首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Techniques used in sampling and storage of a blood sample for pH and gas measurements can have an important effect on the measured values. Observation of these techniques and principles will minimize in vitro alteration of the pH and blood gas values. To consider that a significant change has occurred in a pH or blood gas measurement from previous values, the change must exceed 0.015 for pH, 3 mm Hg for PCO2, 5 mm Hg for PO2, and 2 mEq/L for [HCO-3] or base excess/deficit. In vitro dilution of the blood sample with anticoagulant should be avoided because it will alter the measured PCO2 and base excess/deficit values. Arterial samples should be collected for meaningful pH and blood gas values. Central venous and free-flowing capillary blood can be used for screening procedures in normal patients but are subject to considerable error. A blood sample can be stored for up to 30 minutes at room temperature without significant change in acid-base values but only up to 12 minutes before significant changes occur in PO2. A blood sample can be stored for up to 3.5 hours in an ice-water bath without significant change in pH and for 6 hours without significant change in PCO2 or PO2. Variations of body temperatures from normal will cause a measurable change in pH and blood gas values when the blood is exposed to the normal water bath temperatures of the analyzer.  相似文献   

2.
Blood samples were taken from the brachial and coccygeal arteries of young calves and blood gas and acid-base values determined. There was no significant difference in pH, PO2, PCO2 or HCO3- between sites as demonstrated by a paired t-test (P greater than 0.05). Significant correlations between sites existed for individual values of PO2 (P less than 0.001), HCO3- (P less than 0.05) and pH (P less than 0.02), but not for PCO2.  相似文献   

3.
The dogs in groups I, II and III in equal numbers received diatrizoate, iohexol and ioxilan at a dose of 700 mgI/kg intravenously (i.v.) as a bolus, respectively. Blood samples were collected prior to contrast media (CM) administration and thereafter at 3, 15, 30, 60, 90 and 180 min to evaluate acid-base, venous blood gas status (pH, PCO2, PO2, HCO, BE, O2) and electrolytes (Na+, Ca++, K+). Values of pH, PCO2, BE, HCO, Na+ and K+ remained unchanged or within non-significant fluctuations compared with the baseline values. PO2 was significantly different from the baseline values in group 1 up to 90 min after administration, significant alterations were found for O2 saturation in group 1 up to 90 min, and in group II at 3, 60 and 180 min; and for Ca++ in group 1 at all time points except at 90 min, and groups II and II at 3 and 15 min post administration. It was concluded that none of the CM are considered to cause long-lasting and major effects on acid-base, blood gas and electrolyte status.  相似文献   

4.
Samples of pleural fluid from 20 horses with effusive pleural diseases of various causes were evaluated; samples from 19 horses were used for the study. There were differences for pH (P = 0.001) and partial pressure of oxygen (PO2) between arterial blood and nonseptic pleural fluid (P = 0.0491), but there were no differences for pH, PO2, partial pressure of carbon dioxide (PCO2), and concentrations of bicarbonate (HCO3-), lactate, and glucose between venous blood and nonseptic pleural fluid. Paired comparisons of venous blood and nonseptic pleural fluid from the same horse indicated no differences. There were differences (P = 0.0001, each) for pH, PO2, PCO2, and concentrations of HCO3- between arterial blood and septic pleural fluid. Differences also existed for pH (P = 0.0001), PCO2 (P = 0.0003), and concentrations of HCO3- (P = 0.0001), lactate (P = 0.0051), and glucose (P = 0.0001) between venous blood and septic pleural fluid. Difference was not found for values of PO2 between venous blood and septic pleural fluid, although 4 samples of septic pleural fluid contained virtually no oxygen. Paired comparisons of venous blood and septic pleural fluid from the same horse revealed differences (P less than 0.05) for all values, except those for PO2. These alterations suggested functional and physical compartmentalization that separated septic and healthy tissue. Compartmentalization and microenvironmental factors at the site of infection should be considered when developing therapeutic strategies for horses with septic pleural disease.  相似文献   

5.
Blood gas values were compared in blood collected from cut toenails and femoral arteries in 50 healthy crossbred dogs that were sedated and allowed to breathe room air spontaneously. Blood samples from cut toenails were collected by microcapillary technique with Natelson tubes. Femoral artery samples were collected by arterial puncture. Blood values for PO2, PCO2, pH, and HCO3 were compared. There was good correlation for pH, PCO2, and bicarbonate, but not for PO2. Microcapillary samples should be collected in 10 seconds or less for the most accurate results. A metal mixing "flea" was unnecessary. When properly handled, the Natelson tube technique provides an alternative method for collection of blood gas samples.  相似文献   

6.
A technique for collection of blood samples from the cut claw of the cat was developed. Forty-six blood samples were collected simultaneously from the cut claw and the femoral artery of 7 healthy cats. Blood gas and pH values were measured and compared. There was no difference between sample pairs for blood PO2 and PCO2, but the pH values were significantly (P less than 0.001) higher in the capillary samples (7.432 +/- 0.033) than in the samples from the femoral artery (7.419 +/- 0.031).  相似文献   

7.
The aim of this study was to determine whether venous blood samples can be used as an alternative to arterial samples in calves with respiratory problems and healthy calves. Jugular vein and ventral coccygeal artery were used to compare blood gas values. Sampling of the jugular vein followed soon after sampling of the ventral coccygeal artery in healthy calves (group I) and calves with respiratory problems (group II). Mean values of arterial blood for pH, pCO2, HCO3act in healthy calves were 7.475 +/- 0.004, 4.84 +/- 0.2 kPa, 28.45 +/- 1.30 mmol/L compared with venous samples, 7.442 +/- 0.006, 6 +/- 0.3 kPa, 30.93 +/- 1.36 mmol/L, respectively. In group II, these parameters were 7.414 +/- 0.01, 5.93 +/- 0.3, 27.73 +/- 1.96 mmol/L for arterial blood and 7.398 +/- 0.008, 6.85 +/- 0.2 kPa, 29.77 +/- 1.91 mmol/L for venous blood, respectively. There were no statistically significant differences between arterial and venous pH, HCO3act, Be(ecf), ctCO2 values with the exception of pCO2 (P = 0.001) in group II. In group I, correlation (r2) between arterial and venous blood pH, pCO2, HCO3act were 84.5%, 87.5%, 95.7%, respectively compared with the same parameters in group II, 80.8%, 77.1%, 70.3%. In conclusion, venous blood gas values can predict arterial blood gas values of pH, pCO2 and HCO3ecf, Be(ecf) and ctCO2- for healthy calves but only pH values in calves with acute respiratory problems (r2 value>80%).  相似文献   

8.
Arterial blood gases, pH and haemoglobin concentrations were monitored for 20 minutes before, during and for 120 minutes after 60 seconds of electroimmobilisation (E-IM) at current strengths of 0 mA (control), 40 mA and 60 mA in 17 Merino ewes (36.3 +/- 1.0 kg) previously prepared with unilateral carotid artery loops. E-IM elicited whole body rigidity. During E-IM, breathing was stopped for 50 +/- 3 seconds (40 mA) and 56 +/- 2 seconds (60 mA). Arterial PO2 decreased to 43.2 +/- 2.4 mmHg (5.68 +/- 0.32 kPa) (40 mA) and 36.4 +/- 1.8 mmHg (60 mA) while arterial PCO2 rose to 59.7 +/- 1.9 mmHg (40 mA) and 69.8 +/- 2.0 mmHg (60 mA). There was a significant fall in arterial pH to 7.272 +/- 0.014 (40 mA) and 7.233 +/- 0.011 (60 mA) during E-IM and arterial haemoglobin increased by 34 +/- 3 per cent and 35 +/- 3 per cent at 40 mA and 60 mA, respectively. All the arterial blood gas and pH changes were significantly greater (P less than 0.05) during E-IM at 60 mA than at 40 mA. Multiple regression analysis indicated that the decrease in arterial PO2 during E-IM was directly related to the latency to breathe while the changes in arterial PCO2 and pH during E-IM were not.2+off  相似文献   

9.
Correction factors have been determined to obtain the best estimates of PO2, PCO2 and pH in equine blood with standard blood gas and pH electrodes. There was a significant difference between the PO2 readings for tonometred blood of most horses and the equilibrating gas. Thus, if the PO2 electrode is calibrated with a gas, an electrode correction factor should be obtained by tonometring a blood sample from each horse. This factor was not dependent on packed cell volume. No such correction is required for the PCO2 electrode. If the animal's temperature differs from that of the analyser, the PO2, PCO2 and pH values must be corrected to the animal's body temperature. Temperature correction factors determined for equine blood were similar to those for human blood. Failure to make temperature corrections can result in errors for PO2 and PCO2 of 6 to 7 per cent per degree of temperature difference.  相似文献   

10.
Blood acid-base curve nomogram for immature domestic pigs   总被引:2,自引:0,他引:2  
The purpose in this study was to characterize the acid-base status of arterial blood from healthy young domestic swine and to construct an acid-base curve nomogram appropriate to such animals. Accordingly, 40 immature, 20- to 31-kg domestic pigs were used to establish acid-base characteristics for arterial blood. Samples were collected from chronically implanted catheters while the animals were maintained under steady-state, near-basal conditions. At a measurement temperature of 38 C, pH averaged 7.496; PCO2, 40.6 mm Hg; [HCO3-], 31.6 mEq/L; PO2, 79.1 mm Hg; hemoglobin, 9.65 g/dl; hematocrit, 0.29; plasma albumin, 25.3 g/L; plasma globulin, 32.3 g/L; and plasma buffer base, 45.4 mEq/L. Hourly measurements over a 6-hour period in 6 of these pigs showed a small, but significant decrease in PO2 with time, but no significant change in acid-base status. The data showed that nomograms or other procedures based on blood characteristics of men were invalid when used to estimate base excess concentration of blood from young pigs. The normal pH of arterial blood was higher in immature pigs than in men; thus, reference values defining zero base excess were not equivalent in men and pigs. Constant PCO2 titrations were performed on arterial samples taken from 10 additional pigs, and the data were used to construct an acid-base curve nomogram in which zero base excess was defined for blood with a pH of 7.50 and a PCO2 of 40 mm Hg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The objective of this study was to determine the effect of live weight on the plasma acid-base response of pigs subjected to various handling intensities. Eighty pigs (equal numbers of barrows and gilts) were used in a completely randomized block design with a 2 x 2 x 2 factorial arrangement of the following treatments: 1) live weight (light [104 kg] vs. heavy [128 kg]), 2) handling intensity (low vs. high), and 3) gender (barrows vs. gilts). Before the handling test, pigs were weighed, venous blood samples were taken to establish baseline levels, and rectal temperature was measured. Pigs were allowed to rest for 2 h before being subjected to the handling treatments, which consisted of moving the pigs through a course (12.2 m long x 0.91 m wide), for a total of eight laps. Animals on the high-intensity treatment were moved rapidly through the course and subjected to a total of 16 single shocks (two shocks per lap) with an electric livestock goad, whereas pigs on the low-intensity treatment were moved at their own pace using a moving panel and a paddle. Rectal temperature and a venous blood sample were taken immediately after handling and at 2 h after handling. Blood plasma was assayed for pH, partial pressure of carbon dioxide (PCO2), partial pressure of oxygen (PO2), saturated oxygen (SO2), total carbon dioxide (TCO2), bicarbonate (HCO3), base excess, and lactate. Live weight had no effect on the baseline measurements. After handling, light pigs had higher (P < 0.05) blood SO2 (65.6 vs. 57.2+/-2.80%) and showed a greater (P < 0.05) increase in PO2 from baseline to post-handling than heavy pigs (15.6 vs. 8.3+/-2.63 mmHg). Post-handling, pigs on the high- compared with the low-intensity handling treatment had greater (P < 0.001) lactate (19.1 vs. 4.9+/-0.56 mmol/L) and PO2 (51.6 vs. 36.5+/-2.44 mmHg) with lower (P < 0.001) TCO2 (18.6 vs. 34.7+/-0.64 mmol/L), pH (7.02 vs. 7.36+/-0.015), HCO3 (16.7 vs. 33.0+/-0.62 mmol/L), and base excess (-14.2 vs. 7.5+/-0.75) values. There were no effects of gender on blood measurements or rectal temperatures. Results from this study highlight a major effect of pig handling intensity, a limited effect of live weight, and no effect of gender on blood acid-base responses to handling.  相似文献   

12.
BACKGROUND: The effect of storage temperature and time on blood gas and acid-base values has been investigated intensively in cattle and dogs; however, data are lacking in other species. OBJECTIVE: The aim of our study was to evaluate changes in gas composition and acid-base values in venous blood stored at different temperatures and for different times in 4 domestic species in Italy. METHODS: Blood samples from Comisana sheep (n = 10), Maltese goats (n = 10), Ragusana donkeys (n = 10), and Thoroughbred horses (n = 10) were analyzed after storage at 23 degrees C (room temperature) for 15 minutes (group I), 23 degrees C for 1 hour (group II), 37 degrees C for 8 hours (group III), and 4 degrees C for 24 hours (group IV). Results were analyzed using a 1-way repeated measures ANOVA. RESULTS: In all species no statistically significant differences in pH values were present in samples stored at 4 degrees C for 24 hours. This also was true for PCO2 in all species except the horse. Except for HCO3- concentration in the horse, significant changes in PO2, HCO3- concentration, base excess, and the standard bicarbonate concentration were observed for all species in samples stored at 4 degrees C. In samples stored for only 1 hour at room temperature, significant changes in most analytes were detected. CONCLUSIONS: The results of this study underline the need for rapid assessment of acid-base samples, because any delay, even for 1 hour, may affect the results.  相似文献   

13.
The stability of blood gas and acid-base values in bovine venous blood samples (n = 22) stored on ice for 3, 6, 9, or 24 hours was studied. Values studied include pH, PO2 and PCO2 tensions, base excess, standard base excess, bicarbonate concentration, standard bicarbonate concentration, total carbon dioxide content, oxygen saturation, and hemoglobin. The results indicate that, except for PCO2, changes in blood gas and acid-base values during 24 hours of storage and differences between cattle of differing ages, rectal temperatures, and acid-base status were too small to be of clinical significance. Therefore, bovine venous blood samples stored up to 24 hours on ice are of diagnostic utility.  相似文献   

14.
氨氟醚吸入麻醉妊娠犬及其胎儿动脉血药浓度和血气分析   总被引:4,自引:3,他引:4  
选用 10只妊娠犬 ,实施母体及胎儿股动脉血管插管后 ,测定了氨氟醚麻醉期间母犬及胎儿的动脉血药浓度和血液 p H、PO2 (动脉氧分压 )、PCO2 (动脉 CO2 分压 )、T- CO2 (血浆 CO2 总量 )、HCO- 3 (实际碳酸氢盐 )、SB(标准碳酸氢盐 )、BEb(全血碱超 )、Sat.O2 (血氧饱和度 )。结果 :氨氟醚可透过胎盘进入胎儿血液 ,胎儿血药浓度低于母犬 ,但两者上升和消除变化趋势接近 ;麻醉期间 ,母犬及胎儿血液 p H、BEb下降 (P<0 .0 1或 P<0 .0 5 ) ,PO2 、PCO2 、Sat.O2 升高(P<0 .0 1或 P<0 .0 5 ) ,HCO- 3 、T- CO2 表现升高趋势 (P>0 .0 5 ) ,SB表现下降趋势 (P>0 .0 5 )。结果表明 ,氨氟醚吸入麻醉期间 ,母犬及其胎儿呈现轻度呼吸性酸中毒和代谢性酸中毒并存 ,并随氨氟醚血药浓度的降低而逐渐恢复  相似文献   

15.
Alkalemia (pH greater than 7.50) was measured in 20 dogs admitted over a 3-year period for various clinical disorders. Alkalemia was detected in only 2.08% of all dogs in which blood pH and blood-gas estimations were made. Thirteen dogs had metabolic alkalosis (HCO3- greater than 24 mEq/L, PCO2 greater than 30 mm of Hg), of which 8 had uncompensated metabolic alkalosis, and of which 5 had partially compensated metabolic alkalosis. Seven dogs had respiratory alkalosis (PCO2 less than 30 mm of Hg, HCO3- less than 24 mEq/L); 4 of these had uncompensated respiratory alkalosis and 3 had partially compensated respiratory alkalosis. Ten dogs had double or triple acid-base abnormalities. Dogs with metabolic alkalosis had a preponderance of clinical signs associated with gastrointestinal disorders (10 dogs). Overzealous administration of sodium bicarbonate or diuretics, in addition to anorexia, polyuria, or hyperbilirubinemia may have contributed to metabolic alkalosis in 8 of the dogs. Most of the dogs in this group had low serum K+ and Cl- values. Two dogs with metabolic alkalosis had PCO2 values greater than 60 mm of Hg, and 1 of these had arterial hypoxemia (PaO2 less than 80 mm of Hg). Treatments included replacement of fluid and electrolytes (Na+, K+, and Cl-), and surgery as indicated (8 dogs). Six dogs with respiratory alkalosis had a variety of airway, pulmonary, or cardiac disorders, and 3 of these had arterial hypoxemia. Two other dogs were excessively ventilated during surgery, and 1 dog had apparent postoperative pain that may have contributed to the respiratory alkalosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The effects of alkalinizing agents, administered prior to feeding colostrum, on blood-gas and acid-base values and on absorption of IgG1 were determined in 40 newborn Holstein calves. Two treatments, sodium bicarbonate (3 mEq/kg of body weight, IV) and doxapram HCl (2 mg/kg, IV), were evaluated, using a randomized complete-block experimental design. These treatments resulted in significant (P less than 0.01) alteration of blood-gas and acid-base values, generally in the direction of normal values for adult cattle. Significant least squares mean effects were detected for sodium bicarbonate treatment on blood pH (+ 0.04 units, P less than 0.01), PCO2 (+ 4.1 mm of Hg, P less than 0.01), and HCO3 concentration (+ 4.4 mEq/L, P less than 0.01). Significant least squares mean effects were detected for doxapram HCl treatment on blood pH (+ 0.06 pH units, P less than 0.01) and PCO2 (-5.2 mm of Hg, P less than 0.01). Absorption of colostral IgG1 was not affected by the treatments given or by the altered blood-gas and/or acid-base status.  相似文献   

17.
Effects of forelimb tourniquet ischemia of 90 minute duration were investigated in six bulls aged two to three years. Studies were also conducted up to 150 minutes after release of the tourniquet. Parameters investigated were pH, PCO2, PO2, oxygen saturation and HCO3. In systemic circulation no variations in different parameters were observed during 90 minutes of ischemia. However, significant increase in arterial and venous pH were observed after 30 and 45 minutes of the release of tourniquet, respectively. These increases were accompanied by an increase in HCO3. In the affected limb, ischemia resulted in severe acidosis with a significant increase in PCO2 and a nonsignificant decrease of HCO3. There was a significant fall in PO2 and oxygen saturation. After release of the tourniquet, limb venous pH increased significantly due to a significant fall in PCO2 and a nonsignificant increase in HCO3. A significant increase in the limb venous PO2 and oxygen saturation post tourniquet was observed up to the end of the experiments. There was evidence of very poor oxygen exchange and utilization up to 150 minutes after release of the tourniquet. These results demonstrated that tourniquet ischemia of 90 minutes duration of the limb of cattle may not be safe.  相似文献   

18.
The effects of sevoflurane on anesthesia induction, recovery, ventricular pressures, heart rate, ventricular pH, blood gas values, and electrolytes were evaluated in desert tortoises (Gopherus agassizii). Tortoises were orotracheally intubated while awake and ventilated manually with 3-7% sevoflurane in oxygen (1 L/min) to achieve desired expired sevoflurane concentrations. Data, consisting of induction time, recovery time, systolic, diastolic, and mean ventricular pressures, heart rate, ventricular pH, blood gas values, and electrolytes, were collected prior to anesthesia and sequentially at 2.50% and 3.75% expired sevoflurane as measured at the junction of the endotracheal tube and the breathing circuit. Blood pressure was measured and blood samples were collected through a 25-ga needle passed through a cardiac access port that was placed while the tortoises were in dorsal recumbency. Mean (+/-SE) induction time was 2.55+/-0.55 min, recovery time was 27.58+/-7.55 min, and duration of anesthesia was 105+/-12 min. Mean (+/-SD) values for systolic, diastolic, and mean ventricular pressures in awake tortoises were 28+/-3 mm Hg, 22+/-2 mm Hg, and 24+/-2 mm Hg, respectively. Sevoflurane (2.5% expired) significantly decreased systolic (14+/-3 mm Hg), diastolic (12+/-1 mm Hg), and mean (13+/-1 mm Hg) ventricular pressures compared with those of awake tortoises. Ventricular pressures did not decrease further with increasing depth of anesthesia. Heart rate (32+/-4 beats/min) did not change significantly under sevoflurane anesthesia. Sevoflurane administration increased ventricular PO2 but did not change Na+, K+, or iCa++ concentrations. Sevoflurane appears to provide safe and effective anesthesia with rapid induction and recovery.  相似文献   

19.
OBJECTIVE: To determine components of the increase in oxygen consumption (VO2) and evaluate determinants of hemoglobin saturation (SO2) during incremental treadmill exercise in unfit horses. ANIMALS: 7 unfit adult mares. PROCEDURES: Horses performed 1 preliminary exercise test (EXT) and 2 experimental EXT. Arterial and mixed venous blood samples and hemodynamic measurements were taken during the last 30 seconds of each step of the GXT to measure PO2, hemoglobin concentration ([Hb]), SO2, and determinants of acid-base state (protein, electrolytes, and PCO2). RESULTS: Increased VO2 during exercise was facilitated by significant increases in cardiac output (CO), [Hb], and widening of the arteriovenous difference in O2. Arterial and venous pH, PaO2, and PvO2 decreased during exercise. Arterial PCO2, bicarbonate ([HCO3-])a, and [HCO3-] decreased significantly, whereas PVCO2 and increased. Arterial and venous sodium concentration, potassium concentration, strong ion difference, and venous lactate concentration all increased significantly during exercise. CONCLUSIONS AND CLINICAL RELEVANCE: Increases in CO, [Hb], and O2 extraction contributed equally to increased VO2 during exercise. Higher PCO2 did not provide an independent contribution to shift in the oxyhemoglobin dissociation curve (OCD) in venous blood. However, lower PaCO2 shifted the curve leftward, facilitating O2 loading. The shift of ODC resulted in minimal effect on O2 extraction because of convergence of the ODC at lower values of PO2. Decreased pH appeared responsible for the rightward shift of the ODC, which may be necessary to allow maximal O2 extraction at high blood flows achieved during exercise.  相似文献   

20.
Values of the acid base balance were examined in both venous and arterial blood of healthy calves (n = 6) of the Slovak Spotted breed aged, 3, 6, 8, 10, 12, 14, 18, and 24 weeks, respectively. Until week 4 of age the animals were fed milk only, until the age of 9 weeks a milk-roughage transition fodder and from week 10 on they were given classical herbage. Blood samples were taken from the V. jugularis and A. carotis communis or A. axillaris, respectively. The results achieved were corrected to a body temperature of 39 degrees C. During the examination period the following values were stated for both arterial and venous blood: actual acidity (pH) 7.391 +/- 0.014 and 7.362 +/- 0.013 logmolc, pCO2 6.35 +/- 0.15 and 7.35 +/- 0.11 kPa, HCO3-28.38 +/- 1.42 and 30.32 +/- 1.02 mmol. l(-1), ABE 3.57 +/- 1.44 and 4.34 +/- 1.09 mmol. l(-1); pO2 12.63 +/- 1.15 and 5.21 +/- 0.73 kPa, SAT 95.8 +/- 1.03 and 61.2 +/- 9.59%, respectively. A gradual increase in most indices of the acid base balance could be stated both in arterial and venous blood. The trends either revealed a parallel increase (HCO3-, pH) or they were more pronounced either in venous blood (SAT) or in arterial blood (ABE, pO2). Some trends were almost balanced (pCO2 and pO2 in venous blood and SAT and pCO2 in arterial blood). Thus pH, pO2 and SAT indices of the acid base balance were higher in arterial blood as compared to venous blood while pCO2, HCO3- and ABE values were higher in venous blood.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号