首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.  相似文献   

2.
Phytase supplementation beyond the standard doses used for phosphorus release has been reported to result in extraphosphoric effects by enhancing nutrient digestibility resulting in improved performance of broilers. A study was conducted to examine the effects of the progressive addition of an enhancedEscherichia Coli phytase (400–1,600 phytase units; FTU) on growth performance and carcass characteristics from 1 to 42 d of age in male broilers. One thousand four hundred Hubbard × Cobb 500 1-d-old chicks were randomly distributed into 56 floor pens (0.08 m2/bird). Seven dietary treatments were provided in a 3-phase feeding program consisting of (1) a positive control (adequate Ca and nonphytate P; PC); (2) 1 negative control (Ca and nonphytate P reduced by 0.14% and 0.13%; NC); (3 to 6) the NC diet with 4 increasing supplemental phytase concentrations (NC + 400 FTU, NC + 800 FTU, NC + 1,200 FTU, and NC + 1,600 FTU, respectively); and (7) a low-energy NC diet without phytase and xylanase (reduced 66 kcal of AMEn/kg). Body weight gain, feed conversion, mortality, weight and yield of whole carcass, abdominal fat, and pectoralis major and minor muscles were evaluated. Progressive supplementation of phytase decreased cumulative FCR linearly. Broilers fed diets containing 1,600 FTU had heavier total breast meat by 49 g compared with birds receiving the PC diets. Broilers consuming the NC + 400 FTU or the low-energy NC diet had similar growth performance and meat yield compared with birds provided PC diet. These data indicated that phytase supplementation beyond the need for phosphorus enhances growth performance and carcass characteristics.  相似文献   

3.
The efficacy of an Escherichia coli-derived phytase preparation   总被引:1,自引:0,他引:1  
Five experiments were conducted to evaluate the effect of an Escherichia coli-derived phytase on phytate-P use and growth performance by young pigs. The first experiment involved time course, pH dependence, and phytase activity studies to investigate the in vitro release of P from corn, soybean meal, and an inorganic P-unsupplemented corn-soybean meal negative control diet. In Exp. 2, which was designed to determine the efficacy of the E. coli-derived vs. fungal phytase-added diets at 0, 250, 500, 750, 1,000, or 1,250 FTU/kg (as-fed basis; one phytase unit or FTU is defined as the quantity of enzyme required to liberate 1 micromol of inorganic P/min, at pH 5.5, from an excess of 15 microM sodium phytate at 37 approximately C) and a positive control diet, eight individually penned 10-kg pigs per diet (12 diets, 96 pigs) were used in a 28-d growth study. The third experiment was a 10-d nutrient balance study involving six 13-kg pigs per diet (four diets, 24 pigs) in individual metabolism crates. In Exp. 4, eight pens (four pigs per pen) of 19-kg pigs per treatment were used in a 42-d growth performance study to examine the effect of adding the E. coli-derived phytase to corn-soybean diets at 0, 500, or 1,000 FTU/kg (as-fed basis) and a positive control (four diets, 128 pigs). In Exp. 5, six 19-kg pigs per treatment were used in a 10-d nutrient balance study to investigate the effects of the E. coli-derived phytase added to diets at 0, 250, 500, 750, or 1,000 FTU/kg (as-fed basis) and a positive control diet (six diets, 36 pigs). The in vitro study showed that the E. coli-derived phytase has an optimal activity and pH range of 2 to 4.5. Inorganic phosphate release was greatest for soybean meal, least for corn, and intermediate for the negative control diet. Dietary supplementation with graded amounts of E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain, feed efficiency, and plasma Ca and P concentrations in 10-kg pigs in Exp. 2. Phytase also increased P digestibility and retention in the 13-kg pigs in Exp. 3. In Exp. 4, dietary supplementation with E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain and feed efficiency of 19-kg pigs. Supplementation of the diets of 19-kg pigs with the E. coli-derived phytase also improved Ca and P digestibility and retention in Exp. 5. In the current study, the new E. coli-derived phytase was efficacious in hydrolyzing phytate-P, both in vitro and in vivo, in young pigs.  相似文献   

4.
The overall objective of the studies reported here was to evaluate the growth and nutrient utilization responses of pigs to dietary supplementation of phytate- or nonstarch polysaccharide-degrading enzymes. In Exp. 1, growth performance and nutrient digestibility responses of forty-eight 10-kg pigs to dietary supplementation of phytase or a cocktail of xylanase, amylase, and protease (XAP) alone or in combination were evaluated. The growth response of one hundred fifty 23-kg pigs to dietary supplementation of phytase or xylanase individually or in combination was studied in Exp. 2 in a 6-wk growth trial, whereas Exp. 3 investigated the nutrient digestibility and nutrient retention responses of thirty 24-kg pigs to dietary supplementation of the same enzymes used in Exp. 2. In Exp. 1, the pigs were used in a 28-d feeding trial. They were blocked by BW and sex and allocated to 6 dietary treatments. The treatments were a positive control (PC) diet; a negative control (NC) diet marginally deficient in P and DE; NC with phytase added at 500 or 1,000 phytase units (FTU)/kg; NC with xylanase at 2,500 units (U)/kg, amylase at 400 U/kg, and protease at 4,000 U/kg; and NC with a combination of phytase added at 500 FTU/kg and XAP as above. In Exp. 2 and 3, the 5 dietary treatments were positive control (PC), negative control (NC), NC plus 500 FTU of phytase/kg, NC plus 4,000 U of xylanase/kg, and NC plus phytase and xylanase. In Exp. 1, low levels of nonphytate P and DE in the NC diet depressed (P < 0.05) ADG of the pigs by 16%, but phytase linearly increased (P < 0.05) ADG by up to 24% compared with NC. The cocktail of XAP alone had no effect on ADG of pigs, but the combination of XAP and phytase increased (P < 0.05) ADG by 17% compared with the NC treatment. There was a linear increase (P < 0.01) in Ca and P digestibility in response to phytase. In Exp. 2, ADG was 7% greater in PC than NC (P < 0.05); there were no effects of enzyme addition on any response. In Exp. 3, addition of phytase alone or in combination with xylanase improved (P < 0.05) P digestibility. Phosphorus excretion was greatest (P < 0.01) in the PC and lowest (P < 0.05) in the diet with the combination of phytase and xylanase. The combination of phytase and xylanase improved P retention (P < 0.01) above the NC diet to a level similar to the PC diet. In conclusion, a combination of phytase and carbohydrases improved ADG in 10-kg but not 23-kg pigs, but was efficient in improving P digestibility in pigs of all ages.  相似文献   

5.
One‐hundred and fifty male chickens were used to evaluate the effects of different activities (0, 250, 500, 12 500 FTU/kg) of phytase on their performance and antioxidant concentration in the liver. The chicks were housed in 30 cages and were allocated to six replicates of five dietary treatments. All diets were formulated to be adequate in energy and protein (12.90 MJ/kg metabolizable energy, 214 g/kg crude protein), however, the negative control (NC) was lower in available P compared with the positive control (PC) (2.5 vs. 4.5 g/kg diet). The other three diets were the NC supplemented with phytase at 250, 500 and 12 500 FTU/kg (NC + 250, NC + 500 and NC + 12 500 FTU respectively). The concentration of antioxidants in the liver of the birds was determined using HPLC at 21 days of age. Low P diets (NC) reduced weight gain, however, supplementation with phytase improved weight gain to the extent that it was better than the PC at the 12 500 FTU treatment (p < 0.05). Feed conversion ratio was also improved by the high level of phytase supplement more than other treatments (p < 0.05). Feed consumption was not affected either by dietary phosphorus concentration or by different phytase supplementation. The antioxidant data showed that the unsupplemented diet with low phosphorus (NC) decreased the concentration of coenzyme Q10 and retinol‐linoleate in the liver compared with that of birds on the adequate phosphorus treatment (PC). Phytase supplementation, especially at the higher doses (500 and 12 500 FTU) increased the level of coenzyme Q10 to the same level as the PC treatment. In addition, the highest dose (12 500 FTU) of phytase increased retinol concentration in the liver of chickens compared with those on the NC treatment. The highest inclusion level of phytase increased the α‐tocopherol level in the liver compared with the lower levels of phytase (NC + 250 and NC + 500 FTU).  相似文献   

6.
A performance trial was conducted with broiler chicks to study the effect of phytase (PHY) supplementation in diets formulated with reduced AME, Ca, and P. The nutrient digestibility was determined during the 14- to 21-d and 28- to 35-d periods. The treatments consisted of 3 diets (NC1, NC2, NC3) differing in nutrient content and each diet with or without supplemental PHY (NC1, 0 or 500; NC2, 0 or 750; NC3, 0 or 1,000 U of PHY/kg feed) and 1 positive control diet (PC). Compared with the PC diet, negative control diets (NC) resulted in lower AME and apparent ileal amino acid digestibility for some amino acids. Phytase supplementation of the NC diets increased AME, apparent ileal amino acid digestibility, and apparent ileal crude protein digestibility. Phytase addition also increased mineral absorption in 21- and 35-d-old broilers fed NC diets. Reduced nutrient digestibility appears to be a factor in the weight gain and feed intake results. Reducing Ca and P content reduced feed intake in a stepwise fashion in the NC diets. Phytase increased feed intake and generally improved nutrient digestibility, which resulted in an increase in digestible nutrient intake. Averaged across NC diets, PHY improved body weight. Bone-breaking strength was the most consistent predictor of Ca and P reduction. All NC diets had significantly lower bone-breaking strength than the PC. Phytase supplementation of the NC diets gave bone-breaking strengths that were comparable to the PC. Diets with PHY had the highest bioeconomic index.  相似文献   

7.
1. The objective of this study was to evaluate the effects of total removal of dietary inorganic phosphorus and reduced energy and protein, without and with phytase supplementation, on the performance, egg quality and bone composition of laying hens. 2. Lohmann pink-shell hens were randomly assigned at 56 weeks of age to 5 treatments for 20 weeks as follows: (1) a positive control (PC) with 155 g CP/kg, 11·09 MJ ME/kg, calcium (Ca) 3·40% and non-phytic phosphorus (NPP) 0·26%, (2) a negative control (NC1) diet based on PC diet with Ca decreased to 3·30% and NPP to 0·14%, (3) NC2 diet was formulated on the basis of NC1 diet with 152·7 g CP/kg, 10·90 MJ/kg, (4) NC1 and (5) NC2 supplemented with phytase (300 FTU/kg) each. 3. Feed intake, hen-day or hen-housed egg production, egg number per hen-housed, and final body weight were depressed with NC1 and NC2 diets, but restored by phytase inclusion. There were no significant differences between the dietary treatments for feed conversion efficiency, rates of cracked and broken eggs, egg-shell thickness or egg-shell strength. Mortality was significantly increased by NC2 diet without phytase. Tibia ash was significantly decreased by both NC1 and NC2 diets. Bone strength, and Ca and P contents in tibia ash were significantly increased by phytase inclusion in the NC1 diet. 4. In conclusion, the NC1 and NC2 diets significantly depressed performance and tibia quality, but the addition of phytase (300 FTU/kg) significantly improved performance and tibia integrity.  相似文献   

8.
Four trials investigated the effect of high levels of three phytase enzymes on P and protein utilization in chicks. The three phytases were derived from Aspergillus (Fungal Phytase 1), Peniophora (Fungal Phytase 2), and E. coli. Within each assay, 8-d-old male chicks were given ad libitum access to their experimental diet for 10 to 14 d. For Trials 1, 2, and 3, the basal diet was a corn-soybean meal diet deficient in P that was analyzed to contain 23% CP and 0.38% total P (0.10% estimated available P, as-fed basis). Phytase supplementation levels were based on the assessment of phytase premix activity (i.e., P release from Na phytate at pH 5.5 and 37 degrees C). In Trial 1, supplementation of inorganic P from KH2PO4 (0 to 0.20%) resulted in a quadratic (P < 0.05) response in weight gain, gain:feed, and tibia ash concentration but a linear (P < 0.01) increase in tibia ash weight. Tibia ash was higher (P < 0.01) for chicks fed E. coli phytase than for those fed Fungal Phytase 1 at 500, 1,000, and 5,000 phytase units (FTU)/kg, but did not differ between these two phytases at 10,000 FTU/kg. In Trial 2, E. coli phytase supplementation at 1,000 FTU/kg maximized growth and bone responses, whereas addition of either of the two fungal phytases resulted in increasing responses up to 5,000 and 10,000 FTU/kg. Dietary addition of Fungal Phytase 2 resulted in the poorest (P < 0.01) responses among the three phytases. Escherichia coli phytase supplementation at 10,000 FTU/kg in Trial 3 resulted in tibia ash (millligrams) responses that were greater (P < 0.05) than those resulting from either 0.35% inorganic P supplementation or 10,000 FTU/kg of Fungal Phytase 1 or 2. Trial 4 showed that E. coli phytase supplementation at either 500 or 10,000 FTU/ kg did not improve protein efficiency ratio (gain per unit of protein intake) of chicks fed low-protein soybean meal or corn gluten meal diets that were first-limiting in either methionine or lysine, respectively. These results demonstrate that high dietary levels of efficacious phytase enzymes can release most of the P from phytate, but they do not improve protein utilization.  相似文献   

9.
An experiment was conducted to evaluate increasing or decreasing concentrations of dietary phytase on growth performance and processing yields of male broilers from 1 to 35 d of age. Treatments consisted of a positive control, a negative control (NC; less 0.14% Ca, 0.13% nonphytate P, and 0.03% Na), and 6 additional treatments based on the NC supplemented with phytase. Treatments 3 through 5 consisted of the NC diet supplemented with 500 phytase units (FTU)/kg of phytase in the starter phase that was either continued throughout the remainder of the study (treatment 3) or increased to 1,500 FTU/kg beginning in the finisher (treatment 4) or grower (treatment 5) phases. Treatment 6 had 1,500 FTU/kg of phytase throughout the study. Treatments 7 and 8 had 1,500 FTU/kg in the starter and decreased to 500 FTU/kg in the finisher or grower phases, respectively. At 35 d of age, broilers fed diets containing 1,500 FTU/kg of phytase had increased BW gain compared with birds fed diets formulated to contain 500 FTU/kg of phytase. Increasing phytase concentration between the starter and grower phases or decreasing phytase concentration between the grower and finisher phases negatively affected FCR from 1 to 35 d of age. Phytase supplementation did not affect weight and yield of carcass characteristics. Therefore, dietary phytase concentration should not be varied throughout production for optimum growth performance.  相似文献   

10.
The effect of high levels of microbial phytase supplementation in diets for growing pigs was studied in a 2‐week performance and nutrient digestibility trial involving 28 growing pigs weighing 16.4 ± 1.06 (mean ± SD) kg. Seven corn‐barley‐soybean meal‐based diets consisting of a positive control (PC) formulated to meet or exceed NRC nutrient requirements; a negative control (NC) with non‐phytate P reduced by 0.1% unit from NRC requirement and fed without or with 500 or 1000 U/kg; a doubled negative control (DNC) with no added inorganic P and fed without or with 2000 or 4000 U/kg. Chromic oxide was added as an indigestible marker and all diets were fed as mash. Pigs fed the PC diet had a higher P digestibility compared with those fed the NC (P < 0.02) and the DNC (P < 0.001) diets. Supplementing the NC diet with pyhtase tended to improve P digestibility (P < 0.10). However, addition of phytase to the DNC diet resulted in linear (P < 0.001) and quadratic (P < 0.03) increases in P digestibility with an overall improvement of 8% and 121% at 4000 phytase U/kg of diet, respectively, compared with the PC and DNC diets. Apparent total tract digestibility of N, OM and DM were higher (P < 0.05) in the PC diet compared with the DNC diet, but not the NC diet (P < 0.10). No effect of phytase addition to NC was observed on Ca, N, DM and OM digestibility. Phytase addition to the DNC diet resulted in a linear increase (P < 0.05) in N, DM and OM digestibility but not Ca. Increasing the levels of phytase supplementation in the NC and the DNC diets linearly decreased fecal P (P < 0.05) content by 45 and 42%, respectively. Adding phytase at 1000 or 4000 U/kg increased P retention (P < 0.05) by 14.3 or 15.6% units, respectively, compared with the PC diet. Urinary P excretion was higher in the group fed the PC diet compared with those fed the NC and DNC diets (P < 0.05). The results of this study show that complete removal of inorganic P from growing pig diets coupled with phytase supplementation improves digestibility and retention of P and N, thus reducing manure P excretion without any negative effect on pig performance.  相似文献   

11.
Two experiments were conducted to investigate the concept that the addition of corn expressing an Escherichia coli-derived gene (corn-based phytase; CBP) to a P-deficient diet would improve growth performance and P utilization in pigs. An E. coli-derived microbial phytase (expressed in Pichia pastoris) sprayed onto a wheat carrier (Quantum) was included for comparison. In Exp. 1, forty-eight 10-kg pigs were blocked by BW into 6 blocks and allotted to 8 dietary treatments such that the BW among dietary treatments was similar and given free access to feed for 28 d. The dietary treatments were a negative control (NC) with no inorganic P supplementation; NC + 2, 4, or 6 g of monosodium phosphate/kg; NC + 16,500, 33,000, or 49,500 phytase units (FTU) of CBP/kg; and NC + 16,500 FTU of Quantum/kg. In Exp. 2, twenty-four 13-kg barrows were assigned to the NC, NC + 16,500 or 33,000 FTU of CBP/kg, or NC + 16,500 FTU of Quantum/kg, in a nutrient- and energy-balance study consisting of 5 d of adjustment and 5-d collection periods. The total collection method was used to determine nutrient and energy balance. Addition of CBP to the low-P NC diet linearly increased (P < 0.01) ADG, G:F, and plasma P concentration of pigs during the 28-d study. There was no difference in ADG, G:F, or plasma P concentration between pigs fed the CBP or Quantum phytase at 16,500 FTU/kg. Weight gain, G:F, and plasma P concentration of pigs increased (P < 0.01) with monosodium phosphate supplementation, confirming P deficiency of the NC diet. Linear improvements (P < 0.05) in DM digestibility and energy retention were observed with CBP supplementation of the NC diet. Although there were linear (P < 0.01) and quadratic (P < 0.05) increases in N digestibility, N retention was unaffected by CBP supplementation of the NC diet in growing pigs. Phosphorus and Ca digestibilities and retentions improved linearly and quadratically (P < 0.01) with the addition of CBP to the NC diet. There was no difference in digestive utilization of P or Ca between pigs fed CBP and Quantum phytase at 16,500 FTU/kg. The data showed that the addition of a corn expressing an E. coli-derived gene to a P-deficient diet improved growth performance and indices of P utilization in pigs, and corn expressing phytase was as efficacious as Quantum phytase when supplemented in P-deficient diets for weanling pigs.  相似文献   

12.
The objective of this study was to eval- uate the effects of inorganic phosphorus source and phytase addition on performance, nutrient digestibility and bone mineralization in broiler chickens. In Exp. 1,150 two-day old, male broiler chicks were fed a corn-soybean meal basal diet supplemented with phos- phorus provided by dicalcium phosphate, tricalcium phosphate or defluorinated rock phosphate. Five cages containing 10 birds were allotted to each of the three treatments. In Exp. 2,120 three-day old, male broiler chicks were fed the basal diet from Exp. 1 supplemen- ted with 0,250,500 ,or 1,000 P-'rU phytase per kg of diet. Six cages containing five chicks were allotted to each of the four treatments. In Exp. 1, there was no difference in weight gain, feed intake or feed conver- sion as a result of feeding the different sources of in- organic phosphorus. The digestibility of phosphorus was significantly lower (P =0.01 ) for chicks fed di- ets supplemented with tricalcium phosphate than for chicks fed the other two diets. However, despite the lower digestibility, serum phosphorus levels did not differ among the three treatments. For Exp. 2, feedconversion showed a linear improvement (P = 0.03 ) with increasing levels of phytase inclusion ( days 0 to 33 ). Phytase supplementation resulted in linear increa- ses in the digestibility of dry matter (P = 0.02 ), crude protein ( P --- 0.04 ) and energy ( P 〈 0.01 ). Chicks fed 1,000 FTU/kg phytase had significantly higher bone calcium ( P = 0.05 ) and bone breaking strength (P = 0.04 ) than chicks fed the basal diet on day 33. In conclusion, the results of the current study indicated that the performance of birds fed diets sup- plemented with dicalcium phosphate, tricalcium phos- phate or defluorinated phosphate was similar and therefore production costs could be lowered by choo- sing the cheapest inorganic phosphorus source when formulating diets for poultry. When diets were formu- lated to meet dietary phosphorus requirements, the growth of broilers was not enhanced with phytase sup- plementation. However, increases in feed conversion and bone breaking strength and its potential to impact culling and mortality in broiler operations may be suf- ficient justification for the routine inclusion of phytase in diets fed to broilers.  相似文献   

13.
Phytases catalyse the hydrolysis of phytate rendering phosphorus (P) available for absorption. Endogenous plant phytases are to some extent present in cereals (depending on species and varieties) while microbial phytases are added to cereal based diets to increase the digestibility of phytate bound P. The present study compared two different microbial phytases. The basal diet was composed of wheat, barley, soybean and rapeseed meal without feed phosphate. The diet was initially expanded, pelleted at 90 °C and crumbled. Phytases were added at 250, 500 and 750 FTU kg− 1 diet (Aspergillus niger; Phytase 1) and 375 and 750 FYT kg− 1 diet (Peniophora lycii; Phytase 2). The experiment comprised 6 treatment groups of 6 pigs each kept in metabolism crates and fed one of the 5 test diets or a diet with no added microbial phytase. The diets were fed for 12 days, 5 days for adaptation and 7 days for total collection of faeces and urine. Phosphorus digestibility of the basal diet averaged 43% and increased to 55, 61 and 66% following addition of 250, 500 and 750 FTU/kg of Phytase 1 and 54 and 60% following addition of 375 and 750 FYT/kg of Phytase 2, respectively. In conclusion, equivalent effects were obtained when Phytase 2 was given at 1.5 times the doses of Phytase 1.  相似文献   

14.
Availability of phytate-bound P as influenced by supplemental phytase was studied in eight horses consuming four diets in a 4 x 4 Latin square design experiment. The treatments were a control (containing a low P level, 18.4 g/d) and three high-P diets. These diets contained P as monocalcium phosphate (MCP; 43.7 g/d), myoinositol hexakisphosphate in the form of wheat and rice bran (MIHP; 41.8 g/d), or MIHP with microbial phytase (MIHPP; 42.5 g/d). The proportions of phytate-bound P were 3, 1, 55, and 56% for the control, MCP, MIHP, and MIHPP, respectively. The MIHPP diet was supplemented with 300 phytase units (FTU)/kg (as-fed basis). Feces and urine were collected quantitatively and analyzed for P, Ca, and Mg. Urinary P excretion was lower (P < 0.05) with the control diet (0 g of P/d) than with the MCP diet (1.0 g of P/d). The low urinary P excretion (0.3 g of P/d) for the MIHP diet suggested low P availability compared with the MCP diet, but apparent digestibility of P expressed as a percentage of intake did not differ (P = 0.065) between these diets. Apparent Ca digestibility was lower (P < 0.05) for the MIHP diet than for the MCP diet (26.4 vs. 42.4%). This difference may have been caused by the origin of the Ca in these diets. Phytase supplementation increased apparent Ca digestibility from 26.4 to 31.5% (P < 0.05). Magnesium was not influenced by the level of phytate in the diet. Our data indicate that phytase supplementation had more influence on Ca digestibility than on P digestibility and suggest that phytase supplementation may be beneficial for improving Ca digestibility for horses receiving a phytate-rich diet.  相似文献   

15.
The objective of this study was to evaluate the effects of inorganic phosphorus source and phytase addition on performance, nutrient digestibility and bone mineralization in broiler chickens. In Exp. 1, 150 two-day old, male broiler chicks were fed a corn-soybean meal basal diet supplemented with phosphorus provided by dicalcium phosphate, tricalcium phosphate or defluorinated rock phosphate. Five cages containing 10 birds were allotted to each of the three treatments. In Exp. 2, 120 three-day old, male broiler chicks were fed the basal diet from Exp. 1 supplemented with 0, 250, 500, or 1,000 FTU phytase per kg of diet. Six cages containing five chicks were allotted to each of the four treatments. In Exp. 1, there was no difference in weight gain, feed intake or feed conversion as a result of feeding the different sources of inorganic phosphorus. The digestibility of phosphorus was significantly lower (P = 0.01) for chicks fed diets supplemented with tricalcium phosphate than for chicks fed the other two diets.  However, despite the lower digestibility, serum phosphorus levels did not differ among the three treatments. For Exp. 2, feed conversion showed a linear improvement (P = 0.03) with increasing levels of phytase inclusion (days 0 to 33).  Phytase supplementation resulted in linear increases in the digestibility of dry matter (P = 0.02), crude protein (P = 0.04) and energy (P < 0.01).  Chicks fed 1,000 FTU/kg phytase had significantly higher bone calcium (P = 0.05) and bone breaking strength (P = 0.04) than chicks fed the basal diet on day 33. In conclusion, the results of the current study indicated that the performance of birds fed diets supplemented with dicalcium phosphate, tricalcium phosphate or defluorinated phosphate was similar and therefore production costs could be lowered by choosing the cheapest inorganic phosphorus source when formulating diets for poultry. When diets were formulated to meet dietary phosphorus requirements, the growth of broilers was not enhanced with phytase supplementation.  However, increases in feed conversion and bone breaking strength and its potential to impact culling and mortality in broiler operations may be sufficient justification for the routine inclusion of phytase in diets fed to broilers.  相似文献   

16.
1. Carcase composition, whole body nutrient accretion rates and total tract nutrient retention of broilers in response to supplemental phytase or carbohydrase and protease from 0 to 21 d of age were investigated. 2. A total of 480 broilers were allocated to 4 slaughter groups (SG) of 30, 150, 150 and 150 broilers. Thirty broilers, in 6 replicates of 5 birds, comprised the initial SG killed at d 0; 150 broilers were allocated to each of the d 7, 14 and 21 final SG. Broilers in the final SG were allocated to 5 treatments in a randomised complete block design; each treatment had 6 replicate cages of 5 broilers per replicate cage. 3. The diets were maize-wheat-soyabean based and the treatments were: (1) positive control which met NRC (1994) energy and nutrients requirements for broiler, (2) negative control (NC) deficient in metabolisable energy (ME) and P, (3) NC plus phytase added at 1000 FTU/kg, (4) NC plus cocktail of xylanase, amylase and protease (XAP), and (5) NC plus phytase and XAP. 4. Except for ash and Ca, the treatments had no effect on carcase composition. Phytase or XAP individually or combined had variable effects on body nutrient accretion rates at various age periods of the broilers compared with the NC diet. Phytase alone or combined with XAP consistently improved body accretion rates of DM, protein, fat, ash, Ca, and P. 5. Addition of phytase alone or combined with XAP to the NC diet improved total tract N and P retention compared with the NC diet. Cocktail of XAP alone or combined with phytase improved Ca retention. Combination of phytase and XAP improved metabolisable energy (ME) and dry matter retention. 6. Overall, the results showed that the exogenous enzymes used had greater effects on the rates of nutrient accumulation in the carcase rather than on the proportion of nutrients deposited in the carcase.  相似文献   

17.
Four experiments were conducted with weanling pigs fitted with a simple T-cannula at the distal ileum, to determine the effect of phytase supplementation to four diets on the apparent ileal digestibilities (AID) of CP and AA, and the apparent total-tract digestibilities (ATTD) of CP and DE. Phytase (Natuphos, DSM Food Specialties, Delft, The Netherlands) was supplemented at rates of 0, 500 or 1,000 FTU/kg to the four diets. A 20% CP (as-fed basis) corn-soybean meal diet was used in Exp. 1; a 20% CP wheat-soybean meal diet in Exp. 2; a 20% CP wheat-soybean meal-canola meal diet in Exp. 3; and a 19% CP barley-peas-canola meal diet in Exp. 4. In each experiment, six barrows, fitted with a simple T-cannula at the distal ileum, were fed the basal plus phytase-supplemented diets according to a repeated 3 x 3 Latin square design. Each experimental period comprised 14 d. The piglets were at fed 0800 and 2000 daily, equal amounts for each meal, at a daily rate of at least 2.4 times the maintenance requirement for ME. Feces were collected from 0800 on d 8 until 0800 on d 12 of each experimental period. Ileal digesta were collected from 0800 to 2000 on d 12, 13, and 14. Chromic oxide was used as the digestibility marker. The average initial and final BW (average of all experiments) were 7.9 and 16.5 kg, respectively. Phytase supplementation did not improve the AID of CP and AA in Exp. 1, 2, and 4; however, there were improvements (P < 0.05) or tendencies (P < 0.10) toward improvements in the AID of CP and AA or the ATTD of CP and the content of DE with phytase supplementation in Exp. 3. These results suggest that the AA response factor to microbial phytase supplementation depends on diet composition.  相似文献   

18.
The effect of phytase and xylanase supplementation of a wheat-based pig diet on the ileal and total tract apparent digestibility of dietary components and minerals were studied in eight growing pigs fitted with a PVTC cannula in a randomized block design experiment. The diets (A and B) were similar in major ingredient composition and in nutrient content. In diet A, part of the limestone was replaced with di-calcium phosphate to increase the content of available phosphorus (P). Diet B was fed without or with supplementation with phytase (500 FTU/kg; diet BP), xylanase (4000 XU/kg; diet BX) and phytase + xylanase (500 FTU and 4000 XU/kg; diet BPX). There were no differences (P > 0.05) between diets in the ileal or total tract digestibility of organic matter (OM), NDF and crude protein (CP). The ileal and total tract digestibility for P and Ca differed (P < 0.05) between diets, while there were no treatment effects for Zn. The ileal and total tract digestibility for P and Ca was higher (P < 0.05) on diets BP and BPX than on the other diets. In conclusion, phytase improved the utilization of dietary P and Ca in a wheat-based diet, while xylanase had no additional benefits in terms of OM and CP digestibility or mineral utilization. Phytase had no effect on the digestibility of OM, CP or NDF.  相似文献   

19.
Phytate is an antinutrient in animal feeds, reducing the availability and increasing the excretion of nutrients. Phytases are widely used to mitigate the negative influences of phytate. This trial was designed to compare the efficacy of 2 Escherichia coli-derived phytases on broiler performance and bone ash as influenced by dietary phytate level. A total of 1,024 Arbor Acres male broilers were used with 8 replicate pens of 16 birds/pen. Experimental diets were based on low available phosphorus (avP; 1.8 g/kg) with low (6.40 g/kg) or high (10.65 g/kg) phytate. The low-avP diets were then supplemented with mono-dicalcium phosphate to increase the avP level to 4.5 g/kg, 500 phytase units/kg of phytase A, or 500 phytase units/kg of phytase B to create 8 experimental diets. Feed intake, BW gain, FCR, and livability were influenced by a P source × phytase interaction. Feed intake, BW gain, and livability were reduced and FCR was higher in broilers fed low-avP diets, particularly in the presence of high phytate. Phytase A or phytase B improved feed intake, BW gain, and FCR, particularly in the high-phytate diet. However, broilers fed phytase A ate more and were heavier than broilers fed phytase B. Tibia ash was lowest in broilers fed the low-avP diet and highest in broilers fed the diet supplemented with mono-dicalcium phosphate. Phytase increased tibia ash, and broilers fed phytase A had an increase in tibia ash compared with broilers fed phytase B. In conclusion, high dietary phytate reduced broiler performance. Phytase A and phytase B improved bone ash and growth performance, especially in the high-phytate diets. However, phytase A was more efficacious than phytase B, regardless of the level of phytate.  相似文献   

20.
Dietary phytase supplementation improves bioavailabilities of phytate-bound minerals such as P, Ca, and Zn to pigs, but its effect on Fe utilization is not clear. The efficacy of phytase in releasing phytate-bound Fe and P from soybean meal in vitro and in improving dietary Fe bioavailability for hemoglobin repletion in young, anemic pigs was examined. In Exp. 1, soybean meal was incubated at 37 degrees C for 4 h with either 0, 400, 800, or 1,200 units (U) of phytase/kg, and the released Fe and P concentrations were determined. In Exp. 2, 12 anemic, 21-d-old pigs were fed either a strict vegetarian, high-phytate (1.34%) basal diet alone, or the diet supplemented with 50 mg Fe/kg diet (ferrous sulfate) or phytase at 1,200 U/kg diet (Natuphos, BASF, Mt. Olive, NJ) for 4 wk. In Exp. 3, 20 anemic, 28-d-old pigs were fed either a basal diet with a moderately high phytate concentration (1.18%) and some animal protein or the diet supplemented with 70 mg Fe/kg diet, or with one of two types of phytase (Natuphos or a new phytase developed in our laboratory, 1,200 U/kg diet) for 5 wk. In Exp. 2 and 3, diets supplemented with phytase contained no inorganic P. In Exp. 1, free P concentrations in the supernatant increased in a phytase dose-dependent fashion (P<.05), whereas free Fe concentrations only increased at the dose of 1,200 U/kg (P<.10). In Exp. 2 and 3, dietary phytase increased hemoglobin concentrations and packed cell volumes over the unsupplemented group; these two measures, including growth performance, were not significantly different than those obtained with dietary supplemental Fe. In conclusion, both sources of phytase effectively degraded phytate in corn-soy diets and subsequently released phytate-bound Fe from the diets for hemoglobin repletion in young, anemic pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号