首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cellular uptake of branched-chain amino acids in mammary tissue is important for understanding their role in milk synthesis in the sow. This study characterized the kinetic properties and substrate specificity of the valine uptake system in the porcine mammary gland. Mammary tissue was collected from lactating sows at slaughter and tissue explants were incubated in media containing isosmotic salt and amino acids of interest, plus [3H]valine tracer. Valine uptake was time-dependent and was dependent on the presence of sodium, as indicated by a reduction in uptake when sodium in the medium was replaced by choline. The valine transport system in porcine mammary tissue had a Km of 0.64 mM, a Vmax of 1.84 mmol-kg cell water(-1) 30 min(-l), and a Kd (diffusion constant) of 1.16 L x kg cell water(-1) x 30 min(-1). Valine uptake was inhibited by leucine and alpha-aminoisobutyric acid and by high concentrations of L-alanine, L-lysine, cycloleucine, L-glutamine, and L-methionine, but not by 2-(methyl-amino)-isobutyric acid. This transport system is the primary system responsible for uptake of valine, and probably other branched-chain amino acids, in lactating sow mammary tissue. Physiological concentrations of valine in the blood are below the Km of the specific valine transport system and well below the diffusion uptake capabilities. The kinetic parameters of this valine transport system should not be limiting to valine uptake for milk protein synthesis. However, competition of valine uptake with branched-chain amino acids, as well as with other amino acids, may affect valine uptake in lactating tissue.  相似文献   

2.
Effect of ambient temperature on mammary gland metabolism in lactating sows   总被引:9,自引:0,他引:9  
Two groups of three multiparous Large White x Landrace sows were used to investigate the direct effect of ambient temperature on mammary gland metabolism. Sows from the first group were exposed to temperatures of 28 degrees C between d 8 and 14 of lactation, and 20 degrees C between d 15 and 21; treatments were reversed in the second group. Four to six d after farrowing, an ultrasonic blood flow probe was implanted around the right external pudic artery and catheters were fitted in the right anterior mammary vein and in the carotid artery. After surgery all sows were fed 3.8 kg/d of a lactation diet. The arteriovenous (AV, mg/L) plasma samples were obtained every 30 min between 0915 and 1545 on d 5 of exposure to ambient temperature; the same day, milk samples were collected at 1630. Additional arterial samples were obtained between 1000 and 1100 on d 1, 4, and 6 of exposure. Milk yield was estimated from the body weight gain of the litter. Elevated temperature tended to reduce BW loss (2.44 vs 1.82 kg/d, P < 0.10), but did not affect milk yield (11.0 kg/d). Glucagon and leptin arterial concentrations increased (12 and 8%, respectively; P < 0.10), but thyroxin and triiodothyronine concentrations decreased (26 and 16%, respectively; P < 0.01) between 20 and 28 degrees C. Expressed as a percentage of total nutrients, AV difference, glucose, amino acids, triglycerides (TG), free fatty acids, and lactate A-V differences represented 60, 20, 11, 8, and 1%, respectively. Exposure to 28 degrees C increased the extraction rate of glucose, TG, and a-amino acid N (13, 8, and 2.5%, respectively; P < 0.10). The extraction rates of essential and nonessential amino acids were not affected by temperature. The right pudic artery mammary blood flow increased (872 vs 945 mL/min, P < 0.05) between 20 and 28 degrees C, whereas milk yield was unaffected by temperature. It is suggested that this apparent inefficiency of the sow mammary gland in hot conditions could be related to an increase of proportion of blood flow irrigating skin capillaries in order to dissipate body heat.  相似文献   

3.
Effect of nutrient intake on mammary gland growth in lactating sows   总被引:2,自引:0,他引:2  
Sixty-one primiparous sows were used to determine the response of mammary gland growth to different energy and protein intakes during lactation. After birth, litter size was set to 9 or 10 pigs. Sows were slaughtered at selected times up to 30 d of lactation. Individual sows were fed one of four diets that were combinations of different amounts of energy and protein (3.0 Mcal ME and 8.0 g lysine/kg diet; 3.0 Mcal ME and 16.2 g lysine/kg diet; 3.5 Mcal ME and 6.4 g lysine/kg diet; or 3.5 Mcal ME and 13.0 g lysine/kg diet). Mammary glands were collected at slaughter and trimmed of skin and the extraneous fat pad. Each gland was weighed, cut in half to measure cross-sectional area, ground, and stored at -20 degrees C for chemical analysis. Frozen, ground tissue was used to determine dry matter, dry fat-free tissue (DFFT), total tissue protein, ash, and DNA content. Only glands known to have been suckled were included in this data set. Response surface regression was used for statistical analysis. The percentage of protein, fat, ash, and DNA in each suckled mammary gland was affected only by total energy intake (P<.05). The percentage of dry tissue and fat decreased as the total energy consumed during lactation increased, whereas the percentage of protein and DFFT increased as total energy intake increased. There were quadratic effects (P<.05) of both total energy and protein intake on wet weight, dry weight, protein amount, DFFT amount, and DNA amount of each suckled mammary gland during lactation. This study shows that mammary gland growth is affected by nutrient intake during lactation. The weight of suckled mammary glands and the amount of mammary tissue protein, DFFT, and total DNA were maximal on d 27.5 of lactation when sows had consumed an average of 16.9 Mcal of ME and 55 g of lysine per day during lactation. Provision of adequate amounts of nutrients to sows during lactation is important for achieving maximal growth of mammary glands and maximal milk production.  相似文献   

4.
灌注葡萄糖对奶山羊乳腺营养摄取的影响   总被引:1,自引:0,他引:1  
本试验研究了阴外动脉灌注葡萄糖对乳腺营养物质吸收和乳成分的影响。选用体重和产奶量相近的4只泌乳中期关中奶山羊,做阴外动脉和腹部皮下静脉手术安装血插管,采用4×4拉丁方设计,每天分别灌注葡萄糖0、12、24g和36g。结果表明:乳脂率随葡萄糖灌注量的增加而显著降低(P0.01)。灌注36g/d处理组乳脂产量显著低于其他处理组(P0.01);葡萄糖灌注提高了奶山羊的产奶量,24g/d处理组的产奶量显著高于对照组(P0.01);36g/d处理组乳腺对葡萄糖的摄取量和乳糖的产量都显著高于对照组(P0.01)。甘油三酯和非脂固形物的含量各组间差异不显著(P0.05),但葡萄糖灌注提高了乳蛋白产量,其中24g/d处理组乳蛋白产量最高,并显著高于对照组(P0.05)。葡萄糖的灌注显著降低了奶山羊干物质的采食量(P0.01)。葡萄糖的灌注对乳腺氨基酸的摄取影响不显著。葡萄糖的灌注使氨基酸合成乳蛋白的产出率提高1%~9%,葡萄糖合成乳糖的产出率提高0%~5%,有效改善了乳成分。  相似文献   

5.
Two replicates of three multiparous crossbred Large White x Landrace lactating sows were used to develop a technique for the continuous direct measurement of the blood flow through the mammary gland using transit time ultrasound. Four to six days after farrowing, an ultrasonic transit time flow probe was implanted around the right external pudic artery in order to measure the short-term variations of mammary blood flow through this vessel in response to postural change (standing vs lying), meal distribution, hand-milking, and weaning. After surgery, all sows were fed 3.8 kg/d of a lactation diet and housed either at 20 or 28 degrees C. The implantation of the ultrasonic blood flow probe was successful in all six operated sows. Postmortem examination did not indicate the presence of infection, any collateral bypassing the flow probe, or a reduction of artery diameter. The right pudic artery mammary blood flow (PMBF) was measured for 8.5 h over two periods of three days (d 11 to d 13 and d 18 to d 20 of lactation). The PMBF averaged 910 +/- 238 mL/min but was variable within 1 d. Compared with the lying position, PMBF was decreased (- 6%, P < 0.05) when sows were standing. Between 0 to 15 and 16 to 30 min after oxytocin injection (t = 0) and hand-milking, PMBF remained constant (P = 0.05; 801 vs 767 mL/ min) and increased (P = 0.02), respectively, in comparison with the mean calculated over the preceding 30-min period (982 vs 784 mL/min). The PMBF increased (P < 0.05) after meal distribution and reached a peak 65 min later (i.e., 980 mL/min). The PMBF decreased regularly after separation of piglets at weaning; at 8 and 16 h after weaning, PMBF was 60 and 40% of the value recorded before weaning, respectively. Assuming that PMBF drains one-quarter of the whole mammary gland, it can be calculated that blood flow through the entire mammary gland averages 3.6 L/min and that about 470 L of blood are required to produce 1 kg of milk. The proposed methodology constitutes a new technique to measure direct mammary blood flow and its short-term factors of variation.  相似文献   

6.
The objectives of this study were to characterize the tissue compositional changes in porcine mammary glands after weaning and to determine whether administration of estradiol alters the profile of these tissue changes. Forty-five primiparous sows were assigned randomly to one of two treatment groups after weaning, control or estrogen treated. Estrogen-treated sows received twice-daily injections of estradiol-17beta (0.125 mg/kg of BW); control sows received vehicle injections. Sows were weaned at d 21 of lactation and killed on either d 0 (d of weaning; n = 5) or on d 2, 3, 4, 5, or 7 after weaning (n = 4 per treatment on each day). Teat order relative to suckling behavior was observed on the day before weaning to determine which mammary glands the piglets suckled. Suckled and non-suckled glands were identified from the teat order observation, and individual mammary glands were collected at slaughter. Mammary glands were trimmed of skin and extraneous fat pad, individually weighed, and bisected to measure cross-sectional area. The remaining half of each gland was ground and stored at -20 degrees C for chemical analyses. Frozen tissue was used for measuring tissue DNA, DM, protein, fat, and ash contents. Suckled mammary glands of sows undergo significant and dramatic changes during the initial 7 d after weaning, with significant changes occurring even by d 2 after weaning. Mean cross-sectional area of parenchymal tissue in suckled mammary glands decreased from 59.7 +/- 2.1 cm2 on the day of weaning to 26.8 +/- 2.3 cm2 by d 7 after weaning (P < 0.0001). Mammary gland wet weight decreased from 485.9 +/- 22.0 g on the day of weaning to 151.5 +/- 24.8 g by d 7 after weaning (P < 0.0001), whereas DNA decreased from 838.8 +/- 46.2 g on the day of weaning to 278.4 +/- 52.5 g by d 7 after weaning (P < 0.0001). The changes in gland wet weight and DNA during the period of mammary gland involution in the sow represent loses of over two-thirds of the parenchymal mass and nearly two-thirds of the cells that were present on the day of weaning. Estrogen treatment did not affect overall mammary involution during the first 7 d after weaning. Mammary glands that were not suckled during lactation had no further loss of parenchymal tissue during the first 7 d after weaning. Mammary gland involution in the sow is a rapid process and is probably irreversible within 2 or 3 d after weaning.  相似文献   

7.
Twenty-four primiparous sows were used to determine the extent of mammary gland growth during lactation. Litter size was set to nine or 10 pigs immediately after birth. Sows were slaughtered in groups representing d 0 (within 12 h after farrowing), 5, 10, 14, 21, and 28 of lactation. Sows were provided 17.5 Mcal ME and 65 g of lysine per day during lactation. Mammary glands were collected at slaughter and trimmed of skin and extraneous fat pad. Each gland was weighed, cut in half to measure cross-sectional area, and ground for chemical analysis. Dry matter content, dry fat-free tissue (DFFT) content, protein content, amino acids composition, ash content, and DNA content were measured. Only glands known to have been suckled were included in these data. Wet and dry tissue weight; cross-sectional area; and the amount of DFFT, tissue protein, and amino acids in each suckled mammary gland increased (P < .05) during lactation to a peak on d 21. Fat percentage of each suckled gland declined (P < .05) and the percentage of protein and DFFT increased (P < .05) as lactation progressed. These results suggest that hypertrophy occurred in the tissue during lactation. There was a linear increase in the amount and percentage of DNA during lactation (P < .05), suggesting hyperplasia of the mammary tissue. Mammary tissue growth continues in suckled glands during lactation in sows, with gland wet weight increased by 55% and total gland DNA increased by 100% between d 5 and 21 of lactation.  相似文献   

8.
The presence and localisation of lymphocyte subsets together with class II bearing cells in the mammary gland of sows, were studied at different periods of the reproductive cycle by immunohistochemistry and compared with blood. All cell types involved in the immune response were present in the mammary gland at the different stages of gestation and lactation and nearer the alveolar epithelium as gestation proceeded: T lymphocytes, including CD4+ and CD8+, B lymphocytes and class II bearing cells (epithelial cells and macrophages). The results indicated an early accumulation of T lymphocytes, specifically T helper cells, during pregnancy; the specific increase of IgA lymphocytes occurring after this phase could suggest a role for these T cells in the induction of IgA response. The local accumulation of immune cells sustains the view that the mammary gland is able to mount a true local immune response and the increase in CD8+ cells near the epithelium suggests a role in local immune defence.  相似文献   

9.
Data from 3559 lactations in the Moorepark herd over a seven-year period were analysed. An increase in intake was associated with increasing litter size, increasing parity and lower pregnancy weight gain. Higher farrowing house temperatures were associated with lower intakes resulting in sows farrowing in July eating 10% less than sows farrowing in mid-winter. Higher weaning age was also associated with increased consumption. Review of the literature shows a number of other factors to be associated with variation in intake including breed of sow, system of feeding and system of sow management. Intake of higher energy diets is sometimes depressed but energy consumed may be increased. Sows fed low protein diets in pregnancy consume more of high protein diets in lactation but this is not so when a high protein pregnancy diet is fed.  相似文献   

10.
Arginine catabolism in lactating porcine mammary tissue   总被引:3,自引:0,他引:3  
In vivo studies have shown that the uptake of plasma arginine by the lactating porcine mammary gland greatly exceeds the output of arginine in milk, but little is known about the metabolic fate of arginine in this organ. The objective of this study was to quantify arginine catabolism via arginase and nitric oxide synthase pathways in the mammary tissue of sows on d 28 of lactation. Mammary tissue slices (approximately 60 mg) were incubated at 37 degrees C for 1 h in 2 mL of Krebs bicarbonate buffer containing 0.5 or 2 mM L-[U-14C]arginine, and arginine metabolites were measured using HPLC and radiochemical techniques. Rates of arginine utilization were similar to rates of urea production. Proline, ornithine, urea, glutamate, glutamine, CO2 and polyamines (putrescine + spermidine + spermine) were formed from arginine, accounting for 46, 31, 17, 2.3, 1.5, 0.22, and 0.30%, respectively, of the metabolized arginine carbons. Relatively small amounts of arginine were utilized for nitric oxide and citrulline synthesis, with citrulline accounting for 2% of the metabolized arginine carbons. Production of all arginine metabolites increased with increasing extracellular arginine concentrations from 0.5 to 2 mM, indicating a high capacity for arginine degradation. Consistent with the metabolic findings, the activities of arginases, ornithine aminotransferase, and pyrroline-5-carboxylate reductase were high, whereas those of pyrroline-5-carboxylate dehydrogenase, ornithine decarboxylase, and nitric oxide synthases were relatively low, and there was no proline oxidase, ornithine carbamoyltransferase or pyrroline-5-carboxylase synthase activity in the mammary tissue. Our results demonstrate for the first time that proline, ornithine, and urea were the major products of arginine catabolism via the arginase pathway in lactating porcine mammary tissue and provide a biochemical basis to explain a relative enrichment of proline but a relative deficiency of arginine in sow's milk.  相似文献   

11.
Third-parity sows received s.c. injections of sterile water (CTL, n = 12) or 15 mg of recombinant porcine prolactin (pPRL, n = 12) at 0730, 1530, and 2330 from d 2 to 23 of lactation. Litters were standardized to 11 or 12 pigs and were weighed weekly until weaning (d 24). On d 22 of lactation, milk production was estimated, and a milk sample was obtained the next day. Jugular blood samples were collected from sows on d 2, 7, 14, and 21 of lactation. Sows were slaughtered and mammary glands collected at d 24. Injections of pPRL doubled the serum concentrations of prolactin (P < .001) on d 7, 14, and 21 of lactation and decreased IGF-I concentrations on d 14 (P = .07) and 21 (P < .01). Weight, backfat, and milk yield of sows and mean pig weights were not affected by pPRL (P > . 1), yet the mean duration of intervals between nursings was reduced by 4.2 min (P = .06) in pPRL litters (45.9 vs 41.7 min). Dry matter and fat percentages in milk were lower in pPRL sows (P < .01). Weights of parenchymal and extraparenchymal tissues were not altered by pPRL treatment (P > .1). Number of prolactin receptors in parenchymal tissue as well as receptor affinity were similar in both groups (P > .1). Results indicate that virtually all prolactin receptors were saturated in CTL sows. This is probably the reason why additional exogenous prolactin had negligible effects.  相似文献   

12.
Twenty-eight primiparous sows were used to determine the effect of litter size on the growth of mammary glands and nursing pigs during lactation. Litter size was set to 6, 7, 8, 9, 10, 11, or 12 pigs by cross-fostering immediately after birth. Four sows were allotted to each litter-size group. Sows were allowed to consume a daily maximum of 13.6 Mcal ME and 46.3 g of lysine during lactation. Sows were slaughtered on d 21 (20.6+/-1.1) of lactation. Mammary glands were collected at slaughter and trimmed of skin and the extraneous fat pad. Each gland was separated, weighed, and ground for chemical analysis. Dry matter, dry fat-free tissue (DFFT), crude protein, ash, and DNA contents were measured. Only glands known to have been nursed were included in the data set. Wet and dry weights and the amounts of DFFT, protein, DNA, ash, and fat in individual nursed mammary glands linearly decreased (P<.05) as litter size increased. Percentages of DFFT, protein, and DNA were quadratically affected (P<.05) by litter size on d 21 of lactation. Total mammary wet and dry weights and total DFFT, protein, DNA, fat, and ash amount of all nursed mammary glands of each sow were increased as litter size increased (P<.05). Changing litter size from 6 to 12 pigs resulted in 2,098, 432, 253, 227, 4.4, 178, and 20 g increases in the amounts of total mammary wet weight, dry weight, DFFT, protein, DNA, fat, and ash, respectively, on d 21 of lactation. Litter weight gain was 18.1 kg greater in sows with 12 pigs than in sows with 6 pigs. Sows with a larger litter size had a greater increase in total mass of mammary gland tissue and litter weight but had lower growth of individual nursed mammary glands and individual pigs than sows with the smaller litter size. The need for nutrients to support additional mammary gland and litter growth as litter size increases should be considered when estimating nutrient requirements for lactating sows. Sows need an additional .96 g lysine per day to account for mammary gland growth for each pig added to a litter.  相似文献   

13.
Continuous N-balances with sows (13 first litters and 118 piglets) were performed over 14 days. Milk yield was calculated using the daily gain of the suckling piglets. The amount of feed before farrowing was varied, during the trials feeding was ad libitum. In both trials reductions of milk yield were observed after 1 weak of lactation. The animals with the highest energy intake a. p. showed best performances in suckling time. There were 65 treatments with antibiotics caused by rectal temperatures of sows above 39.5 degrees C. High feeding of sows a. p. in accordance to the need is recommended with restricted and increasing amounts during the first week of lactation. Peripartal additives such as antibiotics or acids can be useful for health and performances.  相似文献   

14.
It has been suggested that calmodulin, a calcium-binding protein, has a functional role during milk secretion. High levels of calmodulin are present during lactation in rat mammary glands and a substantial increase has been observed in the bovine mammary gland prior to parturition. In the sow, regressed glands involute while suckled glands remain highly active even though they are under the same hormonal influence. In this study, tissue samples were taken from suckled and regressed glands of the same sow at both peak and late lactation. Calmodulin and total protein were measured in tissue homogenate supernatants. Residual milk was apparent in regressed glands during mid lactation but not in the same glands by late lactation. Calmodulin levels in tissue were the same for both suckled and regressed glands. There was a slight but non-significant increase in the tissue calmodulin level from peak to late lactation. Protein levels declined significantly from mid to the late stage of lactation. There was no change in protein level between the suckled and regressed glands. Calmodulin may be responsible for casein phosphorylation and/or the mediation of prolactin action on the gland. The precise regulatory mechanisms relating hormonal control to calmodulin levels during lactation need further investigation.  相似文献   

15.
Quarters of three lactating and three dry cows were infused with 10 micrograms endotoxin and the inflammatory response induced in the mammary gland was compared. The response of the dry glands was much less than that shown by the lactating glands. The swelling in the lactating quarters was severe after four hours and declined slowly; in the dry quarters the swelling was mild and transient. Antitrypsin levels, which reflect vascular permeability, were much greater in the lactating quarters, and the somatic cell counts were similarly much higher in the lactating quarters. One dry quarter gave no response other than a slight increase in antitrypsin after four hours.  相似文献   

16.
Twenty-eight primiparous sows were used to study nutrient mobilization among body tissues as influenced by litter size in lactating sows. Litter size was set to 6, 7, 8, 9, 10, 11, or 12 pigs within 48 h postpartum by cross-fostering. Four sows were allotted to each litter size group. Sows had 11.5 +/- 1.3 Mcal of ME and 39.3 +/- 4.4 g of lysine per day and were killed on d 20.6 +/- 1.1 of lactation. Liver, gastrointestinal tract (GIT, composed of the empty stomach, empty small and large intestines, cecum and rectum), reproductive tract, and other organs (excluding liver, GIT, reproductive tract, and mammary gland) were separated from the carcass. Gastrointestinal tracts were manually stripped of contents and flushed with water to remove digesta. Hot carcasses were split longitudinally at the midline after removing mammary glands and internal organs. Individual organs and carcasses were weighed then ground for chemical analysis. Dry matter, crude protein, fat, and ash contents were measured. As litter size increased, protein mobilization was linearly increased (P < 0.05) in carcass, GIT, and reproductive tract. Protein mobilization in liver was quadratically affected by litter size (P < 0.05). Fat mobilization was not affected by litter size. The amount of protein mobilized from carcass, GIT, liver, and reproductive tract in sows increased by 641 g as litter size increased by one pig from 6 to 12 pigs after a 21-d lactation. Carcass contributed the largest amount of protein (600 g for an additional pig) among body tissues, whereas the reproductive tract contributed the highest percentage (26%) of its protein among body tissues. Protein efficiency from milk to litter weight gain was 72% as litter size increased during a 21-d lactation. In feeding lactating sows, effect of litter size on nutrient mobilization from various tissues should be considered for minimizing the excess tissue mobilization during lactation.  相似文献   

17.
The response of the bovine mammary gland to lipoteichoic acid (LTA), which is a major pathogen-associated molecular pattern of Gram-positive bacteria, was investigated by infusing purified Staphylococcus aureus LTA in the lumen of the gland. LTA was able to induce clinical mastitis at the dose of 100 microg/quarter, and a subclinical inflammatory response at 10 microg/quarter. The induced inflammation was characterized by a prompt and massive influx of neutrophils in milk. LTA proved to induce strongly the secretion of the chemokines CXCL1, CXCL2, CXCL3 and CXCL8, which target mainly neutrophils. The complement-derived chemoattractant C5a was generated in milk only with the highest dose of LTA (100 microg). The pro-inflammatory cytokine IL-1beta was induced in milk, but there was very little if any TNF-alpha and no IFN-gamma. The re-assessment of CXCL8 concentrations in milk whey of quarters previously challenged with S. aureus, by using an ELISA designed for bovine CXCL8, showed that this chemokine was induced in milk, contradicting previous reports. Overall, S. aureus LTA elicited mammary inflammatory responses that shared several attributes with S. aureus mastitis. Purified LTA looks promising as a convenient tool to investigate the inflammatory and immune responses of the mammary gland to S. aureus.  相似文献   

18.
19.
哺乳母猪的氨基酸营养   总被引:1,自引:0,他引:1  
<正>哺乳母猪饲养是养猪生产中最重要的环节之一。哺乳母猪的营养不仅直接影响仔猪的生产性能,而且对母猪的使用年限也会产生很大的影响,尤其是饲料中蛋白质及氨基酸营养,是影响哺乳母猪繁殖性能及  相似文献   

20.
肽能被反刍动物乳腺组织有效利用,以满足乳腺组织合成蛋白质的需要。因此一些学者提出了动物乳腺组织对完整蛋白质本身或对肽有着特殊需要的观点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号