last observed CD record within contemporary group (PEN); 2) the censored CD values were randomly obtained from a truncated normal distribution (CEN); and 3) the CD records were treated as missing, and the parameters were estimated in a joint threshold-linear analysis including CS traits (TLMISS). The models included the effects of contemporary group (herd x year of calving x mating management), age at calving (3 levels), physiological status at mating (nonlactating or lactating), animal additive genetic effects, and residual. Estimates of heritability for CD traits in the PEN and CEN data sets ranged from 0.20 to 0.31, with greater values in the first calving opportunity. Genetic correlations were positive and medium to high in magnitude, 0.57 to 0.59 in the PEN data set and 0.38 to 0.91 in the CEN data set. In the TLMISS data set, heritabilities ranged from 0.19 to 0.23 for CD and 0.37 to 0.42 for CS. Genetic correlations between CD traits varied between 0.82 and 0.88; between CS traits, genetic correlations varied between 0.56 and 0.80. Negative (genetically favorable), medium to high genetic correlations (-0.54 to -0.91) were estimated between CD and CS traits, suggesting that CD could be used as an indicator trait for CS. Data recording must improve in quality for practical applications in genetic evaluation for fertility traits.  相似文献   

15.
There is limited genetic information relating calving difficulty and body weights to other productive and reproductive traits. Such information is useful for specifying selection criteria and for predicting economic consequences of selection. Genetic, maternal, and environmental covariances of six productive and reproductive measurements with calving difficulty, birth weight, 200-d weight, and 168-d postweaning gain were estimated in 12 experimental populations of cattle. Calf (direct) genetic effects resulting in longer gestation length were associated with increased calving difficulty and birth weight. Maternal genetic effects of increased gestation length and heavier birth weight were significantly associated. Lighter birth weight and reduced calving difficulty were associated with earlier heifer age at puberty. Increases in direct genetic effects of calving difficulty, 200-d weight, and postweaning gain were associated with a small increase in direct effect of scrotal circumference. Increased direct genetic effects of scrotal circumference were correlated with maternal effects decreasing calving difficulty and increasing 200-d weight. Direct effects of the skeletal measurements, yearling hip height, and heifer pelvic area were positively correlated with direct effects of calving difficulty, birth weight, 200-d weight, and postweaning gain, positively correlated with maternal effects for birth weight and 200-d weight, and negatively correlated with maternal calving difficulty. Percentage of retail product was positively associated with calving difficulty and negatively associated with 168-d gain. Predicted genetic change in calving difficulty resulting from one standard deviation of selection for either calving difficulty score or birth weight was much larger than for any other traits. Selection for 200-d weight, 168-d postweaning gain, hip height, pelvic area, or scrotal circumference was predicted to have opposite effects on direct and maternal calving difficulty. Estimated genetic correlations indicate some small to moderate relationships between calving difficulty and the measured productive and reproductive traits. However, selection for reduced calving difficulty should be based on calving difficulty score and(or) birth weight because of their superiority in predicted genetic change.  相似文献   

16.
In the second generation of a crossbreeding experiment with Holstein Friesian bulls and Dutch Friesian cows the difference in additive genetic merits between Holstein Friesian and Dutch Friesian bulls (a), the heterotic effects (d) and the maternal effects (m) were calculated from the mean values of the four subpopulations with 0%, 25%, 50% and 75% Holstein Friesian genes. Significant a effects were found for milk yield, fat percentage, fat yield, protein yield, fleshiness (beef bulls and veal calves), fat covering (beef bulls), dressing percentage (veal calves), birth weight, percentage of calving difficulties and gestation period. A significant d effect was found for fat covering (beef bulls). For dressing percentage (veal calves), for the percentage of calving difficulties and of retained placenta, significant m effects were calculated.  相似文献   

17.
The direct and maternal genetic effects were estimated for the preweaning growth of Retinta calves with a multitrait model across parities, using a longitudinal approach with random regression models (RRM). The 120 (P120) and 180 days (P180) weights (5972 calves) were considered as different traits in each calving. The heritability of direct effect across parities was on average 0.37 for P120 and 0.58 for P180, slightly higher than the estimates by univariate (0.30 and 0.56) and bivariate models (0.30 and 0.51, respectively). The heritability for maternal effects was 0.16 for P120 and 0.26 for P180 and very similar by uni‐ (0.16 and 0.23) and multivariate model (0.16 and 0.22, respectively). The correlation between direct and maternal effects by RRM showed a pronounced antagonism ?0.64 for P120 and ?0.78 for P180), likewise uni‐ (?0.62 and ?0.72) and multivariate case (?0.64 and ?0.74, respectively). The preweaning weights should be considered as different traits across parities, because the genetic correlations were different from unity. The RRM also allowed us to estimate all the parameters throughout the calving trajectory of the cow. The use of multiple traits RRM across parities can provide very useful information for the breeding programmes.  相似文献   

18.
Heritabilities of and genetic correlations between additive direct and maternal genetic effects for calf market weight, and additive direct genetic effects for carcass traits, were estimated for Japanese Black cattle by REML procedures under 2-trait animal models. Data were collected from calf and carcass markets in Hyogo and Tottori prefectures and analyzed separately by prefecture. Calf market weight was measured on 42,745 and 23,566 calves in Hyogo and Tottori, respectively. Only the fattening animals with calf market weight were extracted from the carcass database and used for estimation. The carcass traits analyzed were carcass weight, ribeye area, rib thickness, subcutaneous fat thickness, yield estimate, beef marbling score, and 4 meat characters (color, brightness, firmness, and texture). Direct and maternal heritabilities for calf market weight were estimated to be 0.22 and 0.07 in Hyogo, and 0.37 and 0.15 in Tottori, respectively. The estimates of heritabilities for carcass traits were moderate to high in both prefectures. The estimates of direct-maternal genetic correlations for calf market weight were positive (0.17) in Hyogo and negative (-0.63) in Tottori. The direct effect for calf market weight was positively correlated with the direct effect for carcass weight (0.87 and 0.56 in Hyogo and Tottori, respectively) but negatively correlated with the direct effect for beef marbling score (-0.10 in both prefectures). The estimates of genetic correlations between the maternal effect for calf market weight and the direct effects for carcass traits varied from -0.13 to 0.34 in Hyogo and from -0.14 to 0.15 in Tottori. Because direct and maternal genetic effects for early growth traits can be evaluated from calf market weight data in the production system of Japanese Black cattle, this information should be incorporated into selection and mating schemes of the breed.  相似文献   

19.
Calving records from the Animal Breeding Center of Iran collected from January 1987 to December 2007 and comprising 292,875 calving events of Holsteins from 1,413 dairy herds were analyzed using univariate and bivariate linear animal models to estimate heritabilities and genetic correlations for calving intervals in the first three lactations of Holstein cows. Genetic trends were obtained by regressing yearly mean estimates of breeding values on calving year. Average calving intervals were from 406 to 414 days and decreased over the parities. Heritability estimates for calving intervals varied from 0.03 to 0.04 across the parities. Also, estimates of genetic correlations between calving intervals in different parities were high and ranged from 0.67 to 0.89. The average annual phenotypic trends obtained from fitting linear regression of annual mean calving intervals at parity 1 and 2 were significant (P < 0.01), but the phenotypic trend of calving interval at parity 3 was not significant over the years. On the other hand, there was an increasing genetic trend for calving interval at parity 1, and there were decreasing genetic trends for calving intervals at parity 2 and 3 over the years (P < 0.01). The low estimates of heritability obtained in this study imply that much of the improvement in calving interval traits could be attained by improvement of production environment rather than genetic selection.  相似文献   

20.
Teat and udder suspensory scores from 9,418 first-parity Gelbvieh cows and growth records from 19,119 calves were used to estimate genetic and environmental parameters for teat and suspensory score and to investigate the relationship of teat and suspensory score with calf growth traits and maternal genetic growth effects. First-parity cows did not have multiple records within 280 d, gave birth to one calf, were 4 yr of age or younger at first-calving, and were at least 50% Gelbvieh. Producers scored cows within 24 h of parturition. Teat score (T), a subjective measure of teat size, ranged from 0 (very large) to 50 (very small), and suspensory score (S), a subjective score of udder support, ranged from 0 (very pendulous) to 50 (very tight). Unadjusted birth weight (BW), weaning weight, and yearling weight of the calves, born in the first three parities to cows with first-parity T and S records, were used to calculate pre- and postweaning ADG (WG and YG, respectively). A mixed model was used for the multiple trait analysis of T, S, BW, WG, and YG, which included herd-year, month of calving, age of cow at calving, and sex of calf (included only for BW, WG, and YG) as systematic effects; regression on the percentage of Gelbvieh; and additive animal and maternal genetic of dam (included only for BW and WG), maternal permanent environment (included only for BW and WG), and residual as random effects. The genetic correlation between T and S was 0.95, suggesting that T and S are basically the same trait in this dataset. The genetic correlations between T (S) with direct BW, WG, and YG and with maternal BW and WG were -0.18 (-0.06), 0.38 (0.31), 0.09 (-0.01), -0.16 (-0.16), and -0.47 (-0.55), respectively, suggesting that cows with smaller teats and tighter udders produced less milk and raised calves that had higher genetic growth potential for WG. Further, the Pearson correlations between predicted breeding values of T and S with maternal WG indicated that animals with extremely large teats or pendulous udders may produce more milk, but that the calf may have trouble accessing it. Conversely, with extremely small teats or tight udders, smaller amounts of milk would be produced and there may be a problem producing enough milk to maintain the growing calfs maintenance requirements. Therefore, it may be more beneficial for producers to select animals that have intermediate breeding values for T and S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号