首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We have determined the technological properties of four lines containing combinations of three HMW-GS transgenes, encoding HMW-GS 1Ax1, 1Dx5 and 1Dy10. These lines were produced by conventional crossing of three single transgenic lines of the bread wheat cultivar Anza that contains the endogenous HMW-GS pairs 1Dx2 + 1Dy12 and 1Bx7* + 1By8 and is null for the Glu-A1 locus. Consequently, the total number of HMW-GS ranged from 4 in the control line Anza to 7 in line T618 which contains all three HMW-GS transgenes. The lines were studied over two years using a range of widely used grain and dough testing methods. All lines with transgenic subunits showed higher levels of glutenin proteins than the Anza control, and these differences were highly significant for lines T616, T617 and T618, containing, respectively, the transgenes encoding HMW-GS 1Ax1 and 1Dy10, 1Dx5 and 1Dy10 and 1Ax1, 1Dx5 and 1Dy10. These increases in glutenin levels are compensated by lower levels of gliadins present in transgenic lines. These changes affected the ratio of polymeric to monomeric gluten proteins (poly:mono), the ratio of HMW-GS to LMW-GS (HMW:LMW) and the contents of individual 1Ax, 1Bx, 1By, 1Dx and 1Dy subunits. Transgenic lines expressing subunit 1Dy10 together with x-type subunits (T616, T617 and T618) were superior to line T606, which had only increases in x-type subunits. In particular, the combination of transgenic subunits 1Dx5 and 1Dy10 (line T617) gave better dough rheological properties than the other combinations of transgenic subunits. For example, dough development time and stability were increased by 3.5-fold and 8.5-fold, respectively, while the mixing tolerance index (MTI) was decreased by 3.3-fold in line T617 with respect to the control line. Alveograph analyses showed that all four transgenic combinations had increased P values compared to the Anza control but subunit 1Dx5 greatly reduced the extensibility (L). These results show that stacking HMW-GS transgenes by conventional crossing is a valid strategy for the improvement of wheat quality, with different effects being related to the different HMW-GS combinations.  相似文献   

2.
Ten transgenic lines were studied which expressed a transgene encoding HMW subunit 1Ax1 in three elite spring wheat cultivars: Imp, Canon and Cadenza. These lines contained one to five copies of the transgene and the 1Ax1 subunit was expressed as 1–20% of the total glutenin protein. These lines were grown in field trials in a continental, arid climate (Martonvásár, Hungary) over two years (2004, 2005). The expression of the transgenes and their effects on the grain properties were stably inherited over the two years. Significant differences in yield were observed between three of the transgenic lines and the original genotypes, but no differences were found in their adaptiveness. Clear differences were found in the technological and rheological properties of four lines, with all the parameters characterising dough strength and extensibility (GI, W, G, Re, Ext, A) changing significantly. These differences were associated with increases in the ratio of HMW/LMW subunits and decreases in the ratios of 1Dx/1Dy and 1Bx/1By subunits. Two transgenic lines of cv Imp had high over-expression of the 1Ax1 subunit which in one line resulted in an overstrong type of dough, similar to that described previously for lines over-expressing HMW subunit 1Dx5. Transformation of cvs. Canon and Cadenza resulted in two lines with increased dough stability due to the significantly improved gluten quality. It is concluded that significant changes in the structure of the glutenin polymers caused by the altered ratio of x-type to y-type HMW subunits led to the changes in flour functional properties.  相似文献   

3.
Seven transgenic lines of a commercial wheat (Triticum aestivum L.) cultivar expressing transgenic subunits 1Ax1, 1Dx5 and 1Dy10, alone or in combination have been developed. Pasting properties were determined in these transgenic lines using a Rapid Visco Analyser (RVA) in order to determine the possible impact of HMW-GS transgene expression on the starch properties. Expression of the HMW-GS transgenes increased the proportions of the corresponding 1Ax, 1Dx and 1Dy subunits affecting significantly the ratios of HMW-GS:LMW-GS and x-type:y-type HMW-GS. Starch granule size distribution varied significantly among all transgenic lines, with the Anza control and transgenic line T616 (expressing subunits 1Ax1 and 1Dy10) showing the highest and the lowest percentage of B granules, respectively. All transgenic lines increased the water-binding capacities (WBC) at 25 °C and 90 °C. Line T606 (expressing subunits 1Ax1 and 1Dx5) and line T590 (expressing subunit 1Dy10) showed the lowest and the highest values for peak viscosity, respectively. Notably, lines expressing only transgenic x-type subunits (T580, T581 and T606), with high ratios of x-type:y-type HMW-GS, had low peak viscosities, final viscosities and breakdown viscosities. Line T590 had the highest breakdown viscosity while lines T606 and T581 had the lowest.  相似文献   

4.
Transgenes encoding the HMW subunits 1Ax1 and 1Dx5 have been transferred from “model” wheat lines into the commercial French bread wheat cultivar Soissons, using three backcrosses. Five pairs of BC3 expressing and null lines were isolated from each cross and multiplied to provide grain for functionality studies. Analysis of white flour samples confirmed the expression of the transgenes. SE-HPLC and Reomixer studies showed that the two transgenes had differential effects on dough functional properties. Thus, subunit 1Dx5 resulted in detrimental effects on dough development which were associated with decreased extractability of large glutenin polymers. In contrast, lines expressing subunit 1Ax1 contained increased proportions of extractable large glutenin polymers with three lines showing higher torque at similar mixing times (i.e. increased dough strength). This confirms the results obtained with the model wheat lines and shows that the 1Ax1 transgene can be used to increase dough strength in commercial cultivars.  相似文献   

5.
6.
The mixing properties of the dough are critical in the production of bread and other food products derived from wheat. The high molecular weight glutenin subunits (HMW-GS) are major determinants of wheat dough processing qualities. The different alleles of the HMW-GS genes in hexaploid wheat vary in their effect on dough quality. To determine the contribution of the individual HMW-GS alleles, lines deficient in HMW-GS proteins were generated by chemical mutagenesis in the elite bread wheat Triticum aestivum cv. Summit. In this report we describe the identification and characterization of Dy10 and Ax1 deficient lines. Examination of the effect of Dy10 and Ax1 deficiency on dough rheological properties by mixography showed shorter mixing time to reach peak resistance, and weaker and less extensible doughs relative to the wild type control. This is the first time that the role of Dy10 in vivo has been examined apart from the Dx5 + Dy10 allelic pair combination.  相似文献   

7.
为了给新疆小麦面筋品质改良提供参考依据,利用多重PCR体系对267份新疆冬、春小麦品种中1BL/1RS易位和 Dx5基因的分布进行了检测,并测定了其中181份小麦品种的面粉蛋白质含量、湿面筋含量、Zeleny沉淀值以及面团特性等品质性状。结果表明,新疆小麦品种中,1BL/1RS易位品种有55份,占20.6%,含有 Dx5基因的品种有76份,占28.5%。冬小麦品种中1BL/1RS易位系分布频率(26.6%)显著高于春小麦(9.6%),而春小麦品种中 Dx5基因的分布频率(31.9%)高于冬小麦(26.6%)。在新疆小麦农家品种、引进品种和自育成品种中,1BL/1RS易位和 Dx5基因的分布频率也存在明显差异。分析表明,1BL/1RS和非1BL/1RS小麦品种的主要面筋品质性状(如Zeleny沉淀值、峰值高度、8 min宽度等)达到显著性差异(P<0.05),1BL/1RS小麦中含 Dx5和不含 Dx5基因品种的面筋指数、Zeleny沉淀值、峰值时间和8 min面积等5个参数差异达到显著水平(P<0.05)。多重PCR体系检测结果可靠稳定,节省实验经费和时间,提高了效率,可用于小麦分子辅助育种。  相似文献   

8.
The study of food products is always a challenge due to the number of components involved and the interactions that may occur between them. Water is a particular ingredient which interacts with all hydrophilic compounds, although affinities may differ for limiting water amount. During this study, results obtained using 1H NMR on cake dough were compared in terms of the effects of flour type (soft or medium hard), the addition of gluten (5%–20%) and the use of soft flour fractions (flour particle fractions smaller or larger than 50 μm). T2 values and the signal intensities of different proton populations were studied as a function of the wheat protein contents of dough samples. Physicochemical characterization methods were used to better understand how the origin and particle size of flour might impact the hydration properties and mobility of a model system. Increasing the protein content in dough samples was related to an increase of the mobility of fat protons and of the least mobile proton population (relaxation times ranging from 175 to 180 ms and from 5 to 7 ms, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号