首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 The origin, nature and quantity of polysaccharides in the walls of the epigeal mounds of a species of soil-feeding termite, Cubitermes oculatus, and a fungus-growing termite, Macrotermes subhyalinus, found in Senegal, and of soil not considered to be under the influence of termites, were studied to obtain a clearer picture of the structural stability of these materials. The compounds were extractedand analysed by high performance liquid chromatography. We found that the walls of mounds made by soil-feeding species were very rich in sugars soluble in aqueous acid or hot water. Most of the sugars originated from cellulose and hemicellulose, and only a small proportion from microorganisms. There were also significant amounts of stachyose in the mound walls and in the reference soil. This sugar was probably formed by the surrounding vegetation, which was mainly leguminous crops. Comparison of the mineral and organic-mineral particle sizes of samples confirmed that the walls of soil-feeding termite mounds where there is the greatest redistribution of clay have the best aggregating capacity. The results therefore show that the polysaccharides in mound walls of soil-feeding termites are mostly of plant origin. Their influence on the stability of these structure is discussed. The walls of fungus-growing termite mounds contain little organic matter and hence low levels of polysaccharides, which are mainly of plant origin. Received: 19 July 1999  相似文献   

2.
Microbial biomass is an important source of soil organic matter, which plays crucial roles in the maintenance of soil fertility and food security. However, the mineralization and transformation of microbial biomass by the dominant soil macrofauna earthworms are still unclear. We performed feeding trials with the geophagous earthworm Metaphire guillelmi using 14C-labelled bacteria (Escherichia coli and Bacillus megaterium) cells, fungal (Penicillium chrysogenum) cells, protein, peptidoglycan, and chitin. The mineralization rate of the microbial cells and cell components was significantly 1.2–4.0-fold higher in soil with the presence of M. guillelmi for seven days than in earthworm-free soil and 1–11-fold higher than in fresh earthworm cast material. When the earthworms were removed from the soil, the mineralization of the residual carbon of the microbial biomass was significantly lower than that in the earthworm-free soil, indicating that M. guillelmi affects the mineralization of the biomass in soil in two aspects: first stimulation and then reduction, which were attributed to the passage of the microbial biomass through the earthworm gut, and that the microorganisms in the cast could play only minor roles in the stimulated mineralization and residual stabilization of microbial biomass. Large amounts (8–29%) of radiolabel of the tested microbial biomass were assimilated in the earthworm tissue. Accumulation of fungal cells (11%) and cell wall component chitin (29%) in the tissue was significantly higher than that of bacterial cells (8%) and cell wall component peptidoglycan (15%). Feeding trails with 14C-lablled microbial cells and cell components provided direct evidence that microbial biomass is a food source for geophagous earthworm and fungal biomass is likely a more important food source for earthworms than bacterial biomass. Findings of this study have important implications for the roles of geophagous earthworms in the fate of microbial biomass in soil.  相似文献   

3.
Phosphate rock (PR), limestone, coal combustion by-product (CCBP) high in Ca and high organic manures are potential amendments for increasing agricultural production in the acidic soils of the Appalachian region. The objective of this study was to examine effects of PR, CCBP and cellulose addition on soil microbial biomass in an acidic soil based on the measurement of soil microbial biomass P (P mic) and on the mineralization of organic matter. Application of PR alone or in combination with CCBP increased P mic. The P mic was far less when the soil received PR in combination with limestone than with PR application alone or PR in combination with CCBP. Either CCBP or limestone application alone considerably decreased P mic in the soil due to reduced P solubility. Cellulose addition alone did not increase P mic, but P mic was significantly increased when the soil was amended with cellulose in combination with PR. The decomposition of added cellulose was very slow in the soil without PR amendment. However, mineralization of both native organic matter and added cellulose was enhanced by PR application. Mineralization of organic matter was less when the soil was amended with PR in combination with high rates of CCBP (> 2.5%) because PR dissolution varied inversely with amount of CCBP addition. Overall, CCBP had no detrimental effect on soil microbial biomass at low application rates, although, like limestone, CCBP at a high rate may decrease P mic in P-deficient soils through its influence on increased soil pH and decreased P bioavailability in the soil. Application of PR to an acidic soil considerably enhanced the microbial activity, thereby promoting the cycling of carbon and other nutrients. Received: 11 December 1995  相似文献   

4.
《Soil biology & biochemistry》2001,33(4-5):417-427
In this study, we test the use of the RAPD (Random Amplified Polymorphic DNA) molecular markers as a way to estimate the similarity of the microbial communities in various termite mounds and soils. In tropical ecosystems, termite activities induce changes in the chemical and physical properties of soil. The question then arises as to whether or not termites affect the presence of natural microbial communities. Successful 16S rDNA amplifications provided evidence of the occurrence of bacterial DNA in termite constructions including both soil feeder and fungus grower materials. A phenetic dendrogram using the similarity distance calculated from pairwise data including 88 polymorphic RAPD markers was reconstructed and bootstrap scores mapped. The microbial communities of the mounds of the four soil-feeding termites were clustered in the same clade, while those of the mounds of the fungus-growing species were distinct like those of control soils. Microbial changes in nests result from termite building behavior, depending on whether they include feces in their constructions for soil-feeders or use saliva as particle cement for fungus-growers. It is argued that RAPDs are useful markers to detect differences in microbial community structure not only between termitaries and control soils but also between mounds of soil-feeders.  相似文献   

5.
In order to investigate whether microbial biomass and its residues are nutrient and energy sources for humivorous beetle larvae, we carried out feeding trials using soil supplemented with 14C-labeled fungal biomass (Penicillium chrysogenum), bacterial biomass (Bacillus megaterium), fungal or bacterial structural polysaccharide (chitin, peptidoglycan), bacterial protein, or cellulose, taking the larva of the cetoniid beetle Pachnoda ephippiata (Coleoptera: Scarabaeidae) as a model of a humus-feeding beetle larva with a highly alkaline gut. The results showed that gut passage strongly stimulated the mineralization of the structural polymers. The stimulatory effect correlated positively with the recalcitrance of the preparation in the control soil, and was accompanied by a transformation of the residual radiolabel to alkali-soluble and acid-soluble products. The solubility increase was highest in the extremely alkaline midgut. High-performance gel-permeation chromatography demonstrated that the changes in solubility were accompanied by reciprocal changes in the molecular weight of the residual material and that the residual material in the fecal pellets was more humified than in the control soil. The amount of radiolabel recovered from the body and hemolymph of the larvae indicated that microbial biomass and its structural components were assimilated more efficiently than cellulose, which supports the hypothesis that microorganisms and the nitrogenous components of humus are an important dietary resource for humivorous soil macroinvertebrates.  相似文献   

6.
Abstract

This study was aimed at characterizing the effects of the activity of termites of the genus Nasutitermes on the physico‐chemical properties of the acid sandy soils of southern Nigeria. Selected morphological properties of the termite mounds were measured in the field. Outside portions of the termite mound and surface (0–15 cm) soil were collected and analyzed for some physical and chemical properties. Results obtained showed a density of 112 mounds ha‐1 with average height of 0.85 m. There were significantly higher proportions of clay, silt, and organic carbon, and higher pH, exchangeable potassium (K), calcium (Ca), magnesium (Mg), available phosphorus (P), effective cation exchange capacity and base saturation in the mounds of the Nasutitermes than in the surrounding topsoil. Mounds of Nasutitermes termites, if returned to the soil, could improve the properties of the soil in areas where termites occur in large numbers.  相似文献   

7.
We present results from one of the first in situ soil termite exclusion experiments using translocated soil that was not colonised by termites prior to the experiment. Macrofauna were excluded or included using fine (0.3 mm) and coarse (5 mm) mesh, respectively. We found that termites were the most dominant macrofauna in the macrofauna-included samples throughout the sampling period. Additionally, C and N depletion rates were consistently higher in samples with macrofauna than without macrofauna despite the seasonal decline of termites at the start of the wet season. This suggests that the presence of termites in soil promotes C and N depletion that may be linked to the passage of soil through the termite gut and the affect termites have on bioturbation and nutrient distribution.  相似文献   

8.
The influence of a soil-feeding termite nest (Cubitermes nikoloensis) on the development of a symbiotic microflora (rhizobia, arbuscular mycorrhizas) was tested in a pot experiment with a tropical legume (Crotalaria ochroleuca). Our results confirmed the role of soil-feeding termite nests as sites of high nutrient concentration, as a significantly higher content of available P and mineral-N was found in the mound wall. Arbuscular mycorrhizal spores increased in the soil near the termite mound. The mound soil itself almost totally depressed mycorrhizal establishment. The positive effect of the soils close to the mound was also evidenced by the number of nodules per root system as well as the nodule biomass per legume plant grown on this medium. Better growth of Crotalaria seedlings was observed in the soils from the mound wall; the shoot biomass increased by a factor of 9 and the root biomass by a factor of 6 as compared to the control soil (10 m away from the mound). Plant growth on soils from the immediate vicinity of the mound showed intermediate results but a higher N content per biomass unit. This probably reflected the association with arbuscular mycorrhiza and rhizobia. This work evidenced the linkage of plant nutrition to nutrient availability in mound material and the indirect mediating effect of the symbiotic microflora.  相似文献   

9.
In order to identify the potential nutrient and energy sources of humivorous beetle larvae, we carried out feeding trials with soil supplemented with specifically 14C-labeled model humic acids synthesized by peroxidase-initiated radical polymerization, using the cetoniid beetle Pachnoda ephippiata (Coleoptera: Scarabaeidae) as a model organism. Ingestion of soil by the larvae significantly increased the mineralization of humic acids labeled in their peptide (HA-*peptide) or polysaccharide components (HA-*peptidoglycan and HA-*chitin), whereas the mineralization of humic acids labeled in the aromatic components (HA-*catechol) did not increase significantly. Mineralization was accompanied by a reduction of residual radiolabel in the acid-soluble fraction and an increase in the humic acid and humin fractions of the fecal pellets. During the gut passage, the residual label in peptide or polysaccharide components was transformed into acid-soluble products, especially in the alkaline midgut. High-performance gel-permeation chromatography demonstrated that the changes in solubility were accompanied by large changes in the molecular weight of the residual material. The amount of radiolabel derived from the peptide and polysaccharide components recovered from the larval body and hemolymph was significantly higher than that derived from the aromatic component, which supports the hypothesis that humivorous beetle larvae selectively digest the peptide and polysaccharide components of humic substances, whereas the aromatic components of humic substances are not an important source of nutrients and energy. This is also the first experimental evidence that also chitin and peptidoglycan, the major structural polymers in fungal and bacterial biomass, can be protected from microbial degradation in soil by a copolymerization with phenols and might contribute substantially to the refractory nitrogen pool in soil organic matter.  相似文献   

10.
Little is known about the relationship between soil biological function and the physical and chemical characteristics of soil-feeding termite nests in the Lopé tropical rainforest (Gabon). We compared nine soil-feeding termite nests of Cubitermes of different ages (fresh to mature to old) and six surrounding soils that originated from three forests differing with respect to age and vegetative cover according to 14 physical and chemical variables and acid (pH 4) and alkaline (pH 9) phosphatase activities. Physical and chemical variables of the studied samples were influenced by the three factors tested: (1) forest age, (2) termite activity (nest versus soil), (3) termite nest age. Soils from the gallery forest were strongly discriminated from all the other soils studied notably due to their high organic matter contents. All mature nests showed significant increases in K, P, clay and fine silt, pH, and cationic exchange capacity compared to soils. Some nests also had increased amounts of organic matter and larger water retention capacities. Moreover, we observed that with age the termite nests possessed decreased values of these variables from fresh to mature to old. Likewise, phosphatase activities also differed according to the three factors tested. Due to its high organic matter contents, the highest phosphatase activities were noted in the gallery forest. Within each forest, phosphatase activities decreased in mature nests compared to soils and tended to be higher in fresh nests compared to mature nests. These differences might be due to an inhibition by high inorganic P contents, as mature nests were enriched in this element and to the quality of organic matter as nests are built with termite faeces. Termite activity has an important role in influencing physical and chemical variables and phosphatase activities.  相似文献   

11.
Plant-derived carbon compounds enter soils in a number of forms; two of the most abundant being leaf litter and rhizodeposition. Our knowledge concerning the predominant controls on the cycling of leaf litter far outweighs that for rhizodeposition even though the constituents of rhizodeposits includes a cocktail of low molecular weight organic compounds which represent a rapidly cycling source of carbon, readily available to soil microbes. We determined the mineralization dynamics of a major rhizodeposit, glucose, and its relationship to land-use, microbial community and edaphic characteristics across a landscape in the southeastern United States. The landscape consists of cultivated, pasture, pine plantation, and hardwood forest sites (n = 3). Mineralization dynamics were resolved in both winter and summer using an in situ13C-glucose pulse-chase approach. Mineralization rates of the labeled glucose decline exponentially across the 72 h measurement periods. This pattern and absolute mineralization rates are consistent across seasons. An information-theoretic approach reveals that land-use is a moderately strong predictor of cumulative glucose mineralization. Measures assessing the size, activity, and/or composition of the microbial community were poor predictors of glucose mineralization. The strongest predictor of glucose mineralization was soil-extractable phosphorus. It was positively related to glucose mineralization across seasons and explained 60% and 48% of variation in cumulative glucose mineralization in the summer and winter, respectively. We discuss potential mechanisms underlying the relationship between soil phosphorus and glucose mineralization. Our results suggest that specific soil characteristics often related to land-use and/or land-management decisions may be strong predictors of glucose mineralization rates across a landscape. We emphasize the need for future research into the role of soil phosphorus availability and land-use history in determining soil organic carbon dynamics.  相似文献   

12.
单军  季荣 《土壤》2008,40(6):863-871
土壤有机C是维持全球C平衡过程中的重要C库,其降解和转化在地球化学循环中占有重要地位。大型土壤动物对土壤有机C的稳定性起着重要的调控作用。14C示踪技术由于在测定目标化合物的转化速率和定位代谢产物和残留物分布上的优势,近年来在土壤有机C稳定性研究中得到了广泛应用。本文综述了3种典型土食性大型土壤动物,白蚁(Isoptera:Termitidae)、甲虫幼虫(Coleoptera:Scarabaeidae)和蚯蚓(Oligochaeta:Lumbricidae),对土壤稳态有机C降解转化的14C示踪研究结果及相关的微生物作用。食土白蚁和甲虫幼虫的极端碱性(pH10~12.5)肠道段和肠道内的特殊蛋白酶的共同作用促使这两种动物可以选择性地降解和矿化腐殖酸中的稳态多肽等组分,进一步提高腐殖酸的腐殖化程度。食土蚯蚓体内含有高活性的纤维素酶,能促进纤维素的降解。虽然木质素在蚓粪中能发生降解,蚯蚓也能降解植物树叶,但是食土蚯蚓能否降解或选择性降解稳态土壤有机C的研究还极少。大型土壤动物肠道内含有大量微生物及酶,这些微生物在土壤动物降解和腐殖化有机C的过程中所起的具体作用如何以及这些酶的来源还不是很清楚。文中总结了目前对大型土壤动物转化土壤有机C认识上的不足,并对一些优先研究方向提出了建议。  相似文献   

13.
Even if termites are often considered as a pest due to the damage they cause to agriculture and architecture, they contribute to the soil humification process in the tropics. This impact on the soil organic matter humification process is due to the most important feeding habit in terms of species diversity, the soil feeding termites (∼1 200 species). Unlike other termites, their diet is not based on lignocellulosic plant degradation, but on the consumption of the mineral-containing horizons for the acquisition of nutrients. They are mostly distributed in humid forest or savannah equatorial zone. High structure and compartment with steep radial and axial gradients of O2, H2 and pH characterize their gut and create a patchy biotope. Furthermore, the humic compounds ingested are submitted, during a sequential transit, to different chemical (alkaline hydrolysis) and microbial degradation processes (fermentation, anaerobic respiration and mineralization). During this gut transit, the soil organic matter is strongly modified in terms of nature (organic matter concentration, fulvic and humic acid ratio) and organization (formation of organo-mineral complexes with clay). The soil organic matter ingested is further included as faeces in the nest and the galleries which, as a whole, constitutes the termitosphere. Compared to the control soil, the soil organic matter in the termitosphere is more stable and protected from the intense mineralization, which occurs in the tropics. These shifts of the organic matter into long turnover pool generated by the termite gut transit and deposition in the termitosphere indicate that besides the earthworm, the soil feeding termite has a positive impact on the overall organic matter cycling in the tropics.  相似文献   

14.
Termite(Macrotermes spp.) mounds are complex biological habitats originated by the termite activity and possessing peculiar physical, chemical and biochemical properties. In this study we examined the concentration of nutrients and the biochemical activity of abandoned soil and mounds colonized by termites of the genera Macrotermes located in the Borana District, Ethiopia. To elucidate the magnitude and persistence of the termite-induced effects, we also studied an abandoned mound, previously colonized by termites of the same genera formed on the same soil. Results confirmed that termite-colonized mounds are ‘hot spots' of nutrient concentration and microbial activity in tropical soils. This is due to the termite driven litter input and decomposition. The abandoned mounds showed higher microbial biomass and activity and displayed a nutrient redistribution and a greater microbial activity than the adjacent soils. These findings allowed us to hypothesize a model of nutrient cycling in colonized soils and a partition of the relative roles of termites and soil microorganisms in nutrient location and turnover in tropical soils. These results may be also useful for the optimal management of termite-colonized soils.  相似文献   

15.
Mineralization of organic matter and microbial activities in an intensively cultivated acid, N-rich peat soil planted with Salix sp. cv. aquatica were examined for 3 yr. The soil was amended with wood ash or NPK fertilizers providing N as ammonium nitrate or urea. The wood ash amendment (10 tons ha?1) increased soil pH from 4.6 to 5.5 and increased markedly all microbial activities measured, resulting in increased mineralization and N availability, and in loss of 9% total soil N during the first year. The addition of ammonium nitrate caused a corresponding though less pronounced increase in N mineralization. Cellulose decomposition increased in all amended soils, reaching rates 53–86% higher than in non-amended soil. Potential N2 fixation (C2H2 reduction) by free-living organisms was increased by the ash-amendment. Potential denitrification rates were positively correlated (r = 0.98) with the presence of water-soluble organic-C, which was more abundant in ash-amended and non-amended soils than in the soils fertilized with N.  相似文献   

16.
Soil-engineering organisms (earthworms, termites and ants) affect the soil and litter environment indirectly by the accumulation of their biogenic structures (casts, pellets, galleries, crop sheetings nests…). An enzymatic typology was conducted on six types of biogenic structures: casts produced by two earthworms (Andiodrilus sp. and Martiodrilus sp.), a nest built by a soil-feeding termite (Spinitermes sp.), crop galleries built by another soil-feeding termite (Ruptitermes sp.) and soil pellets produced by two species of leaf-cutting ant (Acromyrmex landolti and Atta laevigata) and an control soil from a natural Colombian savanna. A total of 10 enzymes (xylanase, amylase, cellulase, α-glucosidase, β-glucosidase, β-xylosidase, N-acteyl-glucosaminidase, alkaline and acid phosphatases and laccase) were selected to characterize the functional diversity of the biogenic structures. Our results showed that (i) Martiodrilus casts were characterized by a broad enzymatic profile that was different from that of the soil. (ii) A. laevigata pellets and termite structures had a profile broadly similar to the soil only with some enzymes (iii) Andiodrilus casts had an enzyme profile very similar to that of the soil. These results suggest that the functional diversity of these structures is related to differences between species and not to differences between taxonomic groups. For the first time, we evaluated differences in enzyme typology between biogenic structures collected on the same site but produced by different organisms. These differences suggested species dependent pathways for the decomposition of organic matter.  相似文献   

17.
Previous feeding experiments have shown that soil-feeding termites (Termitidae: Termitinae) preferentially mineralize the peptidic component of synthetic humic acids, but nothing was known about the mechanism involved in digestion. Here, we studied the hydrolysis of humus-stabilized peptides in gut extracts of Cubitermes orthognathus by measuring the release of radiolabel from 14C-peptide-labeled synthetic humic acids. Gut extracts exhibited proteolytic activity over a wide pH range (from 4 to 12) with a maximum at about pH 8. The highest activity was located in the gut section containing the midgut and the extremely alkaline (up to pH 12) mixed segment. Chemical hydrolysis at in situ pH (up to pH 12) was negligible. Proteolytic activity in the hindgut fluid was generally relatively low, but alkaline proteases dominated in the anterior hindgut. When compared to other alkaline proteases, the proteolytic activity of gut extracts had a higher alkali-stability and tolerance to humic acids than subtilisin and an alkaline protease of Streptomyces griseus. Gut extracts also hydrolyzed the peptidic component of synthetic humic acids more efficiently than the commercial enzymes. Together with previous results, this study strongly supports the hypothesis that soil-feeding termites mobilize and digest the peptidic component of organic nitrogen in soil humic substances by a combination of proteolytic activities and extreme alkalinity in their intestinal tract.  相似文献   

18.
Integrating information on nitrogen (N) mineralization potentials into a fertilization plan could lead to improved N use efficiency. A controlled incubation mineralization study examined microbial biomass dynamics and N mineralization rates for two soils receiving 56 and 168 kg N ha?1 in a Panoche clay loam (Typic Haplocambid) and a Wasco sandy loam (Typic Torriorthent), incubated with and without cotton (Gossypium hirsutum L.) residues at 10 and 25°C for 203 days. Microbial biomass activity determined from mineralized carbon dioxide (CO2) was higher in the sandy loam than in clay loam independent of incubation temperature, cotton residue addition and N treatment. In the absence of added cotton residue, N mineralization rates were higher in the sandy loam. Residue additions increased N immobilization in both soils, but were greater in clay loam. Microbial biomass and mineralization were significantly affected by soil type, residue addition and temperature but not by N level.  相似文献   

19.
Termites of the subfamily Macrotermitinae play an important role in tropical ecosystems: they modify the soil's physical properties and thereby make food available for other organisms. Clay is important in the architecture of Macrotermitinae termite nests, and it has been postulated that termites could modify the mineralogical properties of some clays. We have tested this hypothesis of clay transformation by termites in the laboratory under controlled conditions, using Odontotermes nr. pauperans termite species, one of the main fungus‐growing species at Lamto Research Station (Côte d'Ivoire). Soil handled by termites in nest building was saturated with SrCl2, glycol or KCl and afterwards heated at 250°C for X‐ray diffraction analyses. Termite handling led to an increase in the expandable layers of the component clay minerals. Heating and saturation by potassium of modified clays did not close the newly formed expandable clay layers. However, differences occurred between parts of the constructions built by termites, and the clays can be ranked according to their degree of alteration in the following order: unhandled soils < galleries < chamber walls. Consequently, termites can be seen as weathering agents of clay minerals, as previously shown for micro‐organisms and plants.  相似文献   

20.
赵伟  梁斌  周建斌 《土壤学报》2015,52(3):587-596
采用盆栽试验和短期矿化培养相结合的方法,研究了施入15N标记氮肥(+N)及其与秸秆配施(+1/2N+1/2S)在3种长期(19年)不同培肥土壤(即:No-F,长期不施肥土壤;NPK,长期施用NPK化肥土壤;MNPK,长期有机无机肥配施土壤)中的残留及其矿化和作物吸收特性。结果表明,第一季小麦收获后,+1/2N+1/2S处理下三供试土壤和+N处理下的NPK和MNPK土壤残留肥料氮(残留15N)中有82.6%~95.1%以有机态存,而+N处理下No-F土壤残留15N有47.7%以矿质态存在。经过28 d矿化培养后,与NPK土壤相比,MNPK土壤氮素净矿化量显著增加,增幅为39%~49%;NPK和MNPK土壤残留肥料氮(残留15N)矿化量为1.23~1.90 mg kg-1,占总残留15N的2.78%~5.53%,均显著高于No-F土壤。与+N处理相比,+1/2N+1/2S处理显著提高了3供试土壤氮素净矿化量,但两施肥处理对NPK和MNPK土壤残留15N矿化量无显著影响。+N处理下No-F土壤残留15N的利用率为20%,显著高于NPK(9%)和MNPK(12%)土壤。两种施肥处理下,MNPK土壤残留15N的利用率均显著高于NPK土壤。短期培养期间土壤氮素矿化量和第二季小麦生育期作物吸氮量呈显著性正相关,而残留15N矿化量和第二季小麦吸收残留15N量间无显著性相关关系。长期有机无机配施可以提高土壤残留肥料氮的矿化量及有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号