首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The production performance of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) in periphyton‐based systems were studied in farmers' ponds at Mymensingh, Bangladesh. Fifteen ponds (200–300 m2 area and 1.0–1.5 m in depth) were used to compare five stocking ratios in triplicate: 100% GIFT, 75% GIFT plus 25% prawn, 50% GIFT plus 50% prawn, 25% GIFT plus 75% prawn and 100% prawn. Ponds were stocked at a total density of 20 000 GIFT and/or prawn ha?1. Bamboo poles (mean diameter 6.2 cm and 5.5 pole m?2) were posted in pond bottoms vertically as periphyton substrate. Periphyton biomass in terms of dry matter (DM), ash‐free DM and chlorophyll a were significantly higher in ponds stocked with prawn alone than in ponds with different combinations of GIFT and prawn. Survival of GIFT was significantly lower in ponds stocked with 100% GIFT (monoculture) whereas, that of prawn was significantly higher in its monoculture ponds indicating detrimental effects of GIFT on prawn's survival. Individual weight gains for both species were significantly higher in polyculture than in monoculture. The highest total fish and prawn yield (1623 kg GIFT and 30 kg prawn ha?1) over 125–140 days culture period was recorded in ponds with 75% GIFT and 25% prawn followed by 100% GIFT alone (1549 kg ha?1), 50% GIFT plus 50% prawn (1114 kg GIFT and 68 kg prawn ha?1), 25% GIFT plus 75% prawn (574 kg GIFT and 129 kg prawn ha?1) and 100% prawn alone (157 kg ha?1). This combination also gave the highest economic return. Therefore, a stocking ratio of 75% GIFT plus 25% prawn at a total density of 20 000 ha?1 appeared to be the best stocking ratio in terms of fish production as well as economics for a periphyton‐based polyculture system.  相似文献   

2.
The production performances of giant freshwater prawn Macrobrachium rosenbergii and Nile tilapia Oreochromis niloticus in C/N‐controlled periphyton‐based polyculture systems were evaluated in triplicate. Three different management practices were compared: the traditional practice without addition of periphyton substrates and carbohydrate (Control), addition of maize flour to maintain a carbon: nitrogen rate of 20:1 (treatment CN) and addition of both maize flour and periphyton substrates (treatment CN+P). This experiment used a pre‐optimized stocking density of tilapia and freshwater prawn by Asaduzzaman et al. Aquaculture [286 (2009) 72]. All ponds were stocked with prawn (3 m2) and monosex Nile tilapia (1 m?2). Bamboo side shoots were posted vertically into the pond bottoms as periphyton substrate covering an additional area of 171 m2 for periphyton development. A locally formulated and prepared feed containing 17% crude protein with C/N ratio close to 15:1 was applied twice daily in all ponds considering the body weight of freshwater prawn only. Water quality parameters, except total alkalinity did not vary significantly (> 0.05) among treatments. Both, organic matter and total heterotrophic bacterial loads (THB) in the sediment were significantly (P < 0.05) higher in treatment CN+P followed by treatment CN and control. Periphyton biomass in terms of dry matter and chlorophyll a values constantly decreased during the culture period. Substrates contributed 66% and 102% higher net yield of freshwater prawn than CN and control treatment respectively.  相似文献   

3.
The effects of different stocking densities of freshwater prawn (Macrobrachium rosenbergii) on its growth and production in relation to the presence of small self‐recruiting species mola (Amblypharyngodon mola) were investigated in modified rice fields after rice harvest at Mymensingh, Bangladesh. Keeping the stocking density of mola fixed at 20 000 ha?1 in each treatment, four densities of freshwater prawn (treatments) were maintained: 10 000, 15 000, 20 000 and 25 000 ha?1 respectively. The rice plots were limed (CaCO3) and fertilized with urea, triple super phosphate and cowdung regularly. The prawns were fed daily with commercial pellets. Water quality parameters such as temperature, dissolved oxygen, transparency, pH, total alkalinity, inorganic nitrogen (nitrate, nitrite and total ammonia), chlorophyll a and orthophosphate were determined fortnightly. Numerical analysis of plankton communities was performed monthly. All water quality parameters were found to be within the suitable range for freshwater prawn culture, except high temperature, in the peak summer months. There was a homogenous abundance of plankton communities in all treatments throughout the experimental period. Mola started to breed in the second month of the original stocking with partial harvesting after the second month and continued until the final harvest. The total production of mola ranged between 124 and 152 kg ha?1 during the 4‐month culture period. The average prawn survival ranged from 49% to 57% without any significant difference among treatments. Freshwater prawn production ranged from 294 to 596 kg ha?1 with significantly higher production in the treatment where 20 000 ha?1 freshwater prawn were stocked. This treatment also resulted in a higher net profit margin (74%), indicating that stocking at a combination of 20 000 ha?1 freshwater prawn and 20 000 ha?1 mola could be the optimum proposition for prawn–mola culture in modified rain‐fed rice fields after rice cultivation.  相似文献   

4.
Cage‐pond integration system is a new model for enhancing productivity of pond aquaculture system. A field trial was conducted using African catfish (Clarias gariepinus) and Nile tilapia (Oreochromis niloticus) in cages and carps in earthen ponds. There were four treatments replicated five times: (1) carps in ponds without cage, (2) tilapia at 30 fish m?3 in cage and carps in open pond, (3) catfish at 100 fish m?3 in cage and carps in open pond, (4) tilapia and catfish at 30 and 100 fish m?3, respectively, in separate cages and carps in open pond. The carps were stocked at 1 fish m?2. The cage occupied about 3% of the pond area. The caged tilapia and catfish were fed and the control ponds were fertilized. Results showed that the combined extrapolated net yield was significantly higher (P < 0.05) in the catfish, tilapia and carps integration system (9.4 ± 1.6 t ha?1 year?1) than in the carp polyculture (3.3 ± 0.7 t ha?1 year?1). The net return from the tilapia and carps (6860 US$ ha?1 year?1) and catfish, tilapia and carps integration systems (6668 US$ ha?1 year?1) was significantly higher than in the carp polyculture (1709 US$ ha?1 year?1) (P < 0.05). This experiment demonstrated that the cage‐pond integration of African catfish and Nile tilapia with carps is the best technology to increase production; whereas integration of tilapia and carp for profitability.  相似文献   

5.
An on-station trial was conducted to evaluate the effect of stocking density of freshwater prawn and addition of different levels of tilapia on production in carbon/nitrogen (C/N) controlled periphyton based system. The experiment had a 2 × 3 factorial design, in which two levels of prawn stocking density (2 and 3 juveniles m? 2) were investigated in 40 m2 earthen ponds with three levels of tilapia density (0, 0.5 and 1 juveniles m? 2). A locally formulated and prepared feed containing 30% crude protein with C/N ratio close to 10 was applied considering the body weight of prawn only. Additionally, tapioca starch was applied to the water column in all ponds to increase C/N ratio from 10 (as in feed) to 20. Increasing stocking density of tilapia decreased the chlorophyll a concentration in water and total nitrogen in sediment, and increased the bottom dissolved oxygen. The concentrations of inorganic nitrogenous species (NH3–N, NO2–N and NO3–N) were low due to maintaining a high C/N ratio (20) in all treatment ponds. Increasing prawn density decreased periphyton biomass (dry matter, ash free dry matter, chlorophyll a) by 3–6% whereas tilapia produced a much stronger effect. Increasing stocking density of freshwater prawn increased the total heterotrophic bacterial (THB) load of water and sediment whereas tilapia addition decreased the THB load of periphyton. Both increasing densities of prawn and tilapia increased the value of FCR. Increasing prawn density increased gross and net prawn production (independent of tilapia density). Adding 0.5 tilapia m? 2 on average reduced prawn production by 12–13%, and tilapia addition at 1 individual m? 2 produced a further 5% reduction (independent of prawn density). The net yield of tilapia was similar between 0.5 and 1 tilapia m? 2 treatments and increased by 8.5% with increasing stocking density of prawn. The combined net yield increased significantly with increasing stocking density of prawn and tilapia addition. The significantly highest benefit cost ratio (BCR) was observed in 0.5 tilapia m? 2 treatment but freshwater prawn density had no effect on it. Therefore, both stocking densities (2 and 3 juveniles m? 2) of prawn with the addition of 0.5 tilapia m? 2 resulted in higher fish production, good environmental condition and economic return and hence, polyculture of prawn and tilapia in C/N controlled periphyton based system is a promising options for ecological and sustainable aquaculture.  相似文献   

6.
An integrated aquaculture of freshwater prawn (Macrobrachium rosenbergii) and self‐recruiting small fish mola (Amblypharyngodon mola) was conducted in farmers' rice fields at Mymensingh, Bangladesh. There were four treatments with three replications. Four stocking densities, 10 000, 15 000, 20 000 and 25 000 ha?1, of freshwater prawn were applied. The stocking density of mola was the same (20 000 ha?1) in all treatments. During land preparation, triple super phosphate (TSP) and murate of potash (MP) were applied at the rate of 150 and 75 kg ha?1 respectively. Urea was applied at the rate of 200 kg ha?1 in equally distributed three installments after 16, 45 and 65 days of rice plantation. Prawns were fed with commercial pelleted feed at 3–8% body weight. All water quality parameters were found to be within the suitable range for freshwater prawn culture. There was a homogenous abundance of plankton communities in all treatments. The results of a 4‐month culture period showed that the average production of prawn ranged from 222 to 388 kg ha?1, mola 51 to 68 kg ha?1 and rice 2 880 to 3 710 kg ha?1. Significantly higher production of both prawn and mola was recorded in the plots where the freshwater prawn stocking density was 15 000 ha?1. This treatment resulted in a net profit of USD 1100 ha?1.  相似文献   

7.
In fish production under organic standards, only organic feeds and manures can be supplied. The cost of organic pelleted feeds is twice that of regular feeds. To support the organic production of hybrid tilapia [Oreochromis niloticus (L.) ×Oreochromis aureus (Steindachner)], a series of experiments in earthen ponds, to improve natural food production for this fish while reducing costs of added feed, are in progress. To improve natural food production for tilapia, plastic substrates equivalent to 50% of the pond surface were introduced into the water column to induce periphyton growth on them. To reduce costs, the feeding rate on pelleted feed was reduced to 60%. Tilapia growth in these periphyton ponds was then compared with ponds without underwater substrates that received the full feed rate. The polyculture consisted of 90% large (320 g stocking weight) hybrid tilapia and small amounts of other fish, at a total stocking density of 13 800 fish ha?1, during 87 summer days. The results showed improved nitrification and the development of a large autotrophic periphyton biomass that competed with the phytoplankton in the periphyton ponds, and only a 10% and 15% reduction, respectively, in the tilapia daily and specific growth rates, with 40% feed saving. These results point towards periphyton‐based aquaculture as an appropriate technology for the reduction in production costs, allowing economically viable organic tilapia production.  相似文献   

8.
Twelve production trials were analysed retrospectively, covering three different rearing methods in which Nile tilapia, Oreochromis niloticus (L.), were fed with combinations or cottonseed cake and brewery waste. Highest extrapolated net pond productions, including tilapia recruits, were obtained in tilapia fingerling rearing (W0 <10 g; 11.8 t ha?1 year?1). Stocking African catfish, as police-fish (0.2 catfish m?2) in mixed tilapia (W0 > 90 g) culture was effective in controlling tilapia recruitment, but net pond production was low (4.1 t ha?1 year?1). Hand-sexing of male tilapias (W0 > 90 g) only limited recruitment but resulted in a significantly higher net pond production (8.6 t ha?1 year?1) than in mixed culture. Extrapolated marketable production in the treatment stocked with hand-sexed tilapia males (tilapia only) was also higher than the extrapolated marketable production in the mixed culture treatment (tilapia and catfish combined), although this difference was not significant. Extrapolated net pond production and extrapolated net tilapia production were both significantly correlated to the daily feeding rate of cottonseed cake but not to the daily feeding rate of brewery waste. The high relative FCRs of the feed mixture were probably due to the brewery waste.  相似文献   

9.
A study was conducted to optimize stocking density of freshwater prawn, Macrobrachium rosenbergii, in carp polyculture for 3 months in 10 experimental ponds of 80 m2. Five stocking densities of prawn, 2500, 5000, 7500, 10 000 and 12 500 ha?1, were assigned to treatments T1, T2, T3, T4 and T5 respectively. The densities of catla, Catla catla, rohu, Labeo rohita and silver carp, Hypophthalmicthys molitrix, were 2500, 5000, and 2500 ha?1, respectively, in each treatment. Each treatment had two replicate ponds. The mean initial weights of prawn, catla, rohu and silver carp were 1.1±0.02, 8.28±0.1, 25.2±1.1 and 36.32±1.2 g respectively. A pelleted diet containing 30% protein was prepared using fish meal, meat and bone meal, mustard oilcake, rice bran, wheat bran and molasses, and was fed twice daily at a rate of 5% of fish biomass. Water quality parameters were measured fortnightly and the ranges of temperature, pH and dissolved oxygen were 27.5–1.3°C, 6.9–8.6 and 4.5–8.6 mg L?1 respectively. Feed conversion ratios ranged from 2.05 to 2.20 among the treatments. Per cent survival (%) of prawns ranged from 72% to 78%, while it varied from 80% to 93%, 90% to 95% and 90% to 92% for catla, rohu and silver carp respectively. The results showed that there were no significant differences among the weight gains of prawn and carp in different treatments. However, the overall total production of prawn and fish together was significantly (P<0.05) higher in T3 and T4 compared with other treatments. The total production for 3 months ranged between 2618 and 2916 kg ha?1. The production of prawn was significantly higher (361.3 kg ha?1) in T5 with a highest stocking density of 12 500 prawn ha?1. Although there was no significant difference (P>0.05) between the total production of prawn and fish together in T3 and T4, the highest net profit (Tk. 69 006 ha?1) was obtained in T4. Therefore, from the result of the study it may be concluded that a stocking ratio of 4:1:2:1 of prawn:catla:rohu:silver carp at a total density of 20 000 ha?1 may be recommended for prawn–carp polyculture in ponds.  相似文献   

10.
The effects of three different combinations of silver carp Hypophthalmichthys molitrix and catla Catla catla density on the production system in all‐male freshwater prawn–finfish polyculture ponds were evaluated in triplicate. The stocking density of silver carp and catla, respectively, were maintained at 2000 and 500 ha?1 in treatment SC2000C500, 1500 and 1000 ha?1 in treatment SC1500C1000 and 1000 and 1500 ha?1 in treatment SC1000C1500. Male freshwater prawn Macrobrachium rosenbergii and small fish mola Amblypharyngodon mola densities were fixed in all treatments at 12 000 and 20 000 ha?1 respectively. Management practices were same for all treatments. Blue‐clawed male prawns were harvested twice during the 122‐day culture at 15‐day intervals before the final harvest. Plankton and macro‐benthos abundance and water quality parameters (except transparency and chlorophyll a) did not vary significantly (P>0.05) among treatments. Mean final weights of both silver carp and catla were decreased with the increasing of their own stocking density. The treatment SC1500C1000 resulted in 25–32% increased net production of silver carp plus catla (461 kg ha?1) and 20–21% increased net production of all species combined (874 kg ha?1) as compared with the other treatments, although the differences in production of prawn and mola among treatments were not significant.  相似文献   

11.
Growth, survival and production of endangered Indian butter catfish (Ompok bimaculatus) fingerlings were examined at different stocking densities. The experiment was conducted for 8 months in nine earthen ponds having an area of 0.03 ha each. 30‐day‐old fingerling, stocked at 40 000 ha?1 was designated as treatment‐1 (T1), 50 000 ha?1 as treatment‐2 (T2) and 60 000 ha?1 as treatment‐3 (T3). At stocking, all fingerlings were of same age group with a mean length and weight of 3.36 ± 0.08 cm and weight of 0.83 ± 0.02 g respectively. Fish in all the treatments were fed with a mixture of rice bran (50%), mustard oil cake (30%), fish meal (19%) and vitamin‐mineral premix (1%). Physicochemical parameters, plankton populations and soil parameters were at the optimum level for fish culture. Highest weight gain was observed in T1 and lowest in T3. Final length, weight and survival of fish also followed the same trend as weight gain. Highest specific growth rate was observed in T1 followed by T2 and T3. Feed conversion ratio was significantly lower in T1 followed by T2 and T3 in that order. Significantly higher amount of fish was produced in T1 than T2 and T3 respectively. Higher net benefit was obtained from T1 than from T2 and T3. Overall, the highest growth, survival and benefit of fish were obtained at a density of 40 000 fingerlings ha?1. Hence, of the three stocking densities, 40 000 fingerlings ha?1 appears to be the most suitable stocking density for culturing of Indian butter catfish in grow‐out system.  相似文献   

12.
Effect of salinity on carrying capacity of a recirculation system for Nile tilapia, Oreochromis niloticus L.; production was assessed. Survival, growth and feed conversion ratio of adult Nile tilapia fed 30% crude protein diet for 88 days were measured at three different salinity levels (8, 15 and 25 g L?1) and two stocking densities (20 and 40 m?3) in three independent recirculating systems. Highest survival (98%) and a linear growth in net biomass (P<0.01) was observed in both densities at 8 g L?1 and in 20 m?3 treatment at 15 g L?1. Highest net biomass growth was observed in the 40 m?3 stocking density treatment at 8 g L?1 salinity level (P<0.05). Overall biomass growth was significantly affected by salinity indicating a decrease in Nile tilapia carrying capacity with increased salinity. About 11 000 kg ha?1 crop?1 of Nile tilapia can be obtained in recirculating systems at 8 g L?1 salinity, significantly higher than the net production at 15 g L?1 (5200 kg ha?1 crop?1) and 22 g L?1 (4425 kg ha?1 crop?1).  相似文献   

13.
On‐farm fish production experiments were conducted for 240 days to investigate the effect of stocking density on growth, yield and economic benefits of Nile tilapia (Oreochromis niloticus) in monoculture and polyculture with African sharptooth catfish (Clarias gariepinus). Low stocking density (LSD), medium stocking density (MSD) and high stocking density (HSD) of 30 000, 60 000 and 90 000 fish ha?1 respectively, were tested. O. niloticus cultured in polyculture attained significantly higher mean weight gain than those cultured in monoculture. O. niloticus and C. gariepinus raised together in polyculture attained significantly higher net annual yield than O. niloticus cultured alone in monoculture. Profitability analysis using partial enterprise budgets revealed that polyculture is a more profitable system than monoculture. The highest growth, yield and economic benefits were achieved at HSD and MSD than at LSD with no significant difference between HSD and MSD. Results demonstrate that farmers can achieve the highest net yield and economic benefits by culturing O. niloticus and C. gariepinus in polyculture at HSD and MSD, preferably MSD for economic reasons.  相似文献   

14.
An experiment was conducted with tilapia-catfish polyculture at the Lagdo Fisheries Station in northern Cameroon. The objectives were: 1. To estimate the effect of supplementary cottonseed cake on net pond production in ponds already receiving dried cattle manure as basic treatment: and 2. To study the performance of African catfish, Clarias gariepinus (Burchell). in recruitment control of Nile tilapia, Oreochromis niloticus (L.). Recruitment control is essential in obtaining large tilapia sizes demanded in the market. Cottonseed cake, the most important agricultural by-product in the region, is expensive. Dried cattle manure may be collected free from corrals deserted by pastoral ethnic groups. Three treatments were tested in duplo in six earthen ponds of 525 m2 each; treatment A. daily application of dried cattle manure only (266 kg ha?1 day?1); treatment B, daily manure + cottonseed at a nominal daily rate of 3% of tilapia biomass: treatment C, daily manure + cottonseed cake at 6% of tilapia biomass. Stocking densities per pond were 250 male Nile tilapia (mean Wo 222 g), 150 female tilapia (W0= 202 g), 30 ‘large’ African catfish (Wo= 198 g); and 30 ‘small’ catfish (W0= 52 g). Mean fish densities were 0.76 tilapia m?2 and 0.11 catfish m?2. Application of dried manure and cottonseed cake was 6 days per week, and the culture period was 100 days. Fish were sampled every month and feeding rates were adjusted accordingly. Dissolved oxygen content and algal turbidity (Secchi disc) were measured once a week. Extrapolated net pond productions, including recruits, were: -0.41 ha?1 year?1 (treatment A); 4.8 t ha?1 year?1 (treatment B) and 6.5 t ha?1 year?1 (treatment C). Differences between treatments B and C were not significant(P < 0.05). Fertilization with dried cattle manure only (zero cottonseed cake) led to a negative net pond production in treatment A (negative net tilapia production but slightly positive net catfish production). Dried manure at the given application rate did not contribute sufficient nutrients to maintain the stocked fish biomass via enhanced natural production, while pond biomass was high for such an extensive system (manure only). Best fish growth was observed in treatment C (male tilapia, 0.9 gday?1: large catfish, 6.9 g day?1) although differences between treatments B and C were not significant. Growth of male and female was not significantly different, but growth rates of tilapia and catfish were significantly different (P & lt; 0.05). Average yields of tilapia recruits in treatment B (1539 kg ha?1 year?1) and C (1829 kg ha?1year?1) were about four times the average yield of recruits in treatment A (468 kg ha?1 year?1) but differences between treatments A, B and C were not significant. It was sugcess, or the reproductive efficiency of tilapia in treatment A could have been lower as a result of that treatment. However, clouds of up-swimming fry appeared to be at least as numerous in the replicate ponds of treatment A as in the ponds of treatments B and C.  相似文献   

15.
The effects of selective harvesting (SH) and claw ablation (CA) of blue‐clawed (BC) prawns on an all‐male freshwater prawnfinfish polyculture system were compared with control (Co) in quadruplicate. Ponds were stocked with all‐male freshwater prawn Macrobrachium rosenbergii, silver carp Hypophthalmichthys molitrix, catla Catla catla and mola Amblypharyngodon mola at 12 000, 2000, 500 and 20 000 ha?1 respectively. Prawns were fed with pelleted feed. Ponds were fertilized regularly with urea, triple super phosphate and cow‐dung. SH of BC prawns in treatment SH and CA in treatment CA started on the 60th day during a 137‐day culture and continued at 15‐day intervals until the final harvest. Water quality parameters and plankton abundance did not vary significantly (P>0.05) among the treatments. Treatment SH resulted in a higher (P<0.05) net production of freshwater prawn (437 kg ha?1), with better survival and mean weight, followed by CA (354 kg ha?1) and Co (322 kg ha?1). The combined net production of prawn plus finfish was also higher in SH (1244 kg ha?1) as compared with CA (1161 kg ha?1) and Co (1137 kg ha?1), although the finfish production did not differ significantly. The periodic SH of BC prawns showed a better economic return with a BCR of 1.71.  相似文献   

16.
An experiment was conducted during May to December 2002 to determine growth performance, the highest economic return and suitable species composition in the polyculture of Thai pangus (Pangasius hypophthalmus) with carps (catla, Catla catla and rohu, Labeo rohita) and freshwater giant prawn (Macrobrachium rosenbergii) using low‐cost formulated feed. Three treatments (T1, T2 and T3) were conducted with three replications. The treatment T1 was designed as a monoculture of pangus with a stocking density of 17 500 individual ha?1. The other two treatments (T2 and T3) were designed as polyculture and stocked with pangus, catla, rohu and prawn with densities of 10 000, 2500, 5000, 3750 ha?1; and 10 000, 5000, 2500, 3750 ha?1 in T2 and T3 respectively. The net weight gain and production of pangus were significantly different (P>0.05) between monoculture and polyculture but were not different within the two polyculture systems. The production of catla and rohu were significantly different (P>0.05) in both treatments where prawn was not. Though the gross production (8.53 ton ha?1) was significantly (P>0.05) higher in T1, the higher gross net profit (Tk 154 201 ha?1) was in T2. Thus, the polyculture of pangus is more profitable than its monoculture and the species composition in T2 is more suitable than other composition.  相似文献   

17.
Research and development efforts concerning freshwater prawn farming have in the past been principally conducted in tropical regions. However, activities in temperate regions also date back several decades. Culture of Macrobrachium in temperate zones offers positive opportunities, despite the inability to culture year‐round. Unique problems imposed by a restricted growing season must be addressed, and opportunities capitalized on, to attain commercially viable production in these regions. Much recent research in the South and Central USA has been directed towards intensifying production (kg ha?1) without decreasing average harvest sizes or deteriorating water quality. Particular areas of research include evaluating and maximizing the relative contributions of natural foods, effects of artificial substrates on growth and prawn population structure and grading of animals before pond stocking to reduce heterogeneous individual growth and aggressive interactions. Recent studies have concentrated on combining these factors into a ‘best management practices’ (BMPs) production model. With these factors combined, production has increased from an average of 1000 kg ha?1 of 30 g animals to almost 3000 kg ha?1 of 40 g animals produced in research ponds in 110 days of culture. In commercial ponds, 1500–2000 kg ha?1 has been achieved in a similar period using BMPs.  相似文献   

18.
Growth, net production, and survival rates of milkfish cultured with Gracilariopsis bailinae at two stocking density combinations (T1– 30 fingerlings 100‐m?2 pond+1‐kg G. bailinae 4‐m?2 net cage, T2– 30 fingerlings 100‐m?2 pond+2‐kg G. bailinae 4‐m?2 net cage) in brackish water earthen ponds over four culture periods were determined. The control (T3) was stocked at 30 fingerlings 100‐m?2 pond. Specific growth and production rates of G. bailinae were also calculated. There were no significant differences in mean growth, survival, and net production rates of milkfish between the three treatments. Irrespective of stocking singly or in combination with G. bailinae, significantly higher mean growth and mean production rates for milkfish were obtained during the third culture period of year 1 than those obtained from the other culture periods. Survival rates were not significantly different among the four culture periods. There were no significant differences in mean specific growth and mean net production rates between the two stocking densities of G. bailinae. Significantly higher mean specific growth and mean net production rates of red seaweed were also obtained during the third culture period of year 1 than those obtained from other culture periods. The production of milkfish and red seaweed was higher during the dry season. Growth rates of milkfish was positively correlated with temperature and salinity, while net production rates were positively correlated with temperature and total rainfall, but was inversely correlated with dissolved oxygen. G. bailinae growth and net production rates were positively correlated with water temperature and salinity. Results show that milkfish can be polycultured with G. bailinae grown in net cages in brackish water ponds at stocking density combination of 30 fingerlings 100‐m?2 pond+1‐kg G. bailinae 4‐m?2 net cage.  相似文献   

19.
The fingerling‐rearing experiment of the threatened catfish, Mystus cavasius was carried out at different stocking densities in earthen nursery ponds. Twelve‐day‐old fry were stocked at 200 000 ha?1 in treatment‐1 (T1), 250 000 ha?1 in treatment‐2 (T2) and 300 000 ha?1 in treatment‐3 (T3) respectively. The mean length and weight of fry at stocking was 1.24 ± 0.25 cm and 0.11 ± 0.04 g respectively. Fry in all the experimental ponds were supplemented with SABINCO nursery feed for the first 14 days and starter‐I feed for days 15–56. The physico‐chemical parameters and plankton population of pond water were within the suitable level for fish culture. Growth in terms of final weight, final length, weight gain, length gain and specific growth rate and survival of fingerlings were significantly higher in T1 than those in T2 and T3. Feed conversion rate was significantly lower in T1 followed by T2 and T3 in that order. Significantly higher number of fingerlings was produced in T3 than that in T2 and T1. Even then, consistently higher net benefits were obtained from T1 than those from T3 and T2. Among the treatments evaluated, 200 000 fry ha?1 was the best stocking density considering the highest growth, production and net benefits of fingerlings of M. cavasius in nursery ponds.  相似文献   

20.
Five pond management strategies for Nile tilapia Oreochromis niloticus L. production were evaluated in 0.1‐ha earthen ponds in Egypt during a 145‐day production cycle. Pond management strategies developed by the Pond Dynamics/Aquaculture Collaborative Research Support Programme (PD/A CRSP) were compared with a traditional and a modified Egyptian pond management strategy. Young‐of‐year Nile (mixed‐sex or sex‐reversed) tilapia were stocked into ponds at 20 000 fish ha?1. Sex‐reversed tilapia were stocked into chemical fertilization, organic fertilization plus formulated feed and feed only treatment ponds, whereas mixed‐sex tilapia were stocked into organic fertilization plus formulated feed and chemical plus organic fertilization plus formulated feed treatment ponds. Nile tilapia yields ranged from 1274 to 2929 kg ha?1. Nile tilapia yields in organic fertilization plus formulated feed treatments were significantly greater than the yield from chemical fertilization ponds. PD/A CRSP pond management strategies did not produce significantly greater Nile tilapia yields than the traditional Egyptian system, but a larger percentage of harvested tilapia in the organic fertilization plus feed treatments were classified in the first and second class size categories compared with the traditional Egyptian system. Organic fertilization plus formulated feed pond management strategies had the highest net returns, average rate of return on capital and the highest margin between average price and break‐even prices to cover total variable costs or total costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号