首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为了实现农业持续发展和保护生态环境,该文应用Penman-Monteith公式和GIS的空间分析功能,通过建立区域参考作物蒸散量的空间分布模型计算了中国东北地区自20世纪90年代以来参考作物蒸散量的时空变化特征.研究发现,20世纪90年代东北地区5~9月份日平均蒸散量呈逐年增大趋势,并以每年0.04 mm的速度递增; 其中5、6、7、8、9各月份绝大部分地区日均蒸散量年变化呈增加的趋势,东北平原年增长超过0.05 mm,≥0.4 mm蒸散地区年平均增长面积为248.73万hm2.5月份和8月份大部分地区日均蒸散量呈减少的趋势,6、7、9月份大部分地区日均蒸散量呈增加的趋势.5月和8月蒸散量的减少以及6月到9月蒸散量的增加都由东北(三江平原)向西南(辽河平原)迁移,并在空间范围上表现出一定的收缩趋势.日均蒸散量≥0.4 mm蒸散地区的重心呈有规律的波动,5~9月份平均重心年际波动主要位于呼伦贝尔高原和西辽河平原两个地区,5、6、7、8、9月份重心的波动轨迹基本为由西北-东北-西南地区,空间上也逐渐由较集中变为较分散.  相似文献   

2.
为了实现农业持续发展和保护生态环境,该文应用Penman-Monteith公式和GIS的空间分析功能,通过建立区域参考作物蒸散量的空间分布模型计算了中国东北地区自20世纪90年代以来参考作物蒸散量的时空变化特征。研究发现,20世纪90年代东北地区5~9月份日平均蒸散量呈逐年增大趋势,并以每年0.04 mm的速度递增; 其中5、6、7、8、9各月份绝大部分地区日均蒸散量年变化呈增加的趋势,东北平原年增长超过0.05 mm,≥0.4 mm蒸散地区年平均增长面积为248.73万hm2。5月份和8月份大部分地区日均蒸散量呈减少的趋势,6、7、9月份大部分地区日均蒸散量呈增加的趋势。5月和8月蒸散量的减少以及6月到9月蒸散量的增加都由东北(三江平原)向西南(辽河平原)迁移,并在空间范围上表现出一定的收缩趋势。日均蒸散量≥0.4 mm蒸散地区的重心呈有规律的波动,5~9月份平均重心年际波动主要位于呼伦贝尔高原和西辽河平原两个地区,5、6、7、8、9月份重心的波动轨迹基本为由西北—东北—西南地区,空间上也逐渐由较集中变为较分散。  相似文献   

3.
基于阿勒泰地区7个气象站1961—2012年逐日气象资料,采用Penman-Monteith模型计算了逐日参考作物蒸散量,运用Mann-Kendall非参数检验法、小波分析法,并结合ArcGIS软件对作物参考蒸散量的时空变化特征进行了研究。结果表明:阿勒泰年和春季作物参考蒸散量呈增加趋势,而夏季、秋季和冬季作物参考蒸散量呈减少趋势。年和夏季的作物参考蒸散量分别在1994年、1992年发生突变,而春季、秋季和冬季的作物参考蒸散量则没有发生突变。年和四季的作物参考蒸散量都存在27 a的周期。空间分布上,年、春季、夏季和秋季的平均作物参考蒸散量呈自阿勒泰市南部和福海县西北部向东部、南部和西部逐渐递减的变化趋势。而冬季作物潜在蒸散量大致呈现自西向东逐渐递减。变化趋势上,春季潜在蒸散量在空间上都呈增加趋势,而年、夏季、秋季和冬季的潜在蒸散量在阿勒泰的东部呈增加趋势,在西部则呈减少趋势。  相似文献   

4.
甘肃地区参考作物蒸散量时空变化研究   总被引:25,自引:6,他引:25       下载免费PDF全文
区域水土平衡模型的建立通常需要确定计算参考作物蒸散量的模型,这一模型的精确与否,直接影响整体预测模型的最终预报精度.运用FAO-24 Blaney-Criddle法、FAO-24 Radiation法、FAO PPP-17 Penman法及FAO Penman-Monteith(98) 4种方法,对甘肃省1981~2000年33个站点的月参考作物蒸散量进行了计算.对比分析结果表明,AO Penman-Monteith(98)模型的精度与灵敏度均显示了较强的优越性.运用该模型对甘肃省参考作物蒸散量的时空分布特征进行研究表明:甘肃省参考作物蒸散量年内逐月演变曲线呈单峰状;年际蒸散量变化与夏季年际波动变化存在较高一致性;全年参考作物蒸散量分布具有从东南向西北递增的趋势.  相似文献   

5.
近40年来,山西省的气候条件发生重大变化。为了评估参考作物蒸散量(ET0)在气候变化条件下的时空变化趋势及原因,利用彭曼公式计算了晋北、晋中和晋南地区的ET0,用t检验法分析了不同区域气候因子及ET0演变趋势,利用偏相关分析法研究了各气候因子与ET0的相关关系及对ET0影响的贡献度。主要结论:晋北、晋中和晋南地区年均日照时数、年均最高气温、年均最低气温、年均风速和年均相对湿度等气象因子发生明显的上升或下降趋势,但ET0变化趋势不明显,仅呈缓慢下降趋势;ET0与年均日照时数、年均最高气温和年均风速均呈显著正相关关系,与年均相对湿度呈显著负相关关系。晋北地区年均最低气温和年均最高气温引起ET0显著上升,贡献度之和为31.36%;年均日照时数和年均风速导致ET0显著下降,贡献度之和为41%。晋中地区上升因子的贡献度之和为46.34%,下降因子为53.66%。晋南地区上升因子贡献度之和为27.78%,下降因子为50.15%。  相似文献   

6.
参考作物蒸散量是灌溉设计、灌溉计划等的基础数据,利用滇中地区19个气象台站的观测数据,计算了滇中地区的参考作物蒸散量(ET0),分析了ET0时间和空间的变化特征及气象要素对其的影响。结果表明:研究区的ET0于1982年发生突变,1960—1982年变化趋势不明显,1982—2002年呈现下降的趋势,2003—2012年ET0呈现增加的趋势,多年平均ET0约为1 223.7 mm。ET0的空间特征表现为中部高,东西低,春季最大,夏季高于秋季,冬季最小,高值区出现在元谋地区。ET0与风速、气温和日照时数呈现显著的正相关关系,与相对湿度呈现极显著的负相关关系。偏相关分析和逐步回归分析显示在年尺度上,风速、相对湿度和日照时数的组合可以预测ET0的年际变化。  相似文献   

7.
准确评估参考作物蒸散量的变化规律对新疆农业生产及水资源合理利用具有重要作用,采用Penman-Monteith公式以及55个气象站的逐日气象资料,计算了新疆1961-2013年参考作物蒸散量并分析其时空变化特征,运用多元回归分析法对影响参考作物蒸散量变化的主导气象因素进行了定量分析.结果表明:新疆ET0总体呈下降趋势,年际变化率为-1.01 mm/a.在20世纪80年代之前ET0偏高,90年代减少到最大,2000年以来又逐渐增大.从季节来看,夏季、秋季的ET0与年ET0的减小趋势一致,春季冬季ET0的减少趋势不明显.在不同年代际时间尺度,新疆全年及季节ET0的年际变化在空间上存在一定的分异.风速是全年及夏、秋季ET0变化的主导因素,而温度是春季及冬季新疆区域蒸发量变化的主导因素.  相似文献   

8.
新疆参考作物蒸散量时空变化分析   总被引:19,自引:8,他引:11  
参考作物蒸散量是表征大气蒸散能力,评价气候干旱程度、植被耗水量的重要指标。利用新疆101个气象站1961-2008年的逐月气候资料,采用联合国粮农组织推荐的Penman-Monteith公式计算出各站逐月参考作物蒸散量,使用气候倾向率、Mann-Kendall检测以及基于GIS的宏观地理因子三维二次趋势面模拟与反距离加权残差订正相结合的空间插值技术,对新疆近48 a参考作物蒸散量时空变化特征进行了分析。新疆参考作物蒸散量的空间分布总体为南疆大于北疆、东部大于西部、盆(谷)地大于山区。受气温上升、日照时数减少、风速减小、相对湿度增大的影响,近48 a新疆参考作物蒸散量呈显著减小趋势,并于1981年发生了突变性减小,但各地具有明显的区域性差异, 参考作物蒸散越强烈的区域,其递减倾向率和减小幅度也越大。参考作物蒸散量减小对降低作物需水量和农田灌溉量、减小地表干燥度、改善新疆脆弱的生态环境具有重要意义。  相似文献   

9.
北京市参考作物蒸散量的时空分布特征   总被引:22,自引:9,他引:22  
利用北京市各气象站点的长期观测资料,使用FAO推荐的Penman-Monteith法,计算了各站点逐月参考作物蒸散量ET0。在此基础上使用插值生成ET0的灰度分布图与等值线图,分析了ET0的时空分布特征。研究结果发现,北京市ET0分布具有2个常年稳定的低蒸发中心及多个随季节变化的高蒸发中心。区域内海拔高度与地形变化造成地表温度和热量平衡变化是导致ET0时空变化特征的主导因素;风速、日照时数和相对湿度等气象因素及其综合作用对ET0也有较大的影响。  相似文献   

10.
近48年新疆夏半年参考作物蒸散量时空变化   总被引:5,自引:0,他引:5  
利用新疆101个气象站1961-2008年夏半年(4-9月)逐月气候资料,在采用FAO推荐的Penman-Monteith公式计算出各站逐月参考作物蒸散量的基础上,使用气候倾向率、累积距平、t检验、Morlet小波、相关分析和Kriging插值技术等方法,对新疆近48a夏半年参考作物蒸散量时空变化特征及其气候成因进行了探讨。结果表明:(1)新疆夏半年平均参考作物蒸散量为942.5mm,在空间分布上呈现"南疆大于北疆、东部大于西部、平原和盆(谷)地大于山区"的格局。其空间分布与各地气温、日照时数、降水量、平均风速和空气相对湿度具有较好的对应关系,表现为,气温高、风速大、日照充足、降水少、空气干燥的区域,夏半年参考作物蒸散量较大,反之,蒸散量较小。(2)1961-2008年新疆夏半年参考作物蒸散量与同期日照时数、平均风速呈显著的正相关,与降水量、空气相对湿度为显著的负相关,与平均气温的相关关系虽不显著,但两者的年际间波动趋势基本一致。近48a,受气温上升、风速减小、降水量增多、相对湿度增大的综合影响,新疆夏半年参考作物蒸散量总体以20.09mm.10a-1的倾向率呈极显著的减小趋势。(3)突变检测表明,新疆夏半年参考作物蒸散量于1986年发生了突变性的减小,突变后的平均参考作物蒸散量较突变前减少了65mm,减少6.6%。(4)新疆夏半年参考作物蒸散量存在4~5a、12a和准22a的周期性变化,预计未来数年参考作物蒸散量将有增大的趋势。  相似文献   

11.
河北省冬小麦生育期蒸降差的时空变化及其原因分析   总被引:1,自引:0,他引:1  
冬小麦生育期蒸降差是制定灌溉计划的重要依据,了解其时空变化及影响因素,可以为水资源高效利用提供参考。利用河北省冬麦区1965-2007年48个地面气象站资料,根据FAO推荐的Penman-Monteith公式,分析了河北省冬小麦生育期蒸降差的时空变化及其与气象要素的关系。结果表明:河北省冬小麦生育前、中、后期各站蒸降差均为正值,表明全生育期水分亏缺;生育中期的水分亏缺最严重,且变率较小;水分亏缺最大的区域位于河北省东南部地区。随着气候变化,各生育期蒸降差均为减少趋势,其中全生育期和后期的减少趋势明显(P0.01),前期和中期的减少趋势不显著;全生育期蒸降差的变率较小。相关分析表明:引起冬小麦全生育期蒸降差减少的气象原因主要是日照时数减少和风速下降,最低气温对其有一定影响,但不起决定作用。  相似文献   

12.
利用辽宁省凌河流域10个气象站1965-2006年的逐日气象资料,采用FAO推荐的P-M公式计算各站逐日参考作物腾发量(ET0),在分析生长季(4-9月)各气象要素及ET0变化趋势的基础上,用基于敏感系数的贡献值法探讨各气象要素变化对ET0变化的贡献。结果表明:近42a来,凌河流域生长季ET0以21.46mm·10a-1的速率极显著降低(P<0.01),平均值为706.73mm,其中最大值发生在5月,最小值发生在9月;ET0高值区集中在朝阳和北票等地,低值区位于义县一带。研究区生长季太阳辐射以0.293MJ·m-2·d-1·10a-1的速率递减;除阜新外其余各站风速均呈极显著下降趋势(P<0.01);在全球气候变暖的背景下,过去42a凌河流域生长季平均气温以0.289℃·10a-1的速度上升,其中4月和9月变化显著(P<0.05),7月相对稳定。研究区生长季相对湿度变化不大。敏感性分析结果表明,流域内生长季平均ET0对各气象要素变化的敏感性大小依次为太阳辐射>相对湿度>风速>温度,但在研究时段内,显著变化的风速对ET0变化贡献最大,其次为太阳辐射,温度对ET0变化的贡献最小。太阳辐射和风速变化对ET0变化的贡献在流域西部较大,而在东部较小;温度变化对ET0变化的贡献总体上表现为由流域中部向东西两端递减;相对湿度变化对ET0变化的贡献在空间分布上较分散。  相似文献   

13.
河北省土壤有机质时空变化分析   总被引:2,自引:1,他引:2  
采用BP神经网络和地统计方法,对1980~2009年间河北省耕地土壤有机质时空变化规律及影响因素进行对比分析。结果表明:河北省耕地土壤有机质具有西北高东南低的格局;随着时间的推移,有机质总体呈现上升趋势。1980年的低值区域到了2009年SOM上升变化明显,成为热点;北部坝上、西部太行山区及东部沿海地区到2009年SOM含量下降,成为冷点。分析表明,这种变化格局的形成与施用有机肥、实施秸秆还田等社会经济过程有关。本研究为预测有机质变化趋势、改善土壤质量、优化种植结构和耕地的可持续发展提供了一定依据。  相似文献   

14.
河南省参考作物蒸散量变化特征及其气候影响分析   总被引:1,自引:0,他引:1  
基于河南省111个气象站1971-2010年逐日平均气温、最高气温、最低气温、相对湿度、风速和日照时数等气候要素资料,应用Penman-Monteith模型计算各站点逐日参考作物蒸散量(ET0),结合数理统计方法,分析近40a来河南省年ET0的时空变化特征,并对其主要影响因子进行探讨.结果表明,Penman-Monteith模型对河南省ET0的模拟能力较强,模拟值与同期小型蒸发皿蒸发量的相关系数r=0.84(P <0.01).近40a,河南省年ET0平均值为796.1mm(±102.2mm,n=4169),在空间分布上,总体表现出北高南低的特征,并以24.7mm·10a-1(P <0.01)的线性倾向率减少,呈明显减少的站点主要分布在34°N以北地区.偏相关分析表明,全省各地(市)年ETo与各气象要素关系密切,除济源外,年ET0均表现出与风速呈负相关且相关系数最大.逐步回归分析显示,年ETo与平均气温、日照时数、风速和相对湿度的关系密切;风速、日照时数和平均气温对年ET0的贡献为正效应,而相对湿度为负效应.近40a,风速减小是导致河南省年ET0呈显著减小的主要原因;但从综合影响看,这是各气象因素综合作用的效果,且各因子的贡献存在区域差异.  相似文献   

15.
潜在蒸散量(ET0)是区域能量平衡和水分平衡的重要组成部分,通过探讨其历史演化规律及成因对优化调整农业生产结构及水资源合理配置至关重要。基于河北省及周边地区1968—2018年24个典型气象站点逐日气象数据,利用Penman-Monteith模型、敏感性分析、M-K检验法及空间插值方法分析了河北省ET0时空分布特征及其影响因素。结果表明:(1)从时间分布来看,51年间,河北省春季ET0多年均值为353.20 mm,呈下降趋势,下降幅度为-1.679 mm/10 a,其周期变化存在35年主周期及20年次周期;空间上呈现由西北向东南半环状递减趋势。(2)从影响因素来看,春季ET0变化对平均气温、最高气温、最低气温、日照时数和平均风速均表现正敏感;对相对湿度表现为负敏感,对各个气象因子敏感程度依次为相对湿度 > 最高气温 > 日照时数 > 平均风速 > 平均气温 > 最低气温。(3)从成因的空间分布上看,河北省北部地区ET0变化的主导气候影响因子为平均气温,中部及西部地区为相对湿度,南部及偏东部地区则转变为平均风速。研究成果可为研究区水资源综合评价及农业生产工作提供一定参考。  相似文献   

16.
基于1981—2011年云南省52个站点气象数据,通过敏感系数和贡献率法,定量分析了各站点冬春夏秋季潜在蒸散量变化的成因。结果表明:(1)1981—1990年、1991—2011年春、夏、秋季,云南省各站点潜在蒸散量均对平均气温最敏感,其次是相对湿度和日照时数,对风速的敏感性最低;冬季有部分站点以相对湿度的敏感系数最大。(2)蒸散量变化的主导因子因季节不同而不同。1981—1990年,绝大多数站点冬季蒸散量变化主导因子为平均气温,其他季节多数站点主导因子为日照时数;1991—2011年,冬、春、秋季,多数站点以平均气温为主导因子,夏季则以日照时数为主导因子的站点居多。(3)主导因子空间分布格局有差异。平均气温是云南省东部地区冬季蒸散量变化的主导因子,日照时数是中南部地区夏季蒸散量变化的主导因子,春、秋季节,前后时间段主导因子区域差异较大。这些结果表明云南省蒸散量变化的主导因子具有阶段性、季节性和区域差异性。  相似文献   

17.
基于甘肃省29个气象站点1984-2019年逐日气象资料,分析ET0时空变化规律,结合主成分分析、聚类分析、灰色关联度、通径分析、敏感性分析等多种定性与定量分析方法,揭示ET0与气候因子间的内在关系,并探明甘肃省ET0对各气候因子敏感性及贡献大小。结果表明:近36a甘肃省ET0整体呈现显著(α=0.05)上升趋势,并于1998年发生突变。研究期内ET0空间分布呈现由东南向西北递增的趋势,甘南高原小,河西平原大,高值区ET0在1049.3~1260.9mm区间变化。主成分分析表明温度、湿度和辐射对ET0的影响较大,风速影响相对较小,聚类分析及灰色关联度分析结果显示,日最高温度Tmax、相对湿度RH、风速u、降水量P、日照时数n为5个关键气候因子,Tmax是最主要因素,P作用最小。ET0对气候因子敏感性存在差异,对RH最为敏感,且Tmax、n、u起正向作用,RH起反向作用,RH、Tmax、n、u贡献率分别为3.79%、7.22%、-0.42%和3.70%。近36a甘肃省ET0呈现增大趋势是由于RH、n减少和T升高、u增大共同作用的结果,T升高是造成ET0增加的主要原因。研究成果为该地区科学配置灌溉用水,高效开发利用水资源,揭示气候变化条件下水文循环−蒸散发环节的响应机理提供科学依据,同时,多种方法探索性结合运用为ET0变化驱动因子分析提供了新的思路。  相似文献   

18.
为了探究黄河流域NDVI时空变化及其驱动力,基于SPOT NDVI遥感数据,采用趋势分析、空间转移矩阵分析了1999—2018年黄河流域NDVI时空变化特征,并采用地理探测器模型对黄河流域NDVI空间分异特征与驱动力进行解释。结果表明:(1)从NDVI像元尺度的时间变化趋势来看,1999—2018年黄河流域NDVI变化趋势以极显著缓慢增长为主,占整个流域面积的53.12%,整体变化趋势向好,但可持续性不强; 极显著较快增长和快速增长的区域占15.47%,主要位于山西西部吕梁山脉和陕西北部黄土高原。(2)从NDVI空间变化特征来看,20 a间,植被覆盖度保持稳定的区域占31.6%,持续增加的占65.99%。(3)黄河流域的NDVI空间差异主要由年平均降水量、湿润指数、干燥度、土壤类型所决定,其因子解释力均超过30%,这表明气候因素仍然是影响黄河流域NDVI的主导因素。绝大多数驱动因子间交互呈现相互增强或非线性增强,交互解释力最强的是年平均降水量和土地利用,q值为0.704。只有年平均降水量与土地利用类型交互及高程与人口密度的交互是相对独立的。  相似文献   

19.
[目的]掌握塔里木河生态恢复的耗水规律,为生态水的合理规划和配置提供相应参考。[方法]利用MODIS的蒸散发(ET)和NDVI数据,及Mann-Kendall检验与Theil-Sen median趋势分析方法,选择阿拉尔-大西海子段作为代表区域,对塔里木河干流植被覆盖和蒸散发(ET)时空变化及其关系进行分析。[结果]①塔里木河干流阿拉尔-大西海子段,NDVI及ET多年平均值分别为0.33,118.41 mm,ET及NDVI空间分异总体一致,ET分布受植被覆盖控制,总体表现为上段(阿拉尔-十四团) > 下段(恰拉-大西海子) > 中段(十四团-恰拉)。②年际变化上,NDVI与ET年时空变化差异明显,两者总体变化趋势相反,NDVI显著增加(ZC>1.96),ET非显著下降(-1.96 < ZC < 0);空间上,全区48.83%区域的NDVI发生降低,主要集中在中段,而ET的该比例则高达70.57%,广泛分布于中段及下段。③相对于NDVI,径流及水汽压,ET的年际变化与气温和降水相关性更好。[结论]塔里木河干流ET空间分布虽受植被覆盖所控制,但两者时空变化却差异明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号