首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Context

The relative importance of habitat area and connectivity for species richness is often unknown. Connectivity effects may be confounded with area effects or they may be of minor importance as posited by the habitat-amount hypothesis.

Objectives

We studied effects of habitat area and connectivity of linear landscape elements for plant species richness at plot level. We hypothesized that connectivity of linear landscape elements, assessed by resistance distance, has a positive effect on species richness beyond the effect of area and, further, that the relative importance of connectivity varies among groups of species with different habitat preferences and dispersal syndromes.

Methods

We surveyed plant species richness in 50 plots (25 m2) located on open linear landscape elements (field margins, ditches) in eight study areas of 1 km2 in agricultural landscapes of Northwest Germany. We calculated the area of linear landscape elements and assessed their connectivity using resistance distance within circular buffers (500 m) around the plots. Effects of area and connectivity on species richness were modelled with generalised linear mixed models.

Results

Species richness did not increase with area. Resistance distance had significant negative effects on total richness and on the richness of typical species of grasslands and wetlands. Regarding dispersal syndromes, resistance distance had negative effects on the richness of species with short-distance, long-distance and aquatic dispersal. The significant effects of resistance distance indicated that species richness increased with connectivity of the network of linear landscape elements.

Conclusions

Connectivity is more important for plant species richness in linear landscape elements than area. In particular, the richness of plant species that are dispersal limited and confined to semi-natural habitats benefits from connective networks of linear landscape elements in agricultural landscapes.
  相似文献   

2.

Context

Landscape ecologists are often interested in measuring the effects of an environmental variable on a biological response; however, the strength and direction of effect depend on the size of the area within which the environmental variable is measured. Thus a central objective is to identify the optimal spatial extent within which to measure the environmental variable, i.e. the “scale of effect”.

Objectives

Our objectives are (1) to provide a comprehensive summary of the hypotheses concerning what determines the scale of effect, (2) to provide predictions that can be tested in empirical studies, and (3) to show, with a review of the literature, that most of these predictions have so far been inadequately tested.

Methods

We propose 14 predictions derived from five hypotheses explaining what determines the scale of effect, and review the literature (if any) supporting each prediction. These predictions involve five types of factors: (A) species traits, (B) landscape variables, (C) biological responses (e.g. abundance vs. occurrence), (D) indirect influences, and (E) regional context of the study. We identify methodological issues that hinder estimation of the scale of effect.

Results

Of the 14 predictions, only nine have been tested empirically and only five have received some empirical support. Most support is from simulation studies. Empirical evidence usually does not support predictions.

Conclusions

The study of the spatial scale at which landscape variables influence biological outcomes is in its infancy. We provide directions for future research by clarifying predictions concerning the determinants of the scale of effect.
  相似文献   

3.
Determining adequate sample size (ASS) and minimum plot size (MPS) are two fundamental issues in urban vegetation investigations. To estimate the ASS and MPS of urban plants, we introduced sampling completeness to the MPS calculation based on 54 samples in the urban area of Chongqing, China. Then, we examined the performance of the species-area curve method and CVJack1 (coefficient of variation (CV) for the first-order jackknife estimator (Jack1)) curve extrapolation method. We also tested the effectiveness and error distribution of extrapolating the ASS from CVJack1 curves using 180 samples from the urban area of Chongqing, China, and 222 samples from the urban area of Xiamen, China. The results of the urban plant analyses showed that (1) the constructed species-area accumulation curves fit a logistic function (R2 > 0.990); (2) the MPS increased with sampling completeness, whereas unrecorded species exhibited the opposite trend; (3) the CVJack1 curves fit the allometric1 function (R2 > 0.960) but might fail to reach a CV value of 0.05 for the calculation of ASS if the sample size was too small; and (4) the relative error values were below 5% when the error curves of extrapolation (by CVJack1 curve) approached a horizontal asymptote. The species-area accumulation curve with sampling completeness and the CVJack1 curve extrapolation method were promising approaches for determining the MPS and ASS of urban plants. The results and methods in this study provide a reference for determining the appropriate plot size and sample size for urban plant species richness investigations.  相似文献   

4.

Context

Multi-scale approaches to habitat modeling have been shown to provide more accurate understanding and predictions of species-habitat associations. It remains however unexplored how spatial and temporal variations in habitat use may affect multi-scale habitat modeling.

Objectives

We aimed at assessing how seasonal and temporal differences in species habitat use and distribution impact operational scales, variable influence, habitat suitability spatial patterns, and performance of multi-scale models.

Methods

We evaluated the environmental factors driving brown bear habitat relationships in the Cantabrian Range (Spain) based on species presence records (ground observations) for the period 2000–2010, LiDAR data on forest structure, and seasonal estimates of foraging resources. We separately developed multi-scale habitat models for (i) each season (spring, summer, fall and winter) (ii) two sub-periods with different population status: 2000–2004 (with brown bear distribution restricted to the main population nuclei) and 2005–2010 (with expanding bear population and range); and (iii) the entire 2000–2010 period.

Results

Scales of effect remained considerably stable across seasonal and temporal variations, but not the influence of certain environmental variables. The predictive ability of multi-scale models was lower in the seasons or periods in which populations used larger areas and a broader variety of environmental conditions. Seasonal estimates of foraging resources, together with LiDAR data, appeared to improve the performance of multi-scale habitat models.

Conclusions

We highlight that the understanding of multi-scale behavioral responses of species to spatial patterns that continually shift over time may be essential to unravel habitat relationships and produce reliable estimates of species distributions.
  相似文献   

5.
6.
Socioeconomic changes in many areas in the tropics have led to increasing urbanization, abandonment of agriculture, and forest re-growth. Although these patterns are well documented, few studies have examined the drivers leading to landscape-level forest recovery and the resulting spatial structure of secondary forests. Land cover transitions from agricultural lands to secondary forest in the island of Puerto Rico have been ongoing since the 1940s. This study is a glimpse into this landscape level trend from 1991 to 2000. First, we relied on Landsat images to characterize changes in the landscape structure for forest, urban, and agricultural land classes. We found that although forest cover has increased in this period, forest has become increasingly fragmented while the area of urban cover has spread faster and become more clustered. Second, we used logistic regression to assess the relationship between the transition to forest and 21 biophysical, socioeconomic, and landscape variables. We found that the percentage of forest cover within a 100 m radius of a point, distance to primary roads and nature reserves, slope, and aspect are the most important predictors of forest recovery. The resulting model predicts the spatial pattern of forest recovery with accuracy (AUC-ROC = 0.798). Together, our results suggest that forest recovery in Puerto Rico has slowed down and that increasing pressure from urbanization may be critical in determining future landscape level forest recovery. These results are relevant to other areas in the tropics that are undergoing rapid economic development.  相似文献   

7.

Context

Golden-cheeked warblers (Setophaga chrysoparia), an endangered wood-warbler, breed exclusively in woodlands co-dominated by Ashe juniper (Juniperus ashei) in central Texas. Their breeding range is becoming increasingly urbanized and habitat loss and fragmentation are a main threat to the species’ viability.

Objectives

We investigated the effects of remotely sensed local habitat and landscape attributes on point occupancy and density of warblers in an urban preserve and produced a spatially explicit density map for the preserve using model-supported relationships.

Methods

We conducted 1507 point-count surveys during spring 2011–2014 across Balcones Canyonlands Preserve (BCP) to evaluate warbler habitat associations and predict density of males. We used hierarchical Bayesian models to estimate multiple components of detection probability and evaluate covariate effects on detection probability, point occupancy, and density.

Results

Point occupancy was positively related to landscape forest cover and local canopy cover; mean occupancy was 0.83. Density was influenced more by local than landscape factors. Density increased with greater amounts of juniper and mixed forest and decreased with more open edge. There was a weak negative relationship between density and landscape urban land cover.

Conclusions

Landscape composition and habitat structure were important determinants of warbler occupancy and density, and the large intact patches of juniper and mixed forest on BCP (>2100 ha) supported a high density of warblers. Increasing urbanization and fragmentation in the surrounding landscape will likely result in lower breeding density due to loss of juniper and mixed forest and increasing urban land cover and edge.
  相似文献   

8.
Landscape Ecology - Biodiversity patterns depend on landscape structure, but the spatial scale at which such dependence is strongest (scale of effect, SoE) remains poorly understood, especially for...  相似文献   

9.
Szacki  Jakub 《Landscape Ecology》1999,14(4):369-379
In the classic metapopulation concept a specific range of animal movements is assumed, not too large and not too small. Thus, knowledge of animal mobility is necessary to determine the degree to which a given population matches a specific metapopulation model. It seems that usually small mammal mobility is underestimated, and this has important consequences for the way we view metapopulation dynamics. Data on small mammal movements (Clethrionomys glareolus and Apodemus flavicollis) are presented in this paper. The material was collected in a two year study in western Poland using a set of six woodlots of different sizes and degree of isolation, located among agricultural fields. Various methods were used in the study: colored bait, live-trapping, and radio-telemetry. It is suggested that the populations under study match the concept of patchy population (sensu Harrison 1991), being poorly isolated in individual patches and with the range of animal movements encompassing the whole set of patches. Moreover, the use of patches changes between seasons according to changing needs and/or resource abundance in the woodlots. Density and composition of local populations may be influenced both by the patch area and its isolation, and also by the filtering effect of the matrix that depends on the season. In this context it is pointed out that more attention should be paid to the matrix, both in research practice and conservation as it is a factor influencing population functioning in quantitative and qualitative ways. It is suggested that any generalizations about population spatial organization may be impossible without more detailed knowledge of long distance movements of focal animals and their use of matrix.  相似文献   

10.
11.
The desire to improve urban sustainability is motivating many city planners to adopt growth strategies that increase residential density, leading to substantial changes to urban landscapes. What effect this change will have on biodiversity remains unclear, but it is expected that the role of public greenspace in providing wildlife habitat will become critical. We explored the role of urban “pocket parks” as habitat for birds, and how this role changed with increasing residential density in the surrounding neighbourhood. We found that parks in neighbourhoods with high levels of public greenspace (corresponding to less residential land) supported more bird species and individuals overall, and more woodland-dependent species, insectivores and hollow-nesters. Total greenspace area was more important (included in the best ranked models for all bird responses) than the configuration (number, average size and connectivity) of greenspace patches. The majority of species were common suburban birds, indicating that species we assume are tolerant to urban areas will be negatively affected by increasing residential density. Parks form part of an interconnected network of urban open space. For parks to continue to support a diverse native bird community, the network must be viewed, managed, and maintained in its entirety. We suggest three key management actions to improve the bird diversity values of urban greenspaces in compact cities: (1) Increase urban greenspace cover in residential neighbourhoods. (2) Increase vegetation structure in greenspace. (3) Encourage homeowners to plant trees and shrubs.  相似文献   

12.
Habitat fragmentation, patch quality and landscape structure are important predictors for species richness. However, conservation strategies targeting single species mainly focus on habitat patches and neglect possible effects of the surrounding landscape. This project assesses the impact of management, habitat fragmentation and landscape structure at different spatial scales on the distribution of three endangered butterfly species, Boloria selene, Boloria titania and Brenthis ino. We selected 36 study sites in the Swiss Alps differing in (1) the proportion of suitable habitat (i.e., wetlands); (2) the proportion of potential dispersal barriers (forest) in the surrounding landscape; (3) altitude; (4) habitat area and (5) management (mowing versus grazing). Three surveys per study site were conducted during the adult flight period to estimate occurrence and density of each species. For the best disperser B. selene the probability of occurrence was positively related to increasing proportion of wetland on a large spatial scale (radius: 4,000 m), for the medium disperser B. ino on an intermediate spatial scale (2,000 m) and for the poorest disperser B. titania on a small spatial scale (1,000 m). Nearby forest did not negatively affect butterfly species distribution but instead enhanced the probability of occurrence and the population density of B. titania. The fen-specialist B. selene had a higher probability of occurrence and higher population densities on grazed compared to mown fens. The altitude of the habitat patches affected the occurrence of the three species and increasing habitat area enhanced the probability of occurrence of B. selene and B. ino. We conclude that, the surrounding landscape is of relevance for species distribution, but management and habitat fragmentation are often more important. We suggest that butterfly conservation should not focus only on a patch scale, but also on a landscape scale, taking into account species-specific dispersal abilities.  相似文献   

13.
In 1983, a group of incipient landscape ecologists met to discuss the nature and future directions for landscape ecology. The themes emerging from this conference—movement of materials, organisms, and energy through a landscape; the genesis of landscape patterns; the effects of landscape structure on the spread of disturbances; and the potential contributions of landscape ecology to resource management—established a foundation for the development of landscape ecology in North America over the following decades. I discuss these contributions in the light of where landscape ecology is today.
John A. WiensEmail:
  相似文献   

14.
Landscape Ecology - Linear landscape elements (LLEs) such as ditches and hedgerows can increase the ecological connectivity of habitat embedded within agricultural areas by acting as corridors for...  相似文献   

15.
16.
Human preferences for the species in urban greening have greatly facilitated the spread of non-native species, resulting in the homogenization of urban plant communities across spatial scales. We selected 11 major cities along the Yangtze River in China and examined the species composition in their urban plant communities. We found that China’s urban plant communities are becoming homogenized, as urban communities of different cities are highly similar to each other despite the geographical separation. Meanwhile, these artificial communities we investigated have diverged greatly from the natural communities at both the city and the geographic scale. We recorded a total of 91 woody species that have been used in urban greening in all 11 cities. Of those species, 27% were cultivars and introduced species, and 25% were being used outside of their native distribution ranges in China. This may be explained by the market and urban planners who tend to favor greening plants that are highly profitable and have aesthetic ornamental traits, rather than spending time introducing and acclimatizing the native species in each city. Given the current trend of homogenization, measures that recognize the importance of native species should be emphasized with comprehensive urban planning strategies.  相似文献   

17.
The percentage of a watershed occupied by agricultural areas is widely used to predict nutrient loadings and in-stream water chemistry because water quality is often linked to non-point sources in a watershed. Measures of the spatial location of source areas have generally not been incorporated into such landscape indicators although empirical evidence and watershed loading models suggest that spatially explicit information is useful for predicting loadings. I created a heuristic grid-based surface-flow model to address the discrepancies between spatially explicit and non-spatial approaches to understanding watershed loading. The mean and variance in loading were compared among thousands of simulated watersheds with varying percentages of randomly located source and sinks. The variability in loading among replicate landscapes was greatest for those landscapes with ~65% source areas. This variance peak suggests that considering the spatial arrangement of cover types is most important for watersheds with intermediate relative abundances of sources and sinks as the wide variety of different spatial configurations can lead to either very high or very low loading. Increasing the output from source pixels (relative to the amount absorbed by sink pixels) among different landscapes moved the peak in variance to landscapes with lower percentages of sources. A final scenario examined both broad- and fine-scale heterogeneity in source output to disentangle the relative contributions of spatial configuration, percentage of source covers, and heterogeneity of sources in governing variability in loading. In landscapes with high percentages of source pixels, fine-scale heterogeneity in source output was responsible for a greater portion of the total variability in loading among different watersheds than was spatial arrangement. These results provide several testable hypotheses for when spatial and non-spatial approaches might be most useful in relating land cover to water chemistry and suggest improvements for the spatial sensitivity analyses of eco-hydrologic watershed models.  相似文献   

18.

Context

Converting monocultures to mixed-species stands is thought to be a promising approach to increase forest productivity and resilience, while additionally providing other ecosystem goods and services (EGS). However, the importance of tree species composition and structure remains unclear, particularly beyond the stand scale due to the difficulty of conducting comprehensive, long-term experiments.

Objectives

To compare the ability of different tree species mixtures to provide various EGS at the landscape scale.

Methods

We used a dynamic forest landscape model to simulate all possible combinations of dominant tree species for two landscapes; a high-elevation alpine region (Dischma valley, Switzerland) and a lowland valley (Mt. Feldberg, Germany). We evaluated multiple EGS, including protection from gravitational hazards, aboveground biomass, and habitat quality, and examined trade-offs and synergies between them.

Results

Mixed-species forests were usually better in providing multiple EGS, although monocultures were often best for single EGS. The simulation results also demonstrated how changing environmental conditions along an elevational gradient had a strong impact on the structure of different species combinations and therefore on the provisioning of EGS.

Conclusion

Tree species diversity alone is not a good predictor of multifunctionality. Mixtures should be selected based on local environmental conditions, complementary functional traits, and the ability to provide the EGS of interest. Although our work focused on current climatic conditions, we discuss how the modelling framework could be employed to consider the impacts of climate change and disturbances to improve our understanding of how mixed-species stands could be used to cope with these challenges.
  相似文献   

19.
We argue for the landscape ecology community to adopt the study of poverty and the ecology of landscapes as a Grand Challenge Topic. We present five areas of possible research foci that we believe that landscape ecologists can join with other social and environmental scientists to increase scientific understanding of this pressing issue: (1) scale and poverty; (2) landscape structure and human well-being; (3) social and ecological processes linked to spatial patterns in landscapes; (4) conservation and poverty, and (5) applying the landscape ecologist’s toolkit. A brief set of recommendations for landscape ecologists is also presented. These include the need to utilize broad frameworks that integrate social and ecological variables, build capacity to do this kind of work through the development of strong collaborations of researchers in developed and developing countries, create databases in international locations where extreme poverty exists, and create a new generation of researchers capable of addressing this pressing social and environmental issue.  相似文献   

20.
Much of ecological research centers around discovering the underlying factors for species distribution; three such factors are of central importance: local environment, landscape features and dispersal. While all have been simplified in the past, the recent increase in metapopulation and metacommunity research makes being able to quantify dispersal all that much more necessary. In order to increase our knowledge about metacommunities in the “real word”, it is clearly time to start thinking critically about whether and how the methods that are currently available for measuring dispersal within metapopulations can be adapted. The goal of this contribution is to present and argue the technical difficulties involved in measuring dispersal within metacommunities through: (1) discussing the merits and pitfalls of some potential direct (e.g., mark-recapture) and indirect methods (e.g., isolation measures, patchiness) for studying the effects of dispersal at the metapopulation and metacommunity level; (2) discuss the types of questions that can be tackled at the metacommunity level in light of methodological decisions; and (3) make the point that the technical difficulties of measuring dispersal for multiple species may leave us with little other options than using indirect methods to estimate dispersal in metacommunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号