共查询到20条相似文献,搜索用时 109 毫秒
1.
The genetics of resistance to three Indian pathotypes of Xanthomonas campestris pv. oryzae, namely, IX01, IX08 and IX09, was studied in a landrace of Indica rice ‘ARC 10464’. Resistance to each of the two pathotypes IX01 and IX09 was governed by two independently-inherited dominant genes while a single dominant gene was operative against patho-type 1X08. The joint segregation tests conducted on F2 plant progenies (F3 families) using pathotypes IX01, IX08 and IX09 suggested that the gene/(s) effective against each of the pathotypes are different. 相似文献
2.
M. N. Shrivastava Arvind Kumar Sandeep Bhandarkar B. C. Shukla K. C. Agrawal 《Euphytica》2003,130(1):143-145
The Asian rice gall midge, Orseolia oryzae Wood Mason (Diptera: Cecidomyiidae), is a major pest of rice in several South and South East Asian countries. The maggots
feed internally on the growing tips of the tillers and transform them into tubular galls, onion leaf-like structures called
‘silver shoots’ resulting into severe yield loss to the rice crop. We studied the mode of inheritance and allelic relationships
of the resistance genes involved in resistant donor Line 9, a sib of a susceptible cultivar ‘Madhuri’. The segregation behaviour
of F1, F2 and F3 populations of the cross between Line 9 and susceptible cultivar MW10 confirmed the presence of a single dominant gene for
resistance. Tests of allelism with all the known genes giving resistance to this population indicated that Line 9 possessed
a new gene which was designated Gm 9
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
3.
The genetics of resistance to green leafhopper, Nephotettix virescens (Distant), in rice varieties ‘IR36’ and ‘Maddai Karuppan’ and breeding line ‘IR20965‐11‐3‐3’ was studied. The reactions of F1 hybrids, F2 populations and F3 lines from the crosses of test varieties with the susceptible variety ‘TN1’ revealed that resistance in ‘IR36’ and ‘Maddai Karuppan’, is governed by single recessive genes while resistance in ‘IR20965‐11‐3‐3’ is controlled by a single dominant gene. Allele tests with the known genes for resistance to green leafhopper revealed that the recessive gene of ‘IR36’ is different from and inherited independently of Glh1, Glh2, Glh3, Glh4, Glh5, Glh8 and Glh9t. This gene is designated as glh10t. The recessive gene of ‘Maddai Karuppan’ and the dominant gene of ‘IR20965‐11‐3‐3’ are also non‐allelic to Glh1, Glh2, Glh3, Glh4, Glh5 and Glh8t. Thus, the dominant gene of IR20965‐11‐3‐3 is designated as Glh11t. The allelic relationships of the recessive gene of ‘Maddai Karuppan’ with glh8 and glh10t should be investigated. 相似文献
4.
The inheritance of resistance to green leafhopper, Nephotettix impicticeps Ichi, was studied in 11 cultivars of rice, Oryza saliva L. These resistant cultivars were crossed with the susceptible cultivar ‘TN1’. The materials consisted of F1, F2 and F3 populations including parents which were assessed by the bulk screening test. It was found that resistance in the cultivars TR36′, UPR254-35-3′-2′, ‘Jhingasail’, ‘Govind’, ‘RP825-45-1-3’, ‘MRC603-303’, ‘RD4’, and ‘Irat104 ’ was conditioned by a single dominant gene, whereas resistance in ‘Ptb8’ IR9805-97-1′, and ‘BG367-7’ was controlled by one recessive gene. The test on the allelic relationships of the resistance genes in the test cultivars with the known genes Glb1 and Glb2 revealed that the single dominant gene that conveyed the resistance in ‘UPR254-35-3-2’ and ‘Jhingasail’ was allelic to Glh1 and segregated independently of Glh2. The resistance in ‘Govind’ and ‘RP82S-45-1-3’ was governed by the Glh2 gene which was independent of Glh1. The test cultivars ‘IR36’;. ‘MRC603-303’, ‘RD4’. and Irat104 ’ had a dominant gene for resistance which was nonallelic to Glb1 and Glb2. The recessive gene which conditioned the resistance in ‘Ptb8’, ‘IR9805-97-1’, and ‘BG367-1’ segregated independently of Glh1 and Glh2. Eleven trisomics in an ‘TR36’ background were crossed with ‘Java’, a cultivar susceptible to green leafhopper. The segregation pattern of the F2 and backcross generations revealed that the Glb6 gene was located on chromosome 5. 相似文献
5.
Seventeen rice cultivate resistant to brown planthoppers were genetically analyzed using the Bangladesh insect population. Seven cultivars were found to have a single dominant gene for resistance. These genes segregated independently of the recessive resistance gene bph-5. Tae dominant resistance gene of ‘Swarnalata’ was designated Bph-6. In ten cultivars, resistance is conferred by single recessive genes. In eight cultivars, the resistance genes are allelic to bph-5. However, the recessive genes o: two cultivars are non-allelic to bph-5. The recessive gene of T12 is designated bph-7. 相似文献
6.
研究了4个细胞突变体对稻瘟病菌ZA15、ZB11、ZC1的抗性遗传,结果表明,88-331和88-334对ZA15、ZB11的抗性受2对重复显性基因控制,且与城堡1号至少有1对等位基因存在;对ZC15的抗性则由1对与城堡1号等位的显性基因控制;对ZG1的抗性则分别受2对与城堡1号不等位的重复显性基因控制。88-45对ZA15、ZB11、ZC15和ZG1的抗性分别由 相似文献
7.
杂交稻抗白叶枯病的遗传机制 总被引:18,自引:0,他引:18
8种不同胞质类型的不育系及其保持系与9个恢复系按P×Q交配设计分别配制不育系杂种和保持系杂种, 接种白叶枯病(Xoo)“强”致病力菌系ZHE-173和“弱”致病力菌系KS-6-6, 研究杂交稻抗白叶枯病的遗传机制。 结果表明: (1) 不育系或保持系、 恢复系以及不育系或保持系与恢复系间的互作对不育系杂种或保持系杂种抗性的影响均 相似文献
8.
9.
Inheritance of resistance to four Philippine races of bacterial Might caused by Xanthomonas campestris pv. oryzae was investigated in four cultivars of rice, Oryza sativa L. Resistance to three races in ‘Benamuri’ and ‘Aus 192’ is governed by xa-5. In ‘Tepal Boro’ and ‘Bazail 975′, resistance to races 1, 2. and 3 is conferred by xa-5, but another recessive gene confers resistance to race 4. This recessive gene is closely linked to xa-5 and may be allelic to xa-13. Rice cultivars with xa-13 are resistant to prevalent races of bacteria] blight in the Indian subcontinent and should thus prove useful as donors for resistance to bacterial blight in rice breeding programs. 相似文献
10.
研究了8个籼稻抗病品种川植4号、川植5号、三黄占2号、二九丰、扬稻1号、75—34、83007、NT02和1个粳稻抗病品种湘虎25对水稻白叶枯病菌系P1、HB84-17或T_1的抗性遗传.这些抗病品种分别与感病品种沈农1033或金刚30杂交,所得的F_1、F_2和B_1F_1群体的抗性反应,表明8个籼稻品种对P_1和HB84-l7的全生育期抗性均由一对不完全显性的基因控制,该抗性基因与Xa-4是等位的;粳稻品种湘虎25的成株抗性则由一对显性基因控制,该基因与Xa-3相等位. 相似文献
11.
Understanding the molecular mechanisms of host parasite interactions should facilitate the development of novel strategies to control plant diseases.…… 《分子植物育种》2007,5(2):173-174
Understanding the molecular mechanisms of host and parasite interactions should facilitate the development of novel strategies to control plant diseases. Host interactions with biotrophic and hemi-biotrophic pathogens are known to follow a gene-for-gene specificity. The plant expresses a resistance (R) gene that is effective in preventing disease in response to pathogen races expressing the corresponding avirulence gene. We are studying the interaction mechanisms of the R gene, Pi-ta, in rice with the corresponding avirulence gene, A VR-Pita, found in the hemi-biotrophic pathogen, Magnaporthe oryzae (formerly Magnaporthe grisea). Pi-ta is a putative cytoplasmic receptor with a centrally localized nucleotide-binding site and leucine rich domain at the carboxyl terminus (Bryan et al., 2000; Jia et al., 2000). AVR-Pita is predicted to be a metalloprotease (Jia et al., 2006b). The putative processed protein, AVR-Pita176, has been shown to interact with the Pi-ta protein (Bryan et al., 2000; Jia et al., 2000). 相似文献
12.
Four cold-tolerant rice varieties, viz. ‘Khonorullo’, ‘Namyi’, ‘Abor B’ and ‘Meghalaya-1’ were crossed with two cold-susceptible ones, viz. ‘Pusa 33’ and ‘Subhadra’ (DR92), in all possible combinations to study the inheritance of gene(s) governing panicle exsertion and their allelic relationship among cold-tolerant varieties. F1 hybrids of all the crosses showed complete panicle exsertion indicating dominance of this trait. Segregation pattern of panicle exsertion in F2 and backcrosses show that all the four cold-tolerant varieties possessed a single dominant gene designated as Ctr-1. Absence of segregation for panicle exsertion in an F2 generation obtained from intercrosses of cold-tolerant varieties suggests that the dominant genes in all the four cultivars are allelic. 相似文献
13.
一个水稻半矮秆突变体的鉴定与遗传分析 总被引:1,自引:0,他引:1
高黄矮材料是由黄矮与高秆材料杂交后代F2群体中分离得到的一个半矮秆突变体材料,株高在95 cm左右,比黄矮高约40 cm.该材料在苗期倒2叶叶尖开始出现黄化,分蘖期倒2叶叶尖仍然黄化,倒3叶近1/3叶面黄化干枯、破损现象比较明显.将该突变材料与不同高秆材料杂交,杂种F1表现为高亲本,F2群体株高数据符合3:1分离比例,结果表明该矮生性状受1对隐性基因控制,因其叶尖黄化性状与半矮秆性状共分离,故暂将该基因命名为dy(t)基因;同时将突变材料与其他不同基因型的半矮秆杂交,F2群体均符合9:3:3:1的分离比例,结果表明dy(t)基因与sdl、sdn、sdg基因均不等位,为一新的半矮秆基因.对不同株高材料的幼苗进行不同浓度外源赤霉素(GA3)叶面喷施处理后,结果表明dy(t)基因对该激素敏感. 相似文献
14.
水稻新型卷叶突变体rl12(t)的遗传分析和基因定位 总被引:5,自引:2,他引:5
叶片是水稻光合作用的重要器官,适度卷曲有利于改善群体光照、提高光能利用率,卷叶基因是培育理想株型的重要资源。本研究利用EMS诱变优良恢复系缙恢10号,获得了一个水稻新型卷叶突变体,该性状受一对显性基因控制,表现为新叶不卷,老叶全卷,而成熟叶片叶上部约1/3卷曲、中下部正常,叶绿素含量极显著高于对照,暂被命名为rl12(t)。利用SSR标记将该基因定位于第10染色体SWU-1和SWU-2之间,遗传距离分别是1.5 cM和0.2 cM。目前,类似于rl12(t)卷叶突变体表型未见报道,RL12(t)是唯一一个在第10染色体被分子定位的显性卷叶主基因。研究结果为该卷叶基因的克隆和功能分析奠定了基础,对于揭示卷叶机理及应用于株型改良具有重要的意义。 相似文献
15.
向作物中转多价抗虫基因是增强作物抗虫性、拓宽抗虫谱、延长抗虫时限的有效措施。从粳稻品种吉粳81、吉粳88和通887的成熟胚诱导出愈伤组织,以愈伤组织作为转化的受体,利用农杆菌介导法,转化苏云金杆菌毒蛋白基因CryIA(a)和半夏凝集素(Pinelliaternataagglutinin,PTA)基因。表达双价抗虫基因的载体p3300-bt-pta的bt和pta分别由Ubiquitin启动子和CaMV35S启动子驱动,宿主菌株为EHA105。用除草剂草丁膦(PPT)筛选得到转基因植株25株。以bt基因和pta基因两端序列为引物在一个反应体系同时做2个基因的PCR检测,检测到bt、pta基因的2条带,Bar基因的PCR检测也显阳性。转化株对PPT除草剂抗性鉴定呈抗性,证明外源基因已整合到水稻基因组中。水稻二化螟接虫鉴定结果表明,23株转基因植株抗虫性比对照明显提高,2株表现感虫。 相似文献
16.
大多数水稻类病斑突变体会提高病程基因的表达从而抑制病原菌的生长,为进一步探索类病斑突变体抗病抗逆的机制,本研究对突变体spl41的形态性状、生理、抗病性等方面进行了研究。spl41是通过甲基磺酸乙酯(EMS)诱变籼稻品种‘黄华占’,获得的一个稳定遗传的水稻类病斑突变体。结果表明,该突变体从三叶期开始出现红褐色坏死斑,斑点数目随植株生长增多并导致枯黄衰老;突变体spl41类病斑的产生使株高、穗长、分蘖数、千粒重及结实率显著下降,并导致叶片的光合色素含量低于野生型;台盼蓝、NBT和DAB染色结果显示突变体spl41病斑部位有大量的死亡细胞并伴随着H_2O_2及O_2^-的积累,表明spl41植株病斑部位正在发生细胞程序性死亡。抗病性鉴定表明,突变体spl41相比于野生型对7个水稻白叶枯病菌生理小种的抗性增强;qRT-PCR分析表明PR1b、PR3、PR4、PR5、PBZ1和Cht1病程相关基因在突变体spl41中表达量上调。这些结果为探索植物抗病机制及选育植物抗病新材料提供了分子依据。 相似文献
17.
18.
鉴定和克隆水稻花器官突变体新基因,对了解水稻花器官发育的分子遗传机制和分子信号调控途径有着重要的作用。本研究报道了1个水稻颖壳异常突变体,来源于EMS (ethyl methane sulfonate)处理的缙恢10号(Oryza sativa)诱变群体,暂被命名为degraded hull 2 (dh2)。表型分析发现突变体小花第一轮内稃或外稃横向细胞数目减少,导致内稃或外稃变窄而不能正常勾合,从而呈现开裂现象,其内三轮花器官均无明显变化。遗传分析表明该突变性状受1个隐性单基因控制。利用群体分离分析法(bulked segregation analysis, BSA),将DH2基因定位在第3染色体的IND-5和IND-14之间,遗传距离分别为0.99 cM和1.49 cM。该研究结果为DH2基因的图位克隆奠定了基础,对水稻花发育生物学研究具有重要的意义。 相似文献
19.
为研究水稻芒的遗传调控机制,本研究在‘日本晴’/‘93-11’染色体片段代换系群体中筛选出一个长芒材料‘CSSL14’,研究了其主要农艺性状和长芒的遗传方式,并对长芒基因LA1进行了基因定位。结果表明‘CSSL14’的芒长、芒着生率、分蘖数和单株产量与‘93-11’存在极显著(p<0.01)或显著(p<0.05)差异,分别为‘93-11’的2.98倍、2.82倍、0.68倍和0.76倍。遗传分析表明‘CSSL14’的长芒表型受一对半显性基因LA1控制。通过图位克隆的方法,将LA1定位在第4染色体长臂标记M3和M4之间12.14 kb的范围内,该定位区间内只有1个预测的候选基因Os04g0518800,与已知的野生稻长芒基因An-2/LABA1等位。本研究结果为进一步研究LA1的功能提供了参考。 相似文献
20.
一个新的水稻黄绿叶突变体的遗传分析与基因定位 总被引:5,自引:0,他引:5
通过化学诱变获得一份稳定遗传的水稻黄绿叶突变体D83。该突变体苗期植株呈黄绿色,分蘖期开始逐渐转为淡绿色。与野生型相比,突变体苗期叶绿素a、叶绿素b和类胡萝卜素含量分别下降45.03%、53.93%和39.56%,成熟期每穗着粒数减少9.45%,千粒重下降10.76%。对D83与正常绿色品种杂交F1、F2代的遗传分析表明,D83的突变性状由一对隐性核基因控制。以D83/浙福802 F2代作定位群体,应用分子标记将D83所携带的突变基因定位于水稻第2染色体短臂的SSR标记RM110附近,InDel标记Ch2-27和Ch2-32之间,该基因与这2个InDel标记的遗传距离分别为1.2 cM和2.3 cM。认为D83所携带的突变基因是一个新的水稻黄绿叶突变基因,暂命名为chl13(t)。 相似文献