首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
以成熟花生种子的萌动4d的上胚轴为受体材料,采用农杆菌介导的转化方法,将倒位重复Δ12脂肪酸脱氢酶基因AhFAD2片段分别与CaMV35S启动子和种子特异性表达的大豆凝集素启动子相连导入花生。经PCR检测证实含有AhFAD2倒位重复基因片段的RNAi抑制表达框架已成功转入花生。  相似文献   

2.
以成熟花生种子萌动4d的上胚轴为受体材料,采用农杆菌介导的转化方法,将倒位重复Δ12脂肪酸脱氢酶基因AhFAD2片段分别与CaMV35S启动子和种子特异性表达的大豆凝集素启动子相连导入花生。经PCR检测证实含有AhFAD2倒位重复基因片段的RNAi抑制表达框架已成功转入花生。  相似文献   

3.
以成熟花生种子萌动4d的上胚轴为受体材料,采用农杆菌介导的转化方法,将倒位重复Δ12脂肪酸脱氢酶基因AhFAD2片段分别与CaMV35S启动子和种子特异性表达的大豆凝集素启动子相连导入花生.经PCR检测证实含有AhFAD2倒位重复基因片段的RNAi抑制表达框架已成功转入花生.  相似文献   

4.
花生油中的α-亚麻酸含量在不同种质资源中存在着差异,与籽仁的不同发育时期也密切相关。本研究通过生物信息学分析并利用RACE的方法,从萌发的花生子叶中克隆了一个参与花生α-亚麻酸合成的ω-3△15-脂肪酸脱氢酶基因,命名为AhFAD3A。利用荧光定量PCR分别比较分析了AhFAD3A和Ah FAD8基因在花生不同组织、籽仁发育不同阶段、萌发过程中的表达特征,结果表明:AhFAD3A基因主要在花期的叶片组织和根部、籽仁形成期表达,在其它发育阶段该基因的表达量比较低,证实该基因的表达与花生籽仁中α-亚麻酸的形成呈正相关;AhFAD8基因在花生的整个生育阶段的绿色组织中表达、非光合组织中几乎不表达。以上研究结果为进一步确定AhFAD3A基因的功能、表达调控及其与花生籽仁中α-亚麻酸形成的关系提供了研究基础。  相似文献   

5.
甘蓝型油菜种子特异性表达 fad2基因的ihpRNA载体构建   总被引:3,自引:0,他引:3  
旨在通过转基因途径诱导油菜种子中fad2基因发生转录后基因沉默,本文构建了fad2基因的ihpRNA 植物表达载体。通过PCR扩增分离到甘蓝型油菜种子特异性表达的Nap in启动子序列(1147bp)以及油酸脱饱和 酶基因( fad2)的一个537bp的片段,并将它们分别克隆到pGEM - T easy载体中。利用中间载体pHurrican构建 fad2基因的反向重复框。将fad2基因片段以正向的方式连接在一个可剪切的内含子的5’末端,而以反向的方式 连接到该内含子的3’末端;然后将Nap in启动子序列连接到该反向重复框的5’端,而在其3’端接有一个nos终止 子序列;最后将fad2基因的反向重复表达框分两步克隆到植物双元载体pCAMB IA2300的pUC18多克隆位点,构建 具有种子特异性表达的fad2基因的ihpRNA表达载体pCNF IRnos。限制性内切酶酶切对载体作了鉴定分析。  相似文献   

6.
从花生的幼嫩叶片中提取总DNA,应用PCR方法分离到了两个FAD2基因片段,分另4命名为FAD2-1和FA192-2,将反向的FAD2-1和FAD2-2片段分别与所克隆的大豆油体蛋白基因启动子片段oleosin-a与oleosin-b相连,在中间表达载体pSPROK中构建了三个带T-nos的融合基因,进而把融合基因构建到植物表达载体pCAMBIA1300中,酶切鉴定后进行测序,结果表明,所构建的三个植物表达载体均分别带有Oleosin启动子和反义FAD2基因序列,FAD2-2的长度为593bps,与引用序列的同源性达到97%,包含一个起始密码子;FAD2—1的长度为1175bp,与引用序列的同源性达到99%,包含一个起始密码子与一个终止密码子。将构建好的植物表达载体已经转化农杆菌LBA4404并用于侵染花生外植体。  相似文献   

7.
根据已发表的γ-TMT基因序列(GenBank AF104220),从拟南芥(Arabidopsis thaliana)的cDNA中分离得到γ-TMT基因,根据已发表的油菜(Brassica napus)种子贮藏蛋白基因特异表达的2S启动子(登录号J02798)序列,从油菜DNA中分离得到2S启动子。为了同时提高花生中维生素E和油酸含量,构建得到了双价种子特异表达载体pCAMBIA1300AT,它带有FAD2基因反义RNA干扰体和γ-TMT基因的种子特异表达单元。该载体已登录在GenBank上(登录号FJ362601)。通过农杆菌C58介导转化花生品种闽花6号,获得PCR阳性的转化植株。  相似文献   

8.
花生AhFAD2-1由位于不同基因组上的两个非等位基因AhFAD2-1A和AhFAD2-1B共同编码,这两个基因的突变引起酶结构、酶活性或表达调控的变化,共同导致高油酸性状的产生。本研究通过对13个不同花生品种(系)的AhFAD2-1基因进行测序和比对分析,查找点突变或插入位点,寻找与高油酸性状关联的基因位点。结果表明:E11、花育30、鲁花12、豫花15、河北高油的基因型是OL_1OL_1OL_2OL_2,其相应的O/L值为1.01~1.40;鲁花14、花育17、花育19、花育23、E12S的基因型是ol_1ol_1OL_2OL_2,其中E12S较特殊O/L值为9.05,其他品种O/L值为1.54~1.97;E16、E18和花育32号的基因型是ol_1ol_1ol_2ol_2,其相应O/L值为12.3~41.85。本研究结果对于高油酸性状的分子鉴定以及高油酸花生新品种的培育具有一定的参考价值。  相似文献   

9.
从花生的幼嫩叶片中提取总DNA,应用PCR方法分离到了两个FAD2基因片段,分别命名为FAD2-1和FAD2-2,将反向的FAD2-1和FAD2-2片段分别与所克隆的大豆油体蛋白基因启动子片段oleosin-a与oleosin-b相连,在中间表达载体pSPROK中构建了三个带T-nos的融合基因,进而把融合基因构建到植物表达载体pCAMBIA1300中,酶切鉴定后进行测序,结果表明,所构建的三个植物表达载体均分别带有Oleosin启动子和反义FAD2基因序列,FAD2-2的长度为593bps,与引用序列的同源性达到97%,包含一个起始密码子;FAD2-1的长度为1175bp,与引用序列的同源性达到99%,包含一个起始密码子与一个终止密码子。将构建好的植物表达载体已经转化农杆菌LBA4404并用于侵染花生外植体。  相似文献   

10.
前期研究中发现了一个果肉低表达而叶片中高表达的荔枝基因FKBP16-2。本文克隆了该基因1 578 bp的启动子片段并对其功能进行了初步分析,结果表明:荔枝FKBP16-2基因启动子序列中含有大量的TATA-box和CAAT-box保守元件,以及TCA-element,ARE,HSE,GCN4_motif,O2-site等各种转录调控相关的顺式作用元件。该启动子能驱动GUS基因在荔枝的花、叶、根、果皮以及种子中表达而在果肉中不表达,表达具有组织特异性。  相似文献   

11.
利用PCR从甘蓝型油菜(B rassica napusL. )华双4号基因组DNA中扩增出种子储藏蛋白cruciferin、nap2 in、oleosin和丙酮酸羧化酶( PEPC) 基因片段,再以扩增出的片段为模板设计引物从一端扩增出4个相应的小片 段,然后将同一基因的大小两个片段反向连接,插入到种子特异表达载体2300 - nap多克隆位点的nap in启动子和 nos终止子之间,构建成可以在油菜种子中转录表达发夹RNA (Hairp in RNA, hpRNA)结构的植物表达载体。  相似文献   

12.
刘国宝  郑易之 《大豆科学》2007,26(4):454-459
根据已公布的大豆种子Em基因(LEA1)的5'末端序列设计二个基因特异反向引物(EmS1,EmS2).以大豆基因组DNA为模版,利用染色体步行(Chromosome Walking)法,获得了Em基因起始密码子上游836bp的特异DNA片段.进行序列测定和生物信息学分析.结果表明,这段DNA序列为一尚未在基因数据库登录的DNA片段.该序列含有启动子的基本元件TATA-box和CAAT-box,因此可能具有启动子活性.含有1个DRE1和2个ABRE,该启动子可能受到ABA和干旱等条件的诱导.含有1个AG-motif和1个ELRE-motif,该启动子可能参与创伤和诱导子等胁迫因素的应答.含有2个RY-repeat和1个TGTCACA-Motif,该启动子片段可能具有种子特异性.结果表明,所克隆到的片段可能为基因Em的诱导型启动子,并且很可能是种子特异性启动子.  相似文献   

13.
花生球蛋白基因片段的克隆   总被引:1,自引:0,他引:1  
为克隆花生贮藏蛋白基因建立了花生未成熟种子的cDNA文库。根据大豆贮藏蛋白的保守区设计特异引物,从花生cDNA文库中扩增出450bp的特异性产物。经过测序分析表明与大豆球蛋白各亚基基因的同源性均达90%以上,说明已得到花生球蛋白基因的cDNA片段。该片段可以作为探针从cDNA文库中筛选花生球蛋白基因的cDNA全序列。  相似文献   

14.
种子特异性启动子的克隆和功能分析不仅有助于阐明作物种子发育和胚乳特异性基因的表达调控机制,也是进行作物品质改良和种子生物反应器在内的植物基因工程改造的基础。本研究从大麦品种Golden pormise中克隆到大麦胚乳特异性启动子HorD,生物信息学分析表明,其具备启动子的基本元件,如A-box、TATA-box、CAAT-box等,此外还含有胚乳特异性表达所需要的元件Prolamin-box。为验证HorD启动子的表达特性,以pU1300载体为骨架,将HorD启动子和新型冠状病毒(SARA-CoV-2)刺突蛋白基因LPS通过双酶切连接的方式构建表达载体phorD-LPS,并利用农杆菌介导的遗传转化试验验证其种子表达特性。结果表明,HorD启动子能驱动LPS基因在转基因大麦各组织中表达,但在根、茎、叶及颖壳中表达量较低,在种子中表达量较高。这说明HorD启动子可以驱动外源目的基因在大麦种子中特异高效表达。  相似文献   

15.
启动子作为一种重要的分子工具,可以驱动外源优异基因在花生中表达,其克隆鉴定对花生分子育种等具有重要的应用价值。本文对植物启动子的结构特征、研究方法进行了介绍,对花生启动子国内外研究进展进行了综述,并对下一步研究重点及应用前景进行了展望,旨在为花生启动子的鉴定及应用提供参考。  相似文献   

16.
以玉米基因组DNA为模板,通过LA-PCR技术扩增了玉米淀粉分支酶sbeⅡb基因启动子序列,并将其克隆到pMD18-TVector上,对重组子进行PCR检测和限制性内切酶分析并测序。结果表明,该启动子和Genbank中发表的玉米淀粉分支酶sbeⅡb基因启动子同源性达98.52%,克隆片段长为934bp。再将经BamHⅠ和HindⅢ双酶切得到的启动子片段克隆到相同酶酶切的pBI121载体上,构建植物表达载体pBI121-sbeⅡb,并进行酶切鉴定和PCR检测。结果显示,启动子基因sbeⅡb已成功整合到植物表达载体pBI121上。序列中发现高等植物启动子所特有的基本核心序列和种子特异表达所需的特殊调控元件。  相似文献   

17.
大豆Kunitz型胰蛋白酶抑制剂基因RNAi载体的构建   总被引:1,自引:0,他引:1  
采用PCR技术扩增得到胰蛋白酶抑制剂KTi基因正义和反义片段、大豆种子特异性启动子7αP和作为内含子的GUS基因片段,将其分别连入克隆载体pMD18-T Vector中.然后以植物表达载体pCAMBIA1301为基础,通过AHLG作为中间载体,根据RNAi原理将组成RNAi 结构的4个目的片段分别连入其中,成功构建了种子特异性RNAi表达载体p1301-KTiRi.研究结果为RNAi技术在大豆品质改良中的应用提供了基础.  相似文献   

18.
为了探究大豆种子油脂合成与储存基因GmWRI1a的调节,分析其启动子功能,从大豆品种东农50基因组中扩增获得GmWRI1a基因转录起始位点上游1669bp的启动子序列,转化拟南芥。GUS染色确定了启动子的有效性,继而根据顺式作用元件的分布,分别扩增得到4个启动子5'端缺失片段1138bp,1087bp,690bp和437bp。4个启动子缺失片段分别转化拟南芥后,通过GUS组织染色结果发现,这些启动子片段能够驱动下游GUS基因表达。GUS酶活表明,启动子存在乙烯、茉莉酸、赤霉素3种激素响应元件,其中乙烯、茉莉酸和赤霉素的响应元件分别分布在-1138^-1087bp、-1087^-690bp和-690^-437bp。  相似文献   

19.
生长素响应因子(Auxin response factor,ARF)是生长素信号转导途径中的一类重要转录因子,在种子萌 发、器官形成、果实成熟、胚胎发生等多个生长发育过程发挥作用。为了揭示花生基因组中AhARF 基因家族的特 征,本研究利用生物信息学方法从花生基因组中鉴定了62个花生AhARF 家族基因,它们不均匀分布于除1号和11 号之外的其他18条染色体上,在A和B亚基因组对应关系的染色体上数目大体相同。依据系统发生关系,62个花 生AhARFs 与拟南芥AtARFs 家族基因共同聚在除ClassIII(仅包含拟南芥AtARFs)外的其余4个分支。共线性分析共 检测到33对片段重复基因,其Ka/Ks比值均小于1,受到环境压力的纯化选择。本研究还分析了它们的理化性质、 蛋白保守结构域等特征。此外,基于22个组织转录组数据,绘制了62个花生AhARF 家族基因的表达模式热图。进 一步应用qRT-PCR方法,分析了可能与萌发相关的4个AhARF 基因(AhARF10、AhARF20、AhARF23 和AhARF46)的 时空表达模式。本研究可为种子萌发相关AhARF 基因的挖掘与功能鉴定提供基础。  相似文献   

20.
黄曲霉毒素污染对花生产业危害巨大,通过基因工程改变花生果种皮结构以提高花生抗黄曲霉能力。根据GenBank中拟南芥AtTTG1基因的cDNA编码区设计引物,通过RT-PCR克隆AtTTG1基因,结果显示,克隆获得的片段长1026bp,与基因库中数据比对相同,该片段编码341个氨基酸,预测其蛋白分子量为86.96KDa,等电点为4.85。结合实验室已获得的花生果种皮特异启动子S19和MAR序列调控的植物表达载体pLMAR,构建了植物高效表达载体pLMAR-S19-TTG1,并将其导入根癌农杆菌EHA105。为进一步对花生进行遗传转化,获得转基因高抗黄曲霉花生奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号