首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar metabolism by Brucellae   总被引:3,自引:0,他引:3  
The metabolic capabilities of the species of Brucella were originally of interest as a means of distinguishing them from each other and from other genera. Certain unusual characteristics, especially erythritol utilization, were studied in the hopes they would shed light on the pathogenicity. With the advent of modern genetic methods and genomic sequencing, it is now possible to get a good idea of the total capabilities of the organism and to do tests to confirm these deductions. Brucella appears to be a fairly normal member of the -proteobacteria, but with some differences. A few questions remain, such as whether Brucella uses the Entner–Doudoroff pathway. Some of the genes in carbohydrate utilization have been shown to be important in virulence.  相似文献   

2.
为研究铁调控因子irr和rirA在羊种布鲁氏菌(Brucella melitensis)感染过程中的作用,本研究通过卡那替换的方法构建两个缺失株M5-90Δirr和M5-90ΔrirA,分别将亲本株和缺失株在相同营养条件下培养36 h,观察其振荡培养时的生长变化趋势。分别将1×108 CFU M5-90Δirr、M5-90ΔrirA和M5-90接种到含1.5 mol/L NaCl、pH 2.5、pH 11.5、10 mmol/L H2O2的1 mL布鲁氏菌液体培养基,比较缺失株和亲本株在不同条件下的生长特性;分别以1×106 CFU M5-90Δirr、M5-90ΔrirA和M5-90感染小鼠巨噬细胞RAW264.7检测缺失株的黏附、侵袭和胞内生存能力。结果显示,在相同体外培养条件下缺失株M5-90Δirr和M5-90ΔrirA生长速度明显低于亲本株;M5-90Δirr、M5-90ΔrirA在高盐、强酸和强碱环境下生存率均显著或极显著低于亲本株(P<0.05;P<0.01),在H2O2条件下这两个缺失株的生存率却显著高于亲本株(P<0.05)。与亲本株相比,缺失株在小鼠巨噬细胞RAW264.7内的侵袭和黏附能力均减弱,在感染后45 min缺失株M5-90Δirr和M5-90ΔrirA的黏附和侵袭能力均极显著低于亲本株(P<0.01),但在感染后24 h,这两个缺失株在细胞内繁殖能力与亲本株相比有所增强。本研究报道了irrrirA基因不仅调控了羊种布鲁氏菌的生长,同时对细菌黏附和侵袭能力也产生一定的影响,M5-90Δirr和M5-90ΔrirA是两株具有潜力的布鲁氏菌候选疫苗株。  相似文献   

3.
The present study aimed to determine the role of ClpS gene,and to analyse the impact of ClpS mutation on the virulence of Brucella.A ClpS gene mutant strain,named ΔClpS was constructed by homologous recombination technology.The bacterial growth kinetics,the LPS synthesis ability and the survival ability of bacterial within macrophages as well as the virulence in mouse model were measured.In addition,the difference between parent strain 2308 and the mutant strain ΔClpS were compared.The results showed that under the same culture conditions,no difference in bacterial concentration was observed between 2308 and ΔClpS strains.The silver staining examination showed that the expression level of LPS extracted from two strains were similar,indicating ClpS gene mutation did not alter the growth rate and LPS synthesis ability of Brucella. In the cell infection assay,the survival ability of ΔClpS strain in cells was extremely significantly lower than that of 2308 strain at 72 h after infection (P<0.01).The results of mouse infection experiment showed that in the first week after infection,no significant difference in spleen weight and bacterial concentration between 2308 and ΔClpS strains infected mice was observed.However,at 4 weeks after infection,the bacterial concentration in spleen of ΔClpS infected mice was 103.93 CFU/g spleen,which was significantly lower than that of 2308 strain (106.68 CFU/g spleen,P<0.01).The spleen weight of ΔClpS infected mice was also remarkably lower than that of 2308 strain (P<0.01).In summary,the results suggested that the ClpS gene of Brucella did not play a role in Brucella growth rate and ability of LPS synthesis,whereas ClpS gene mutation decreased the ability of Brucella colonization in mouse spleen.  相似文献   

4.
试验旨在探究ClpS基因在布鲁氏菌中的作用,分析比较ClpS基因突变对布鲁氏菌毒力的影响。利用同源重组技术,构建布鲁氏菌ClpS基因突变株,通过检测细菌生长曲线、细菌LPS合成能力及其在巨噬细胞内的存活能力和小鼠模型中的毒力,比较亲本株2308和突变株ΔClpS两者之间的差异。结果显示,在相同的培养条件下,亲本株2308和突变株ΔClpS的细菌浓度无明显差异,且两者提取的LPS银染结果基本一致,表明ClpS基因突变不影响布鲁氏菌生长速度,不影响细菌LPS合成;在细胞感染模型中,突变株ΔClpS在感染后72 h的胞内存活能力极显著低于亲本株2308(P<0.01);小鼠感染试验显示,在感染后1周,亲本株2308感染组和突变株ΔClpS感染组小鼠脾脏重量及细菌含量无显著差异,但在感染后4周,突变株ΔClpS感染组的小鼠脾脏细菌含量为103.93 CFU/g脾脏,显著低于亲本株2308(106.68 CFU/g脾脏,P<0.01),且突变株ΔClpS感染组的小鼠脾脏肿胀程度极显著低于亲本株2308(P<0.01)。综上所述,布鲁氏菌ClpS基因突变不影响细菌生长速度及细菌LPS合成能力,但ClpS基因突变可降低布鲁氏菌在小鼠脾脏内的定殖能力。  相似文献   

5.
Although Brucella is responsible for one of the major worldwide zoonosis, our understanding of its pathogenesis remains in its infancy. In this paper, we summarize some of the research in progress in our laboratory that we think could contribute to a better understanding of the Brucella molecular virulence mechanisms and their regulation.  相似文献   

6.
Regulation of Brucella virulence by the two-component system BvrR/BvrS   总被引:5,自引:0,他引:5  
The Brucella BvrR/BvrS two-component regulatory system is highly similar to the regulatory and sensory proteins of Sinorhizobium and Agrobacterium necessary for endosymbiosis and pathogenicity in plants, and very similar to a putative system present in the animal pathogen Bartonella. Mutations in the bvrR or bvrS genes hamper the penetration of B. abortus in non-phagocytic cells and impairs intracellular trafficking and virulence. In contrast to virulent Brucella, BvrR/BvrS mutants do not recruit small GTPases of the Rho subfamily required for actin polymerization and penetration to cells. Dysfunction of the BvrR/BvrS system alters the outer membrane permeability, the expression of several group 3 outer membrane proteins and the pattern of lipid A acylation. Constructs of virulent B. abortus chimeras containing heterologous LPS from the bvrS mutant demonstrated an altered permeability to cationic peptides similar to that of the BvrR/BvrS mutants. We hypothesize that the Brucella BvrR/BvrS is a system devoted to the homeostasis of the outer membrane and, therefore in the interface for cell invasion and mounting the required structures for intracellular parasitism.  相似文献   

7.
The type IV secretion system, encoded by the virB region, is a key virulence factor for Brucella. The 12 genes of the region form an operon that is specifically induced by phagosome acidification in cells after phagocytosis. We speculate that the system serves to secrete unknown effector molecules, which allow Brucella to pervert the host cell endosomal pathways and to create a novel intracellular compartment in which it can replicate.  相似文献   

8.
Host protection against Brucella abortus, is thought to be mediated primarily by a Th1 type immune response. Unfortunately, only few specific bacterial antigens involved in stimulating protective cellular immunity against Brucella are known. Therefore, identifying bacterial proteins that induce a T-lymphocyte mediated response is critical to determine Brucella immunity. Several library screening methods are discussed that have been used to identify Brucella proteins that stimulate T lymphocytes including cellular immunoblotting, Escherichia coli expressed Brucella proteins, green fluorescence reporter systems, and signature tagged mutagenesis. Future studies would likely examine how bacterial proteins expressed within host cells aid pathogen survival and/or induce host responses. Some of these newly identified bacterial gene products may serve as antigens to activate a protective host immune response. Also, identifying Brucella proteins expressed at particular times during infection will also yield insights into Brucella pathogenesis.  相似文献   

9.
【目的】构建布鲁氏菌BPE159基因缺失株,研究缺失株体外生长变化特征及其在宿主细胞中的存活能力,探究布鲁氏菌感染期间分泌蛋白BPE159对自噬因子表达的影响。【方法】同源重组方法构建布鲁氏菌BPE159基因重组质粒,电转化布鲁氏菌S2308感受态细胞构建BPE159基因缺失株S2308ΔBPE159。PCR扩增BPE159基因,连接转化构建pBBR1MCS-4-BPE159载体,提取质粒进行电转化,构建BPE159基因回补株S2308ΔBPE159-C。琼脂糖凝胶电泳检测缺失株和回补株遗传稳定性。构建布鲁氏菌感染小鼠巨噬细胞RAW264.7模型,实时荧光定量PCR检测布鲁氏菌侵染后自噬细胞因子ATG5、Beclin1、LC3a和LC3b基因表达水平。以S2308、S2308ΔBPE159和S2308ΔBPE159-C株侵染小鼠巨噬细胞,收集细胞总RNA,实时荧光定量PCR检测BPE159基因缺失对布鲁氏菌侵染后自噬细胞因子表达水平的影响。在相同起始浓度下培养S2308、S2308ΔBPE159及S2308ΔBPE159-C株,观察细菌生长变化趋势;评价S2308ΔBPE159株在不同...  相似文献   

10.
Brucella organisms are pathogens that ultimate goal is to propagate in their preferred niche, the cell. Upon cell contact the bacteria is internalized via receptor molecules by activating small GTPases of the Rho subfamily and by a moderate recruitment of actin filaments. Once inside cells, Brucella localizes in early phagosomes, where it avoids fusion with late endosomes and lysosomes. These early events require the control of Rab small GTPases, and cytokines such as the G-CSF. Then, the bacterium redirects its trafficking to autophagosomes and finally reaches the endoplasmic reticulum, where it extensively replicates. Some of the bacterial molecular determinants involved in the internalization and early events after ingestion are controlled by the BvrS/BvrR two component regulatory system, whereas the intracellular trafficking beyond this early compartments are controlled by the VirB type IV secretion system. Once inside the endoplasmic reticulum, Brucella extensively replicates without restricting basic cellular functions or inducing obvious damage to cells. The integrity of Brucella LPS on the bacterial surface is one of the required factors for Brucella intracellular survival, and therefore for virulence.  相似文献   

11.
Major outer membrane proteins of Brucella spp.: past,present and future   总被引:16,自引:0,他引:16  
The major outer membrane proteins (OMPs) of Brucella spp. were initially identified in the early 1980s and characterised as potential immunogenic and protective antigens. They were classified according to their apparent molecular mass as 36–38 kDa OMPs or group 2 porin proteins and 31–34 and 25–27 kDa OMPs which belong to the group 3 proteins. The genes encoding the group 2 porin proteins were identified in the late 1980s and consist of two genes, omp2a and omp2b, which are closely linked in the Brucella genome, and which share a great degree of identity (>85%). In the 1990s, two genes were identified coding for the group 3 proteins and were named omp25 and omp31. The predicted amino acid sequences of omp25 and omp31 share 34% identity. The recent release of the genome sequence of B. melitensis 16 M has revealed the presence of five additional gene products homologous to Omp25 and Omp31. The use of recombinant protein technology and monoclonal antibodies (MAbs) has shown that the major OMPs appear to be of little relevance as antigens in smooth (S) B. abortus or B. melitensis infections i.e. low or no protective activity in the mouse model of infection and low or no immunogenicity during host infection. However, group 3 proteins, in particular Omp31, appear as immunodominant antigen in the course of rough (R) B. ovis infection in rams and as important protective antigen in the B. ovis mouse model of infection. The major OMP genes display diversity and specific markers have been identified for Brucella species, biovars, and strains, including the recent marine mammal Brucella isolates for which new species names have been proposed. Recently, Omp25 has been shown to be involved in virulence of B. melitensis, B. abortus and B. ovis. Mutants lacking Omp25 are indeed attenuated in animal models of infection, and moreover provide levels of protection similar or better than currently used attenuated vaccine strain B. melitensis Rev.1. Therefore, these mutant strains appear interesting vaccine candidates for the future. The other group 3 proteins identified in the genome merit also further investigation related to the development of new vaccines.  相似文献   

12.
13.
本试验用布鲁氏菌强、弱毒株侵染小鼠巨噬细胞RAW264.7,旨在探讨NF-κB信号通路与布鲁氏菌强、弱毒株在胞内生存的关系。采用光滑型牛布鲁氏菌2308、粗糙型牛布鲁氏菌RB51在不同感染复数下侵染小鼠巨噬细胞RAW264.7,侵染0、4、8、24 h后,裂解细胞收集蛋白,Western blotting检测布鲁氏菌对激活NF-κB信号通路的影响。利用不同浓度的NF-κB信号通路抑制剂处理小鼠巨噬细胞RAW264.7,然后用布鲁氏菌在不同感染复数下侵染小鼠巨噬细胞RAW264.7,ELISA试剂盒检测细胞因子TNF-α、IL-1β、IL-6的表达量;同时对胞内菌CFU进行计数。结果显示粗糙型牛布鲁氏菌RB51可以强烈激活NF-κB信号通路,光滑型牛布鲁氏菌2308对其激活作用较弱;同时对NF-κB信号通路的激活具有浓度依赖性,在感染复数为80:1、侵染时间为8 h时光滑型牛布鲁氏菌2308和粗糙型牛布鲁氏菌RB51对NF-κB激活程度最强,且该通路参与产生TNF-α、IL-1β和IL-6;NF-κB信号通路抑制剂BAY11-7082影响布鲁氏菌在胞内的生存。因此,粗糙型牛布鲁氏菌RB51胞内存活与NF-κB信号通路密切相关,为进一步研究布鲁氏菌的胞内致病机制奠定基础,也为布鲁氏菌新型药物的研发、家畜布鲁氏菌病预防和治疗提供科学依据。  相似文献   

14.
Brucella spp. L-forms have been proposed to be stationary phase organisms in the evolution of new variants and enduring entities in the host in complicated cases of brucellosis and during latent brucellosis. In vitro formation of Brucella L-forms has been achieved by treating the cells with sub-lethal doses of penicillin. Interestingly, Brucella spp. have classified during the evolution into two groups, penicillin susceptible or penicillin resistant, yet both types grow on 20 μg/ml of methicillin. Strains proven susceptible to penicillin grew in the presence of methicillin as L-forms as demonstrated by light and electron microscopy. In addition, the B. melitensis vaccine strain Rev.1, a penicillin susceptible organism, responded to sheep serum by development of L-form-like structures unlike wild type, strain 16M. The two strains grew normally in sheep macrophages. We propose, for the first time, a model that associates Brucella pathogenicity with the structure and activity of two of their penicillin binding proteins (PBPs). According to the model, PBP1 has evolved as the major cell wall synthesizing enzyme of the genus, capable of responding to host serum growth factor(s) necessary for Brucella survival in the host. This property is associated with high avidity to β-lactam antibiotics. PBP2 complements the activity of PBP1. New β-lactam antibiotics and improved vaccines might be developed based on this property.  相似文献   

15.
By the infection of Brucella virulent strain and attenuated strain in mice macrophage RAW264.7,the assay was aimed to explore the relationship between NF-κB signaling pathways and Brucella virulent strain and attenuated strain in intracellular survival.Use different MOI Brucella (2308,RB51,16M and M5) to infect mice macrophage RAW264.7,after 0,4,8 and 24 h infected,cracking cell and collecting supernatant,we detected the effect of Brucella on activation of NF-κB signaling pathway by Western blotting.Different concentrations of NF-κB signaling pathway inhibitor were incubated with mice macrophage RAW264.7,with different multiplicities of infection (MOI) of Brucella infecting cells,ELISA kits to detect the expressions of TNF-α,IL-1β and IL-6 cytokine;At the same time,count the number of intracellular bacteria of CFU.The results showed that rough cattle Brucella strains RB51 could strongly activate NF-κB signaling pathway,smooth cattle Brucella strains 2308 was weak in the activation;At the same time,the activation of NF-κB signaling pathway was concentration dependent.When the MOI was 80,infection time was 8 h,NF-κB activation degrees of rough cattle Brucella strains RB51 and smooth cattle Brucella strains 2308 were the strongest,and this pathway was involved in producing TNF-α and IL-6;NF-κB signaling pathway inhibitor BAY11-7082 affected Brucella intracellular survival.So rough cattle Brucella strains RB51 intracellular survival and NF-κB signaling pathway activity were closely related.The results laid the foundation for the further study of Brucella intracellular pathogenesis,also provided scientific basis for the research of new drugs to Brucella,and prevention and treatment of brucellosis.  相似文献   

16.
The purpose of the test was to analyze the role of the glycosyltransferase-encoding gene WadC in affecting the intracellular survival of Brucella.Using the Brucella sheep Rev.1 genome as template,the fusion fragments of the homologous arms of the upper and lower arms of WadC gene were obtained by homologous recombination,and ligated to the vector pUC19-SacB to construct the pUC19-SacB-ΔwadC recombinant vector,which was transferred to sheep species Brucella Rev.1,constructing a ΔwadC deletion strain (Rev.1ΔwadC),testing the genetic stability of the strain Rev.1ΔwadC,comparing and analyzing the growth characteristics of the parental strain Rev.1 and the deletion strain Rev.1ΔwadC and the BMDC and RAW264.7 viability of cells.The results showed that the gene-deficient strain was successfully constructed in the experiment,and no genetic back mutation was found in 30 consecutive passages.Under the same culture conditions in vitro,the growth trend of the deleted strain Rev.1ΔwadC was similar to that of the parental strain Rev.1,and both reached logarithmic growth period at 20 h and reached plateau period at 44 h.When the BMDC cells were infected at 48 and 72 h,the intracellular survival rate was significantly lower than that of the parent strain (P<0.05).The RAW264.7 macrophage test of infected mice showed that the parent strain had no significant difference with the gene deletion strain (P>0.05).To sum up,this experiment successfully constructed and obtained a strain of Brucella WadC gene with good genetic stability.The deletion strain had similar growth trend with the parent strain under in vitro culture conditions;However,the survival ability of the deletion strain in BMDC cells was significantly weakened.This study laid a foundation for further study on the function of WadC gene of Brucella.  相似文献   

17.
Brucella evolution and taxonomy   总被引:1,自引:0,他引:1  
The genus Brucella contains alpha-Proteobacteria adapted to intracellular life within cells of a variety of mammals. Controversy has arisen concerning Brucella internal taxonomy, and it has been proposed that the DNA–DNA hybridization-based genomospecies concept be applied to the genus. According to this view, only one species, Brucella melitensis, should be recognized, and the classical species should be considered as biovars (B. melitensis biovar melitensis; B. melitensis biovar abortus; etc.). However, a critical reappraisal of the species concept, a review of the population structure of bacteria and the analysis of Brucella genetic diversity by methods other than DNA–DNA hybridization show that there are no scientific grounds to apply the genomospecies concept to this genus. On the other hand, an enlarged biological species concept allows the definition of Brucella species that are consistent with molecular analyses and support the taxonomical standing of most classical species. Both the host range as a long-recognized biological criterion and the presence of species-specific markers in outer membrane protein genes and in other genes show that B. melitensis, B. abortus, B. ovis, B. canis and B. neotomae are not mere pathovars (or nomenspecies) but biologically meaningful species. The status of B. suis is, however, less clear. These approaches should be useful to define species for the marine mammal Brucella isolates, as illustrated by the grouping of the isolates from pinnipeds or from cetaceans by omp2 gene analysis. It is shown that a correct Brucella species definition is important to understand the evolution of the genus.  相似文献   

18.
试验旨在分析糖基转移酶编码基因WadC影响布鲁氏菌胞内存活的作用。以羊种布鲁氏菌Rev.1基因组为模板,通过同源重组方法获得WadC基因上、下游同源臂融合片段,并与载体pUC19-SacB连接,构建pUC19-SacB-ΔwadC重组载体,电转至羊种布鲁氏菌Rev.1,构建ΔwadC缺失株(Rev.1ΔwadC),检测菌株Rev.1ΔwadC的遗传稳定性,比较分析亲本株Rev.1和缺失株Rev.1ΔwadC的生长特性及其在BMDC和RAW264.7细胞中的生存能力。结果显示,试验成功构建基因缺失株,连续传代30次未发现基因回复突变;在体外相同培养条件下,缺失株Rev.1ΔwadC与亲本株Rev.1生长趋势相似,均在20 h到达对数生长期,44 h进入平台期;侵染BMDC细胞48和72 h时,其胞内存活率显著低于亲本株(P<0.05);而侵染小鼠RAW264.7巨噬细胞试验显示,亲本菌株和基因缺失株无显著性差异(P>0.05)。综上所述,本试验成功构建并获得了具有良好遗传稳定性的布鲁氏菌WadC基因缺失株,该缺失株在体外培养条件下与亲本株生长趋势相似;但该缺失株在BMDC细胞内的存活能力显著变弱,为深入研究布鲁氏菌WadC基因功能奠定基础。  相似文献   

19.
PCR as a diagnostic tool for brucellosis   总被引:11,自引:0,他引:11  
Numerous PCR-based assays have been developed for the identification of Brucella to improve diagnostic capabilities. Collectively, the repertoire of assays addresses several aspects of the diagnostic process. For some purposes, the simple identification of Brucella is adequate (e.g. diagnosis of human brucellosis or contamination of food products). In these cases, a genus-specific PCR assay is sufficient. Genus-specific assays tend to be simple, robust, and somewhat permissive of environmental influences. The main genetic targets utilized for these applications are the Brucella BCSP31 gene and the 16S–23S rRNA operon.

Other instances require identification of the Brucella species involved. For example, most government-sponsored brucellosis eradication programs include regulations that stipulate a species-specific response. For epidemiological trace back, strain-specific identification is helpful. Typically, differential PCR-based assays tend to be more complex and consequently more difficult to perform. Several strategies have been explored to differentiate among Brucella species and strains, including locus specific multiplexing (e.g. AMOS-PCR based on IS711), PCR-RFLP (e.g. the omp2 locus), arbitrary-primed PCR, and ERIC-PCR to name a few. This paper reviews some of the major advancements in molecular diagnostics for Brucella including the development of procedures designed for the direct analysis of a variety of clinical samples. While the progress to date is impressive, there is still room for improvement.  相似文献   


20.
马雪珍  徐杰  高剑峰  李刚 《中国畜牧兽医》2020,47(12):3844-3851
试验旨在对哈萨克绵羊DRB1基因外显子1和4多态性与布鲁氏菌病的相关性进行研究。使用虎红平板凝集试验(RBPT)对试羊的血清进行血清学检测,参考GenBank中绵羊MHC ClassⅡ区DRB1基因序列(登录号:NC_040271.1),对其外显子1和4片段设计引物,采用PCR-SSCP和DNA测序技术对230只哈萨克绵羊的DRB1基因进行多态性检测,分析其多态位点与哈萨克绵羊布鲁氏菌易感性之间的关系。RBPT检测发现66只哈萨克绵羊为布鲁氏菌感染阳性,阳性检出率为28.7%。外显子1片段存在一个SNP位点(F1-G22A),测序确定两种基因型(GG、GA),优势等位基因和基因型分别为G、GG,F1-G22A多态位点的易感基因型为GA。卡方检验表明,哈萨克绵羊DRB1基因F1-G22A多态位点与布鲁氏菌易感性的相关性不显著(P>0.05)。通过生物信息学在线软件分析得出,F1-G22A多态位点导致了RNA二级结构的改变和最小自由能的降低,引起了蛋白质二级结构的改变。DRB1基因外显子4片段未发现SNPs。由此得出,哈萨克绵羊DRB1基因F1-G22A多态位点与布鲁氏菌易感性可能存在一定的相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号