首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
一种适用于大豆疫霉菌研究的培养基   总被引:1,自引:0,他引:1  
 1989年沈崇尧和苏彦纯首次在我国分离到大豆疫霉菌(Phytophthora sojae M.J.Kaufmann&J.W.Gerdemann)。目前,该菌已成为三江平原大豆产区影响大豆生产的重要病原菌。在国外,用于P.sojae研究的主要培养基之一是利马豆(Phaseolus lunatus L.,Lima bean)培养基,而国内利马豆很少,一般不易获得,为此,我们尝试用与利马豆同属的粒用菜豆(芸豆)(P.vulgaris L.,Common bean)制作培养基代替利马豆培养基用于大豆疫霉菌的研究。  相似文献   

2.
由大豆疫霉菌(Phytophthora sojae Kaufmann & Gerdemann)侵染大豆引起的大豆疫霉根腐病(Phytophthora Root Rot of Soybean)是大豆生产上的毁灭性病害之一。该病害于1948年在美国印第安纳州首次发现,1955年公开报道后,日本、澳大利亚、新西兰、印度、加拿大、巴西、阿根廷、前苏联、匈牙利、德国、英国、法国、意大利、瑞士、埃及、尼日利亚等国家相继有了报道。  相似文献   

3.
蒙城大豆疫霉菌的鉴定及其生理小种   总被引:14,自引:2,他引:14  
 在安徽省蒙城县对大豆疫霉根腐病的发生情况进行调查。应用选择性培养基对类似大豆疫霉根腐病症状的病株进行病原菌分离,在春大豆蒙城早熟青豆病株上分离到2株疫霉菌PMC1、PMC2和一些Fusarium spp.,在夏大豆上分离到的主要病原菌为Pythium spp.和Fusarium spp.,未分离到疫霉菌。根据疫霉菌分离物PMC1和PMC2形态和生理学特征以及对大豆的专化致病性,2个分离物被鉴定为大豆疫霉菌(Phytophthora sojae Kaufmann&Gerdemann)。应用国际通用鉴别寄主进行生理小种鉴定,PMC1和PMC2的毒力公式分别为1b,1d,3a,3c,5,7和1b,1d,4,5,为新的小种类型,定名为中国6号小种、中国7号小种(CNR-6和CNR-7)。这是首次报道大豆疫霉菌在我国淮北地区存在。  相似文献   

4.
王定国 《植物检疫》2004,18(3):190-190
2003年3月7~12日,广州局新沙办事处从一批美国进口的58,782t大豆中检出一类危险性病害大豆疫霉菌(Phytophthora sojae Kaufmann & Gerdemann).  相似文献   

5.
大豆疫霉病研究进展   总被引:1,自引:0,他引:1  
本文对大豆疫霉菌的检测和分离、生理小种和遗传多样性、抗性以及侵染和田间流行特点等方面的研究进展和取得的新成果进行了综述,从检疫、农业防治和化学防治等方面提出了该病的防治对策.  相似文献   

6.
大豆疫霉菌单游动孢子囊的分离方法   总被引:1,自引:0,他引:1  
对大豆疫霉菌单游动孢子囊的分离及游动孢子的获得技术进行了研究,成功获得了大豆疫霉菌单游动孢子囊及游动孢子,明确了该技术在实施过程中的注意事项。  相似文献   

7.
大豆疫霉菌部分生物学特性及其药剂筛选研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用大豆疫霉菌在不同条件下菌丝生长速度法研究了大豆疫霉菌的部分生物学特性,并应用杀菌剂室内生测、盆栽药剂防效对药效作了评价。研究结果表明,大豆疫霉菌营养生长的最适温度为25~30℃;最适pH为6;光暗交替有利于该菌营养体的生长,在Rye或CA培养基上生长最快。室内药效测定结果表明,烯酰吗啉EC50为0.165 4μg/mL,抑菌效果最好,甲霜灵、甲霜灵.锰锌和氟吗啉.锰锌的EC50分别为0.261 00、.451 0和0.984 2μg/mL,效果次之。盆栽试验结果表明,几种药剂在活体条件下对大豆疫病的防治效果较好,并有较长持效期。  相似文献   

8.
大豆疫霉选择性分离技术研究   总被引:16,自引:1,他引:16  
 由大豆疫霉(Phytophthora spiae)引起的大豆疫霉根腐和茎腐病广泛分布于世界大豆主产区。是大豆毁灭性病害之一。  相似文献   

9.
大豆疫霉菌对甲霜灵(Metalaxyl)的敏感性及变异性   总被引:1,自引:0,他引:1  
大豆疫霉菌(Phytophthora megasperma f.sp.glycinea)对甲霜灵的敏感性及变异性研究结果表明,17个中国大豆疫霉菌侏菌丝生长对甲霜灵较敏感,Ec50值平均为0.0098ppm,Ec95值平均为2.6295ppm。但不同菌株对甲霜灵的敏感性不同,Ec50值范围在0.0042~0.0297ppm之间,相差7倍左右。Ec95值范围在0.7688~6.1682ppm之间,相差8倍左右。3个美国菌株菌丝体生长对甲霜灵有一定耐药性,Ec50值范围在0.3725~0.4813ppm之间,Ec95值范同在125.97~280.59ppm之间,分别比中国大豆疫霉菌株Ec50值和Ec95值平均高43倍和77倍。单孢分离物菌丝体生长对甲霜灵敏感性变异较大,B1菌株单孢分离物Ec50值范围在0.0058~0.2537ppm之间,S367菌株的单孢分离物的Ec50值范围在0.0069~0.1735ppm之间,分别相差43倍和25倍。有的单孢分离物对甲霜灵的耐药性增高。各菌株孢子囊和卵孢子产生对甲霜灵敏感性有一定差异,但1.0ppm的甲霜灵对其抑制率均为100%。活体测定结果表明,1.0ppm的甲霜灵对该病的防效达94~100%。  相似文献   

10.
2003年3月初,辽宁出入境检验检疫局下属大窑湾局在对美国进口大豆中收集到的土壤进行大豆疫霉诱集检测时,在300多个叶碟中,发现其中1个叶碟的边缘有4个类似疫霉菌(Phytophthora sp.)的孢子囊.  相似文献   

11.
Phytophthora root and stem rot of soybean caused by Phytophthora sojae is a destructive disease affecting soybean production worldwide. In nature, soybean is the only economically important cultivated host of P. sojae. The aim of this study was to explain different resistance mechanisms to P. sojae in nonhost common bean and host soybean as a basis for the control of Phytophthora root and stem rot of soybean via nonhost resistance. Observations and measurements of disease resistance-related variables showed slight differences in structural and biochemical resistance mechanisms between common bean and soybean. P. sojae infection induced a stronger hypersensitive response in nonhost common bean than in host resistant soybean. Moreover, phytoalexin phaseollidin synthesis-related vestitone reductase gene was extremely highly up-regulated, and phytoalexin glyceollin synthesis-related isoflavone reductase gene was slightly less up-regulated in common bean than in soybean, which resulted in a higher level of phaseollidin and a lower level of glyceollin in common bean. Phaseollidin had stronger inhibitory effects on mycelial growth and oospore formation of P. sojae than glyceollin, and more cell wall depositions and callose accumulated in common bean, which are probably related to the stronger resistance of nonhost common bean to P. sojae.  相似文献   

12.
The arrangement of microtubules in soybean ( Glycine max ) cells was examined during compatible and incompatible interactions of hypocotyls of soybean cv. Harosoy (susceptible) and cv. Haro 1272 (resistant) with race 1 of the soybean-specific pathogen Phytophthora sojae . Both reaction types were similar during the first 3 h after zoospore inoculation in terms of the number of cells penetrated, and depth penetrated into the cortex. By 3 h postinoculation, clear differences had developed between the two interaction types: incompatible interactions were characterized by a hypersensitive response that was confined to single penetrated cells; while compatibly responding cells appeared unchanged. Both types of response were characterized by autofluorescence of cell walls or cytoplasm and, at 6 h after inoculation, complete disorganization of cell cytoplasm. Reorientation and loss of microtubules was seen in the early stages of the incompatible interaction in association with cellular hypersensitivity, but not in compatible responses. In cells adjacent to those that reacted hypersensitively, there was little evidence of change in microtubule orientation. Treatment of hypocotyls with the microtubule depolymerizer oryzalin prior to inoculation did not alter the compatible response, but led to breakdown of the incompatible response. Changes in microtubule orientation and state are thus among the first structural changes that are visible within cells during incompatibility in this system.  相似文献   

13.
大豆疫霉菌对大豆下胚轴侵染过程的细胞学研究   总被引:3,自引:0,他引:3  
 接种后1.5~24h,用光镜和电镜研究了2个大豆品种与大豆疫霉菌Ps411的亲和性和非亲和性互作。观察结果表明,大豆疫霉菌对大豆下胚轴的侵染过程可分为侵入前、侵入、皮层组织中的扩展和进入维管束组织4个连续阶段。大豆下胚轴接种后在25℃保湿培养,1.5h后游动孢子即形成休止孢并萌发产生附着孢,3h后侵入表皮细胞,6h后进入皮层组织,24h后进入维管束组织。病原菌主要以侵染菌丝直接侵入表皮,表皮细胞间隙是主要侵入部位。皮层细胞是病原菌定殖和发展的主要场所,胞间菌丝侵入皮层细胞并形成吸器。在菌丝与寄主细胞接触部位的寄主细胞壁与质膜之间常有胞壁沉积物的形成。在抗病品种上病菌的侵染事件与感病品种基本一致,但不能形成正常的吸器,胞壁沉积物明显多于感病品种,菌丝在寄主组织内的扩展明显受到抑制。利用β-1,3-葡聚糖免疫金标记单克隆抗体进行的免疫细胞化学的研究表明,胞壁沉积物内含有大量的β-1,3-葡聚糖,在大豆疫霉菌菌丝壁中也存在β-1,3-葡聚糖。以上结果表明,病原菌的侵染可诱导抗病寄主细胞内β-1,3-葡聚糖迅速的合成与积累、并形成胞壁沉积物,以抵御病菌的侵染与扩展。  相似文献   

14.
采用叶碟诱捕法从江苏口岸进境的大豆所携带的土壤中,共分离了疫霉12株,选取6个菌株,对病原菌进行了形态特征、致病性、寄主范围鉴定。结果表明,形态观察为疫霉属真菌,接种大豆后可出现典型的大豆疫病症状,且人工接种只侵染大豆、豇豆和菜豆等少数豆科植物。采用大豆疫霉的特异性引物检测表明,所有12个菌株均能扩增出分子量为330bp的特异性条带。结合形态和致病性测定,这些病原菌鉴定为大豆疫霉(Phytophthorasojae)。  相似文献   

15.
间作是控制作物土传病害的有效手段,根系分泌物对病原菌生长的影响是间作具备控病效果的重要原因。本文研究了玉米根系对大豆疫霉游动孢子行为特征的影响,鉴定了玉米根组织中的关键抑菌活性物质,测定其对大豆疫霉菌丝生长和游动孢子行为的影响。结果表明,大豆与玉米间作能够显著降低大豆疫霉根腐病的发生,玉米根系和根系分泌物能够显著减弱根际大豆疫霉游动孢子的游动和根际大豆疫霉休止孢的萌发能力。通过HPLC对玉米根组织进行分析,发现玉米根组织中存在门布和苯并噻唑这两种抑菌物质,两者能显著抑制大豆疫霉游动孢子的游动和其休止孢的萌发能力;在浓度为500μg/mL时,其游动抑制率均达到100%;而萌发抑制率分别为100%和81%。同时,门布和苯并噻唑都能显著抑制大豆疫霉的菌丝生长。在浓度为500μg/mL时,其抑制率分别为100%和62.49%。综上所述,玉米根系组织中产生和分泌的门布和苯并噻唑对大豆疫霉具有抑菌活性,生产上可以利用玉米/大豆间作降低大豆疫病的危害。  相似文献   

16.
大豆疫霉根腐病是由大豆疫霉菌(Phytophthora sojae)侵染引起的、危害极其严重的最具毁灭性的大豆病害之一.病原菌以卵孢子在土壤中越冬,在条件适宜时导致下一年大豆发生根茎腐烂.病原菌卵孢子也可以存在于患病种皮内,但其在病害循环中的作用还不清楚.卵孢子是大豆疫霉的主要传播方式.本研究中对大豆疫霉卵孢子的致死条件进行了筛选.结果表明,使用60℃湿热处理大豆疫霉卵孢子20min或80℃干热处理大豆疫霉卵孢子20min,其萌发率为0,且死亡率为100%.  相似文献   

17.
影响大豆疫霉菌(Phytophthora sojae)游动孢子产生的条件   总被引:25,自引:3,他引:25  
 间歇性地给菌丝块换水可以诱导菌丝产生孢子囊,进而释放游动孢子。挑取5~8块直径为8mm于利马豆或V8汁平板上培养4~8d的菌块,置于直径7cm的培养皿内,加入蒸馏水正好没过菌块表面,每30 min换水一次,换水4次后加入15 ml Petri培养液,25℃、黑暗条件下培养18~20 h,可诱发菌块大量产孢。  相似文献   

18.
大豆疫霉根腐病菌单游动孢子的毒性遗传与变异   总被引:6,自引:1,他引:6  
 采用离体叶柄伤口接种法测定大豆疫霉根腐病菌44号生理小种单游动孢子连续3代或4代分离后代的毒性,结果表明:从S1中选择与亲本相比毒性不发生变异的1号单游动孢子菌株(44号生理小种)和变异最大的30号单游动孢子菌株(1号生理小种)继续分离2代或3代,单游动孢子毒性变异趋势主要是从44号生理小种变异为3号生理小种,也有变异成毒性公式为7或1a,7的单游动孢子。大豆疫霉根腐病菌无性世代毒性变异几率很高,多数单游动孢子毒性在分离后代中都发生变异,产生不同的小种或毒性公式,并且毒性变异基本不能稳定遗传。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号