首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A leakiness index for assessing landscape function using remote sensing   总被引:2,自引:0,他引:2  
The cover, number, size, shape, spatial arrangement and orientation of vegetation patches are attributes that have been used to indicate how well landscapes function to retain, not ‘leak’, vital system resources such as rainwater and soil. We derived and tested a directional leakiness index (DLI) for this resource retention function. We used simulated landscape maps where resource flows over map surfaces were directional and where landscape patch attributes were known. Although DLI was most strongly related to patch cover, it also logically related to patch number, size, shape, arrangement and orientation. If the direction of resource flow is multi-directional, a variant of DLI, the multi-directional leakiness index (MDLI) can be used. The utility of DLI and MDLI was demonstrated by applying these indices to three Australian savanna landscapes differing in their remotely sensed vegetation patch attributes. These leakiness indices clearly positioned these three landscapes along a function-dysfunction continuum, where dysfunctional landscapes are leaky (poorly retain resources). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Luck  Matthew  Wu  Jianguo 《Landscape Ecology》2002,17(4):327-339
Landscape Ecology - Urbanization is arguably the most dramatic form of land transformation that profoundly influences biological diversity and human life. Quantifying landscape pattern and its...  相似文献   

3.
This study evaluates the relationship between landscape accessibility and land cover change in Western Honduras, and demonstrates how these relationships are influenced by social and economic processes of land use change in the region. The study area presents a complex mosaic of land cover change processes that involve approximately equal amounts of reforestation and deforestation. Landsat Thematic Mapper (TM) satellite imagery of 1987, 1991 and 1996 was used to create three single date classifications and a land cover change image depicting the sequence of changes in land cover between 1987–1991–1996. An accessibility analysis examined land cover change and landscape fragmentation relative to elevation and distance from roads. Between 1987 and 1991, results follow ‘expected’ trends, with more accessible areas experiencing greater deforestation and fragmentation. Between 1991 and 1996 this trend reverses. Increased deforestation is found in areas distant from roads, and at higher elevations; a result of government policies promoting expansion of mountain coffee production for export. A ban on logging, and abandonment of marginally productive agricultural fields due to agricultural intensification in other parts of the landscape, has led to increased regrowth in accessible regions of the landscape. Roads and elevation also present different obstacles in terms of their accessibility, with the smallest patches of cyclical clearing and regrowth, relating mostly to the agricultural fallow cycle, found at the highest elevations but located close to roads. This research highlights the need to locate analyses of land cover change within the context of local socio-economic policies and land use processes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Petit  C.C.  Lambin  E.F. 《Landscape Ecology》2002,17(2):117-132
Historical reconstructions of land-use/cover change often require comparing maps derived from different sources. The objective of this study was to measure land-use/cover changes over the last 225 years at the scale of a Belgian landscape, Lierneux in Ardennes, on the basis of a heterogeneous time series of land cover data. The comparability between the land-cover maps was increased following a method of data integration by map generalisation. Two types of time series were built by integrating the maps either by reference to the initial map of the time series or by pair of successive maps. Land-cover change detection was performed on the initial time series without data integration and on the two types of integrated time series. Results reveal that land cover and landscape structure have been subject to profound changes in Lierneux since 1775, with an annual rate of change at the landscape level of up to 1.40%. The major land-cover change processes observed are expansion of grasslands-croplands and reforestation with coniferous species, leading to amore fragmented landscape structure. The annual rates of land-cover change estimated from integrated data are significantly different from the annual rates of change estimated without a prior integration of the data. There is a trade-off between going as far back in time as possibleversus performing change detection as accurately as possible. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We classified NALC (North American Landscape Characterization) imagery to forest-nonforest and examined forest change between 1972 and 1992 in theKlamath-Siskiyou ecoregion (USA) in relation to land ownership and fifth levelwatersheds. We also analyzed changes in forest patterns by land ownership forthree major river basins within the ecoregion (Eel, Klamath, and Rogue) usingFRAGSTATS. Overall, forests covered 66.8% of the ecoregion in 1972 and 62.1% in1992. Approximately 10.5% of the forest area was disturbed overall, translatinginto an annual disturbance rate of 0.53%. Although public lands accounted for aslightly higher total area of forest disturbance, private lands were cut at aslightly higher rate. Forest disturbance within fifth level watersheds averaged13.2%, but reached as high as 93.2%. For the three river basins where spatialpattern of forest disturbance was analyzed, private lands were already morefragmented than public lands in 1972. Over the 20-year time period, forestfragmentation increased on all ownerships. Fragmentation rates on public landswere high for all basins especially the Rogue. Clearcut logging on privatelandswas generally in larger adjacent tracts, whereas cuts on public lands weregenerally smaller and more dispersed. Our results illustrate the importance ofconsidering landscape change history when planning for effective biodiversityconservation in forested ecoregions and when formulating ecologicallysustainable forest management strategies.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

6.
Scale dependency of insect assemblages in response to landscape pattern   总被引:5,自引:0,他引:5  
  相似文献   

7.
Investigations of land-cover change often employ metrics designed to quantify changes in landscape structure through time, using analyses of land cover maps derived from the classification of remote sensing images from two or more time periods. Unfortunately, the validity of these landscape pattern analyses (LPA) can be compromised by the presence of spurious change, i.e., differences between map products caused by classification error rather than real changes on the ground. To reduce this problem, multi-temporal time series of land-cover maps can be constructed by updating (projecting forward in time) and backdating (projecting backward in time) an existing reference map, wherein regions of change are delineated through bi-temporal change analysis and overlaid onto the reference map. However, this procedure itself creates challenges, because sliver patches can occur in cases where the boundaries of the change regions do not exactly match the land-cover patches in the reference map. In this paper, we describe how sliver patches can inadvertently be created through the backdating and updating of land-cover maps, and document their impact on the magnitude and trajectory of four popular landscape metrics: number of patches (NP), edge density (ED), mean patch size (MPS), and mean shape index (MSI). In our findings, sliver patches led to significant distortions in both the value and temporal behaviour of metrics. In backdated maps, these distortions caused metric trajectories to appear more conservative, suggesting lower rates of change for ED and inverse trajectories for NP, MPS and MSI. In updated maps, slivers caused metric trajectories to appear more extreme and exaggerated, suggesting higher rates of change for all four metrics. Our research underscores the need to eliminate sliver patches from any study dealing with multi-temporal LPA.  相似文献   

8.
Urbanization is one of the most important driving forces for land use and land cover change. Quantifying urban landscape pattern and its change is fundamental for monitoring and assessing ecological and socioeconomic consequences of urbanization. As the largest city in the country, Shanghai is now the fastest growing city in China. Using land use data set of 2002 and combining gradient analysis with landscape metrics, we analyzed landscape pattern of Shanghai with increasing grain size to study the impacts of road corridors on urban landscape pattern. Landscape metrics were computed along a 51×9 km2 transect cutting across Shanghai with a moving window. The results showed that the urban landscape pattern of Shanghai was greatly changed when road corridors were merged with urban patches and the variation of patch density would alter when grain size changed. As a linear land use type, road corridors exhibited a different spatial signature comparing with other land use types and distinctive behavior with increasing grain size. Merging road and urban patches resulted in a sharp reduction in patch density, mainly caused by segmentation of roads corridors. The results suggested that grain size around 7.5 m might be optimal for urban landscape analysis. Landscape patch density is significantly correlated with road percent coverage and the most important effect of road corridors in urban landscape is increased habitat fragmentation.  相似文献   

9.
Modern landscape ecology is based on the patch mosaic paradigm, in which landscapes are conceptualized and analyzed as mosaics of discrete patches. While this model has been widely successful, there are many situations where it is more meaningful to model landscape structure based on continuous rather than discrete spatial heterogeneity. The growing field of surface metrology offers a variety of surface metrics for quantifying landscape gradients, yet these metrics are largely unknown and/or unused by landscape ecologists. In this paper, we describe a suite of surface metrics with potential for landscape ecological application. We assessed the redundancy among metrics and sought to find groups of similarly behaved metrics by examining metric performance across 264 sample landscapes in western Turkey. For comparative purposes and to evaluate the robustness of the observed patterns, we examined 16 different patch mosaic models and 18 different landscape gradient models of landscape structure. Surface metrics were highly redundant, but less so than patch metrics, and consistently aggregated into four cohesive clusters of similarly behaved metrics representing surface roughness, shape of the surface height distribution, and angular and radial surface texture. While the surface roughness metrics have strong analogs among the patch metrics, the other surface components are largely unique to landscape gradients. We contend that the surface properties we identified are nearly universal and have potential to offer new insights into landscape pattern–process relationships. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Urban Heat Island (UHI) leads to increased energy consumption, aggravated pollution and threatened health of citizens. Urban green spaces mitigate UHI effects, however, it is still unclear how the green space characteristics and its surrounding environment affects the green space cool island (GCI). In this study, land surface temperature (LST) and land cover types within the outmost ring road of Shanghai, China were obtained from Landsat 8 data and high-resolution Google Earth data. The GCI effects were defined in three aspects: GCI range (GR), amplitude of temperature drop (TA) and temperature gradient (TG). Pearson correlation analysis was processed to get the relationship between the aspects and impact factors. The results indicated that the GCI principle could be explained by the thermal conduct theory. The efficient methods to decrease LST of green spaces include increasing green space area while staying below the threshold, adding complexity of green space shape, decreasing impervious surfaces and enlarging the area of water bodies. For the surrounding environment of the green spaces, increasing vegetation and water body fractions or decreasing impervious surfaces will help to strengthen GCI effects. The findings can help urban planners to understand GCI formation and design cool green spaces to mitigate UHI effects.  相似文献   

11.
Effects of changing scale on landscape pattern analysis: scaling relations   总被引:16,自引:7,他引:16  
Landscape pattern is spatially correlated and scale-dependent. Thus, understanding landscape structure and functioning requires multiscale information, and scaling functions are the most precise and concise way of quantifying multiscale characteristics explicitly. The major objective of this study was to explore if there are any scaling relations for landscape pattern when it is measured over a range of scales (grain size and extent). The results showed that the responses of landscape metrics to changing scale fell into two categories when computed at the class level (i.e., for individual land cover types): simple scaling functions and unpredictable behavior. Similarly, three categories were found at the landscape level, with the third being staircase pattern, in a previous study when all land cover types were combined together. In general, scaling relations were more variable at the class level than at the landscape level, and more consistent and predictable with changing grain size than with changing extent at both levels. Considering that the landscapes under study were quite diverse in terms of both composition and configuration, these results seem robust. This study highlights the need for multiscale analysis in order to adequately characterize and monitor landscape heterogeneity, and provides insights into the scaling of landscape patterns. This revised version was published online in May 2005 with corrections to the Cover Date. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
侧重视觉质量、植物景观、人文功能3方面,选择对中心交通岛景观绿化影响较大的评价因子,建立合理的AHP评价体系,计算各评价因子的权重,根据权重对辽宁省10个城市的28个中心交通岛进行评价,得出其综合排序,并对其进行比较分析。  相似文献   

13.
Wildfires and landscape patterns in the Eastern Iberian Peninsula   总被引:12,自引:2,他引:10  
The relations between disturbance regime and landscape patterns have been developed from a theoretical perspective, but few studies have tested these relations when forces promoting opposing heterogeneity patterns are simultaneously operating on a landscape. This work provides quantitative evidence of these relations in areas dominated by human activity, showing that landscape heterogeneity decreases disturbance spread. In turn, disturbance introduces a source of landscape heterogeneity, but it is not enough to counterbalance the homogeneity trend due to agricultural abandonment. Land cover changes and wildfire occurrence (fires larger than 0.3 km2) have been monitored in the Tivissa municipality (208.4 km2) (Catalonia, NE Spain) from 1956 to 1993. Land cover maps were obtained from 1956, 1978 and 1993 and they were overlaid with fire occurrence maps obtained for the 1975–1995 period from 60 m resolution remote sensing images, which allow the identification of burned areas by sudden drops in Normalized Difference Vegetation Index (NDVI). Changes in landscape patterns in relation to fire regime have been analyzed considering several parameters: patch density, mean patch size, mean distance to the nearest neighbour of the same category, edge density, and the Shannon diversity index. In the 1956–1993 period there is a trend to increasing landscape homogenization due to the expansion of shrub­lands linked to a decrease in forest surface, and to the abandonment of agricultural lands. This trend, however, is not constant along all the period. Fires are more likely to occur in woody, homogenous areas, increasing landscape heterogeneity, as observed in the 1978–1993 period. This increase in heterogeneity does not counterbalance the general trend to landscape homogenization as a consequence of agricultural abandonment and the coalescence of natural vegetation patches.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

14.
The interaction between physical environment and land ownership in creating spatial heterogeneity was studied in largely forested landscapes of northern Wisconsin, USA. A stratified random approach was used in which 2500-ha plots representing two ownerships (National Forest and private non-industrial) were located within two regional ecosystems (extremely well-drained outwash sands and moderately well-drained moraines). Sixteen plots were established, four within each combination of ownership and ecosystem, and the land cover on the plots was classified from aerial photographs using a modified form of the Anderson (U.S. Geological Survey) land use and land cover classification system.Upland deciduous forests dominated by northern hardwoods were common on the moraines for both ownerships. On the outwash, the National Forest was dominated by pine plantations, upland deciduous forests, and upland regenerating forests (as defined by <50% canopy coverage). In contrast, a more even distribution among the classes of upland forest existed on private land/outwash. A strong interaction between ecosystem and ownership was evident for most comparisons of landscape structure. On the moraine, the National Forest ownership had a finer grain pattern with more complex patch shapes compared to private land. On the outwash, in contrast, the National Forest had a coarser grain pattern with less complex patch shapes compared to private land. When patch size and shape were compared between ecosystems within an ownership, statistically significant differences in landscape structure existed on public land but not on private land. On public land, different management practices on the moraine and outwash, primarily related to timber harvesting and road building, created very different landscape patterns. Landscape structure on different ecosystems on private land tended to be similar because ownership was fragmented in both ecosystems and because ownership boundaries often corresponded to patch boundaries on private land. A complex relationship exits between ownership, and related differences in land use, and the physical environment that ultimately constrains land use. Studies that do not consider these interactions may misinterpret the importance of either variable in explaining variation in landscape patterns.  相似文献   

15.
Characterizing the complexity of landscape boundaries by remote sensing   总被引:9,自引:0,他引:9  
This paper presents a method for characterizing the complexity of landscape boundaries by remote sensing. This characterization is supported by a new boundary typology, that takes into account points where three or more landcovers converge (i.e., convergency points or coverts). Landscape boundary richness and diversity indices were proposed and calculated over 19 landscapes in South-East Brazil. Results showed that landscape boundaries, especially convergency points, provided an enrichment in landscape pattern analysis. Landcover boundary diversities were significantly related to landcover shape: elongated riparian units had the highest values for boundary diversity and coverts proportion indices. On the other hand, landscape analysis showed that indices of shape, richness, diversity and coverts proportion provided an additional evaluation of landcover spatial distribution within the landscape.  相似文献   

16.
Thermal infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning.The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of landscape ecological processes.  相似文献   

17.
Cumming  Steve  Vervier  Pierre 《Landscape Ecology》2002,17(5):433-444
Forest managers in Canada need to model landscape pattern or spatial configurationoverlarge (100,000 km2) regions. This presents a scalingproblem, as landscape configuration is measured at a high spatial resolution,but a low spatial resolution is indicated for regional simulation. We present astatistical solution to this scaling problem by showing how a wide range oflandscape pattern metrics can be modelled from low resolution data. Our studyarea comprises about 75,000 km2 of boreal mixedwoodforest in northeast Alberta, Canada. Within this area we gridded a sample of 84digital forest cover maps, each about 9500 ha in size, to aresolution of 1 ha and used FRAGSTATS to compute a suite oflandscape pattern metrics for each map. We then used multivariate dimensionreduction techniques and canonical correlation analysis to model therelationship between landscape pattern metrics and simpler stand table metricsthat are easily obtained from non-spatial forest inventories. These analyseswere performed on four habitat types common in boreal mixedwood forests: youngdeciduous, old deciduous, white spruce, and mixedwood types. Using only threelandscape variables obtained directly from stand attribute tables (totalhabitatarea, and the mean and standard deviation of habitat patch size), ourstatistical models explained more than 73% of the joint variation in fivelandscape pattern metrics (representing patch shape, forest interior habitat,and patch isolation). By PCA, these five indices captured much of the totalvariability in the rich set of landscape pattern metrics that FRAGSTATS cangenerate. The predictor variables and strengths of association were highlyconsistent across habitat classes. We illustrate the potential use of suchstatistical relationships by simulating the regional, cumulative effects ofwildfire and forest management on the spatial arrangement of forest patches,using non-spatial stand attribute tables.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

18.
Based on recent needs to accurately understand fire regimes and post-fire vegetation resilience at a supra-level for carbon cycle studies, this article focusses on the coupled history of fire and vegetation pattern for 40 years on a fire-prone area in central Corsica (France). This area has been submitted since the beginning of the 20th century to land abandonment and the remaining land management has been largely controlled by frequent fires. Our objectives were to rebuild vegetation and fire maps in order to determine the factors which have driven the spatial and temporal distribution of fires on the area, what were the feed backs on the vegetation dynamics, and the long-term consequences of this inter-relationship. The results show a stable but high frequency of small fires, coupled with forest expansion over the study period. The results particularly illustrate the spatial distribution of fires according to topography and vegetation, leading to a strong contrast between areas never burnt and areas which have been burnt up to 7 times. Fires, when occuring, affect on average 9 to 12% of the S, SE and SW facing slopes (compared to only 2 to 5% for the N facing slopes), spread recurrently over ridge tops, affect all the vegetation types but reburn preferentially shrublands and grasslands. As these fire-proning parameters have also been shown to decrease the regeneration capacity of forests, this study highlights the needs in spatial studies (both in terms of fire spread and vegetation dynamic) to accurately apprehend vegetation dynamic and functionning in fire-prone areas.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

19.
Resource management strategies have begun to adopt natural landscape disturbance emulation as a means of minimizing risk to ecosystem integrity. Detailed understanding of the disturbance regime and the associated spatial landscape patterns are required to provide a natural baseline for comparison with the results of emulation strategies. Landscape pattern indices provide a useful tool to quantify spatial pattern for developing these strategies and evaluating their success. Despite an abundance of indices and tools to calculate these, practical knowledge of interpretation is rare. Quantifying changes in landscape pattern indices and the meaning of these changes is confounded by index sensitivity to input data characteristics such as spatial extent, spatial resolution, and thematic resolution. Sensitivity has been examined for simulated landscapes but rarely using real data for large areas as real landscapes are more difficult to manipulate systematically than simulated data. While simulated data offer a control, they do not provide an accurate portrayal of reality for practical applications. Our goal was to test the sensitivity of a suite of landscape pattern indices useful for disturbance emulation strategy development and evaluation to spatial extent, spatial resolution, and thematic resolution using current land cover data for a case study of the managed forest of Ontario, Canada. We also examined how sensitivity varies spatially across the study area. We used Landsat TM-based land cover data (> 45.5 million ha), controlling spatial extent (2,500 to 2,560,000 ha), spatial resolution (1 to 16 ha), and thematic resolution (2 to 26 classes). For each index we tested a hypothesis of insensitivity to changes in each input data characteristic using a combination of ANOVA and regression and compared our results with previous studies. Of the 18 indices studied, significant (p< 0.01) effects were found for 17 indices with changes in spatial extent, 13 indices with changes in spatial resolution and 18 indices with changes in thematic resolution. A significant (p < 0.01) linear trend accounted for the majority of the variance for all of the significant relationships identified. Most of the mean index responses were consistent with those interpreted from previous studies of simulated and real landscapes; however, sensitivity varied greatly among indices and over space. We suggest that variation in sensitivity to input data characteristics among indices and over space must be explicitly incorporated in the design of future natural disturbance emulation efforts.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

20.
It is widely accepted that large protected areas are required to effectively conserve historical species composition. However, recent analyses of mammal species loss in Canadian and African national parks contradict earlier conclusions that extent of local extinctions (i.e., extirpations) is strongly inversely related to park size, suggesting that park size alone is inadequate to predict reserve designs that may sustain biodiversity. To plan protected areas that will meet conservation goals, reserve-design models that incorporate other landscape-scale factors in addition to reserve area are needed; potential factors include the types and intensity of land use and habitat change, together with land cover types, in and around parks. Additionally, human population size around parks, and visitor density in parks may affect species loss. We quantified land use, land cover, and human population in and around 24 Canadian national parks to model effects of human disturbance and changes in natural habitats on known mammal extirpations.Multiple regression models were compared using the Akaike Information Criterion (AICc). The most parsimonious model (AICc weighting w i = 0.5391) emphasized effective habitat area in and around parks and not visitor numbers nor human population size around parks. Our model suggests that parks with as little as 3140 km2 of effective habitat area inside may be large enough to conserve historical mammal species composition if they are also surrounded by at least 18 000 km2 of effective habitat within 50 km of park boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号