首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An antifungal peptide, Ay-AMP, was isolated from Amaranthus hypochondriacus seeds by acidic extraction and then purified by reverse-phase high-pressure liquid chromatography. The molecular mass of this peptide, as determined by mass spectrometry, is 3184 Da. The peptide belongs to the superfamily of chitin-binding proteins, containing a single cysteine/glycine-rich chitin-binding domain, and it was found that Ay-AMP degrades chitin. Ay-AMP inhibits the growth, at very low doses, of different pathogenic fungi, such as Candida albicans, Trichoderma sp., Fusarium solani, Penicillium chrysogenum, Geotrichum candidum, Aspergillus candidus, Aspergillus schraceus, and Alternaria alternata. Ay-AMP is very resistant to the effect of proteases and heating; however, it showed an antagonistic effect with CaCl2 and KCl.  相似文献   

2.
Previous work has shown that red wines, grape juices, and other grape products cause endothelium-dependent relaxation (EDR) of blood vessels in vitro by increasing nitric oxide production. In this paper we describe the isolation and characterization of some of the compounds responsible for EDR activity. Concord grape seeds were extracted with methanol and the compounds were separated by Toyopearl TSK HW-40S chromatography. Resulting fractions (primarily phenolic acids, catechins, and proanthocyanidins) were further separated semipreparatively by reversed-phase HPLC, and peaks were collected and bioassayed for EDR activity using the rat aorta preparation. EDR-active compounds were subsequently characterized by HPLC retention times and electrospray-ion-trap mass spectrometry. The compounds exhibiting the most EDR activity were proanthocyanidin trimers, tetramers, pentamers, and polymers and their gallates, as well as a dimer gallate (EC50 values in the range of 0.6-2.5 microg catechin equivalents/mL). These compounds should be useful for in vitro and in vivo studies, particularly as they relate to improvement of cardiovascular function.  相似文献   

3.
Lysine is an essential amino acid synthesized in plants via the aspartic acid pathway. The catabolism of lysine is performed by the action of two consecutive enzymes, lysine 2-oxoglutarate reductase (LOR, EC 1.5.1.8) and saccharopine dehydrogenase (SDH, EC 1.5.1.9). The final soluble lysine concentration in cereal seeds is controlled by both synthesis and catabolism rates. The production and characterization of high-lysine plants species depends on knowledge of the regulatory aspects of lysine metabolism and manipulation of the key enzymes. We have for the first time isolated, partially purified, and characterized LOR and SDH from developing sorghum seeds, which exhibited low levels of activity. LOR and SDH were only located in the endosperm and were very unstable during the isolation and purification procedures. LOR and SDH exhibited some distinct properties when compared to the enzymes isolated from other plant species, including a low salt concentration required to elute the enzymes during anion-exchange chromatography and the presence of multimeric forms with distinct molecular masses.  相似文献   

4.
A water soluble storage albumin from Inca peanut (IPA) accounted for approximately 25% (w/w) of defatted seed flour weight, representing 31% of the total seed protein. IPA is a 3S storage protein composed of two glycosylated polypeptides, with estimated molecular weights (MW) of 32800 and 34800 Da, respectively. IPA has an estimated sugar content of 4.8% +/- 0.92% (n = 6). IPA is a basic protein (pI of approximately 9.4) and contains all of the essential amino acids in adequate amounts when compared to the FAO/WHO recommended pattern for a human adult. The tryptophan content of IPA is unusually high (44 mg/g of protein), whereas the phenylalanine content is low (9 mg/g of protein). IPA is a highly digestible protein in vitro.  相似文献   

5.
The protein from the seeds of melinjo ( Gnetum gnemon ) was purified using a precipitation method and ion exchange chromatographic techniques to identify the potent antioxidant and free radical scavenging activities. Two antioxidant protein fractions were isolated from G. gnemon seed with molecular weights of approximately 30 kDa (Gg-AOPI) and 12 kDa (Gg-AOPII) by SDS-PAGE. The N-terminal amino acid sequence of Gg-AOPII is Gly-Asn-Gly-Lys-Ala-Thr-Val-Ala-Ile-Leu-Val-Lys-Glu-Lys-Val-Glu-Tyr-Gly-Glu-Glu, and the result of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis showed that they were distinct from each other; no protein in database matching was found to both Gg-AOPI and Gg-AOPII. The antioxidant or free radical scavenging activities of Gg-AOPs were investigated by employing in vitro assay systems including the inhibition of linoleic acid autoxidation, scavenging effect on α,α-diphenyl-β-picrylhydrazyl free radical (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), reducing power, chelating abilities of metal ions Cu(2+) and Fe(2+), and protections against hydroxyl radical-mediated DNA damages. The result showed that two protein fractions exhibited significant (p < 0.05) antioxidant activities against free radicals such as DPPH, ABTS, and superoxide anion and showed activities similar to those of glutathione (G-SH) and BHT in a linoleic acid emulsion assay system. Moreover, Gg-AOPI and Gg-AOPII also exhibited notable reducing power and strong chelating effect on Fe(2+) and protected hydroxyl radical induced oxidative DNA damage. The data obtained by the in vitro systems obviously established the antioxidant potency of Gg-AOPs.  相似文献   

6.
The PIT1 gene which is highly homologous with phosphate transporter was isolated from Catharanthus roseus and analyzed. The cBNA PIT1 contained an open reading frame of 542 amino acids and its sequence showed a 31, 30, and 34% identity with the phosphate transporter of Saccharomyces cerevisiae (PBO84), Neurospora crassa (PHO-5), and Glomus versiforme (GvPT), respectively. Furthermore, the cDNA PIT1 encoded a highly hydrophobic protein with 12 putative membrane-spanning regions and contained a conserved amino acid sequence reported in the human glucose transporter super-family* S. cerevisiae strain DpU (pho84 knockout strain) was unable to grow on low phosphate (55 μM) medium (LP medium). Expression of the PIT1 cDNA enabled DpU to grow on LP medium. Northern hybridization analysis revealed that the PIT1 gene was expressed in roots, stems, and young whole plant of C. roseus, but not in leaves.  相似文献   

7.
Aspergillus nidulans WG312 strain secreted lipase activity when cultured in liquid media with olive oil as carbon source. Highest lipase productivity was found when the mycelium was grown at 30 degrees C in a rich medium. The new enzyme was purified to homogeneity from the extracellular culture of A. nidulans by phenyl-Sepharose chromatography and affinity binding on linolenic acid-agarose. The lipase was monomeric with an apparent M(r) of 29 kDa and a pI of 4.85 and showed no glycosylation. Kinetic of enzyme activity versus substrate concentration showed a typical lipase behavior, with K(M) and K(cat) values of 0.28 mM and 494 s(-)(1) and 0.30 mM and 320 s(-)(1) for the isotropic solution and for the turbid emulsion, respectively. All glycerides assayed were hydrolyzed efficiently by the enzyme, but this showed preference toward esters of short- and middle-chain fatty acids. The optimum temperature and pH for the lipolytic activity were 40 degrees C and 6.5, with high activity in the range 0-20 degrees C and reduced thermal stability.  相似文献   

8.
A novel trypsin inhibitor (PFTI) was isolated from Plathymenia foliolosa (Benth.) seeds by gel filtration chromatography on a Sephadex G-100, DEAE-Sepharose, and trypsin-Sepharose columns. By SDSPAGE, PFTI yielded a single band with a M(r) of 19 kDa. PFTI inhibited bovine trypsin and bovine chymotrypsin with equilibrium dissociation constants (K(i)) of 4 x 10(-8) and 1.4 x 10(-6) M, respectively. PFTI retained more than 50% of activity at up to 50 degrees C for 30 min, but there were 80 and 100% losses of activity at 60 and 70 degrees C, respectively. DTT affected the activity or stability of PFTI. The N-terminal amino acid sequence of PFTI showed a high degree of homology with various members of the Kunitz family of inhibitors. Anagasta kuehniella is found worldwide; this insect attacks stored grains and products of rice, oat, rye, corn, and wheat. The velvet bean caterpillar (Anticarsia gemmatalis) is considered the main defoliator pest of soybean in Brazil. Diatraea saccharalis, the sugar cane borer, is the major pest of sugar cane crops, and its caterpillar-feeding behavior, inside the stems, hampers control. PFTI showed significant inhibitory activity against trypsin-like proteases present in the larval midguts on A. kuehniella and D. saccharalis and could suppress the growth of larvae.  相似文献   

9.
Polysaccharides extracted from seeds of Libyan dates with hot ethanol 80% (FI) and 0.1 M phosphate solution (FII) were fractionated and purified by ion-exchange and gel-filtration chromatography. According to methylation and hydrolysis analysis, the main chains of FI and FII consisted of (1-->4)-linked glucomannan; only traces of branched sugar residues were detected. This is the first report on the isolation of glucomannan from date seeds.  相似文献   

10.
We report for the first time the isolation and characterization of a protease inhibitor from the seeds of Pithecellobium dulce, which is a Leguminosae tree native to Mexico. The purification of the P. dulce trypsin inhibitor (PDTI) was a direct process. After its extraction (pH 8.0) and precipitation (80% (NH(4))(2)SO(4)), the pH was adjusted to 4.0, the supernatant was loaded onto a CM-Sepharose column, and a single peak of trypsin inhibitory activity was eluted (CM-TIA). The main component of CM-TIA was PDTI, a protein composed of two polypeptide chains joined by disulfide bridge(s), with a pI of 4.95 and a molecular weight determined by electrospray mass spectrometry of 19 614 Da. The N-terminal sequence of PDTI has the highest similarity with the seed inhibitor of Acacia confusa. PDTI lacks chymotrypsin inhibitory activity. A low rate of cytotoxicity of CM-TIA toward RINm5F cells contrasted with a high rate of the active fraction G75-TIA (gel filtration chromatography; LC(50) of 0.04 mg/mL).  相似文献   

11.
12.
A novel gene (designated as tan410) encoding tannase was isolated from a cotton field metagenomic library by functional screening. Sequence analysis revealed that tan410 encoded a protein of 521 amino acids. SDS-PAGE and gel filtration chromatography analysis of purified tannase suggested that Tan410 was a monomeric enzyme with a molecular mass of 55 kDa. The optimum temperature and pH of Tan410 were 30 °C and 6.4. The activity was enhanced by addition of Ca(2+), Mg(2+) and Cd(2+). In addition, Tan410 was stable in the presence of 4 M NaCl. Chlorogenic acid, rosmarinic acid, ethyl ferulate, tannic acid, epicatechin gallate and epigallocathchin gallate were efficiently hydrolyzed by recombinant tannase. All of these excellent properties make Tan410 an interesting enzyme for biotechnological application.  相似文献   

13.
1-Cyano-2-hydroxy-3-butene (crambene) is a nitrile found in cruciferous vegetables that causes significant upregulation of quinone reductase and glutathione S-transferases in vivo and in vitro, making it a likely candidate as a cancer chemopreventive compound. To investigate further the putative anticarcinogenic mechanisms of crambene, a compound of the highest possible purity is vital. Therefore, a rapid and effective method of purification of crambene is necessary to continue studies of its beneficial health effects. A rapid method to isolate and purify natural crambene from either Crambe abyssinica (crambe) seed or commercially processed crambe seed meal was developed using immiscible solvent extraction followed by high-performance liquid chromatography. Use of this methodology eliminated the need for time-consuming and relatively inefficient column chromatography, improved extraction efficiency, and resulted in higher purity than previously used methodologies. Elimination of trace amounts of fatty acid residues, unachievable with previous methodologies, also was accomplished.  相似文献   

14.
Current interest in biological-based management of weed seed banks in agriculture furthers the need to understand how microorganisms affect seed fate in soil. Many annual weeds produce seeds in high abundance; their dispersal presenting ready opportunity for interactions with soil-borne microorganisms. In this study, we investigated seeds of four common broadleaf weeds, velvetleaf (Abutilon theophrasti), woolly cupgrass (Eriochloa villosa), Pennsylvania smartweed (Polygonum pensylvanicum), and giant ragweed (Ambrosia trifida), for potential as sources of carbon nutrition for soil fungi. Seeds, as the major source of carbon in an agar matrix, were exposed to microbial populations derived from four different soils for 2 months. Most seeds were heavily colonized, and the predominant 18S rRNA gene sequences cloned from these assemblages were primarily affiliated with Ascomycota. Further, certain fungi corresponded to weed species, regardless of soil population. Relatives of Chaetomium globosum (98–99% sequence identity) and Cordyceps sinensis (99%) were found to be associated with seeds of woolly cupgrass and Pennsylvania smartweed, respectively. More diverse fungi were associated with velvetleaf seeds, which were highly susceptible to decay. The velvetleaf seed associations were dominated by relatives of Cephaliophora tropica (98–99%). In contrast to the other species, only few giant ragweed seeds were heavily colonized, but those that were colonized resulted in seed decay. The results showed that seeds could provide significant nutritional resources for saprophytic microbes, given the extant populations can overcome intrinsic seed defenses against microbial antagonism. Further, weed species-specific associations may occur with certain fungi, with nutritional benefits conferred to microorganisms that may not always result in seed biodeterioration.  相似文献   

15.
Two compounds recognized as responsible for the insecticidal activity of extracts of Calceolaria andina L. (Scrophulariaceae) have been isolated and characterized as 2-(1, 1-dimethylprop-2-enyl)-3-hydroxy-1,4-naphthoquinone and the corresponding acetate, 2-acetoxy-3-(1,1-dimethylprop-2-enyl)-1, 4-naphthoquinone. Their activities against 29 pest species and 9 beneficial species of arthropod from a total of 11 orders have been determined. Activities against homopteran and acarine species are of the same order as those of established pesticides, and, significantly, no cross-resistance is observed for strains resistant to established classes of insecticide. Mammalian toxicities are low.  相似文献   

16.
A highly sensitive sandwich enzyme-linked immunosorbent assay (ELISA) kit was established for quantifying ovomucoid from hen's egg white, which has been considered as one of the major allergen in egg white. The detection limit reached 0.041 ng/mL, and linearity ranged from 0.1 to 6.25 ng/mL. Intra- and interassay coefficient variations were all lower than 5% at three concentrations (0.5, 2.5, and 5 ng/mL). No cross-reactivity was observed with bovine serum, horse serum, goat serum, human serum, duck egg white, goose egg white, quail egg white, and pigeon egg white, but a low level of cross-reactivity was found with chicken serum. The ELISA kit was established on the basis of two monoclonal antibodies (mAbs) recognizing different epitopes of ovomucoid. However, these mAbs were generated using commercially purified ovalbumin as immunogen. Studies on the relative allergenicity and antigenicity of egg white protein have been performed by many researchers, but there were controversial opinions reported previously because of the impurity of each egg white protein used in various studies. In the present work we measured the degree of ovomucoid contamination in commercially purified ovalbumin sample, and the value was about 11%. We also determined the ovomucoid residue in influenza vaccine samples for the first time. These data showed that the ELISA kit we established could serve as an effective method for precisely quantifying concentrations of ovomucoid in the egg industry and as a useful tool for the research of allergenicity and antigenicity of hen's egg proteins.  相似文献   

17.
A trehalose synthase (TSase) gene from a hyperacidophilic, thermophilic archaea, Picrophilus torridus, was synthesized using overlap extension PCR and transformed into Escherichia coli for expression. The purified recombinant P. torridus TSase (PTTS) showed an optimum pH and temperature of 6.0 and 45 degrees C, respectively, and the enzyme maintained high activity at pH 5.0 and 60 degrees C. Kinetic analysis showed that the enzyme has a 2.5-fold higher catalytic efficiency (k(cat)/K(M)) for maltose than for trehalose, indicating maltose as the preferred substrate. The maximum conversion rate of maltose into trehalose by the enzyme was independent of the substrate concentration, tended to increase at lower temperatures, and reached approximately 71% at 20 degrees C. Enzyme activity was inhibited by Hg2+, Al3+, and SDS. Five amino acid residues that are important for alpha-amylase family enzyme catalysis were shown to be conserved in PTTS (Asp203, Glu245, Asp311, His106, and His310) and required for its activity, suggesting this enzyme might employ a similar hydrolysis mechanism.  相似文献   

18.
The gene encoding pyrethroid-hydrolyzing esterase (EstP) from Klebsiella sp. strain ZD112 was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the estP gene revealed an open reading frame of 1914 bp encoding for a protein of 637 amino acid residues. No similarities were found by a database homology search using the nucleotide and deduced amino acid sequences of the esterases and lipases. EstP was heterologously expressed in E. coli and purified. The molecular mass of the native enzyme was approximately 73 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of EstP indicated molecular masses of 73 and 73.5 kDa, respectively, suggesting that EstP is a monomer. The purified EstP not only degraded many pyrethroid pesticides and the organophosphorus insecticide malathion, but also hydrolyzed rho-nitrophenyl esters of various fatty acids, indicating that EstP is an esterase with broad substrates. The K(m) for trans- and cis-permethrin and k(cat)/K(m) values indicate that EstP hydrolyzes both these substrates with higher efficiency than the carboxylesterases from resistant insects and mammals. The catalytic activity of EstP was strongly inhibited by Hg2+, Ag+, and rho-chloromercuribenzoate, whereas a less pronounced effect (3-8% inhibition) was observed in the presence of divalent cations, the chelating agent EDTA, and phenanthroline.  相似文献   

19.
A polysaccharide (GSP-6B) with a molecular mass of 1.86 × 10? Da was isolated from the fruiting bodies of Ganoderma sinense . Chemical composition analysis, methylation analysis, infrared spectroscopy, and nuclear magnetic resonance spectroscopy were conducted to elucidate its structure. GSP-6B contains a backbone of (1→6)-linked-β-D-glucopyranosyl residues, bearing branches at the O-3 position of every two sugar residues along the backbone. The side chains contain (1→4)-linked-β-D-glucopyranosyl residues, (1→3)-linked-β-D-glucopyranosyl residues, and nonreducing end β-D-glucopyranosyl residues. An in vitro immunomodulating activity assay revealed that GSP-6B could significantly induce the release of IL-1β and TNF-α in human peripheral blood mononuclear cell (PBMC) and showed no toxicity to either PBMC or a human macrophage cell line THP-1. GSP-6B could also activate dendritic cells (DC) by stimulating the secretion of IL-12 and IL-10 from DC.  相似文献   

20.
The thermally tolerant pectin methylesterase (TT-PME) was isolated as a monocomponent enzyme from sweet orange fruit (Citrus sinensis var. Valencia). It was also isolated from flower and vegetative tissue. The apparent molecular weight of fruit TT-PME was 40800 by SDS-PAGE and the isoelectric point estimated as pI 9.31 by IEF-PAGE. MALDI-TOF MS identified no tryptic-peptide ions from TT-PME characteristic of previously described citrus PMEs. TT-PME did not absolutely require supplemented salt for activity, but salt activation and pH-dependent activity patterns were intermediate to those of thermolabile PMEs. Treatment of non-calcium-sensitive pectin with TT-PME (reducing the degree of methylesterification by 6%) increased the calcium-sensitive pectin ratio from 0.01 to 0.90, indicating a blockwise mode of action. TT-PME produced a significantly lower end-point degree of methylesterification at pH 7.5 than at pH 4.5. Extensive de-esterification with TT-PME did not reduce the pectin molecular weight or z-average radius of gyration, as determined by HPSEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号