首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The dynamics of two-dimensional small-polaron formation at ultrathin alkane layers on a silver(111) surface have been studied with femtosecond time- and angle-resolved two-photon photoemission spectroscopy. Optical excitation creates interfacial electrons in quasi-free states for motion parallel to the interface. These initially delocalized electrons self-trap as small polarons in a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal within picoseconds by tunneling through the adlayer potential barrier. The energy dependence of the self-trapping rate has been measured and modeled with a theory analogous to electron transfer theory. This analysis determines the inter- and intramolecular vibrational modes of the overlayer responsible for self-trapping as well as the relaxation energy of the overlayer molecular lattice. These results for a model interface contribute to the fundamental picture of electron behavior in weakly bonded solids and can lead to better understanding of carrier dynamics in many different systems, including organic light-emitting diodes.  相似文献   

2.
Incremental single-electron charging of size-quantized states has been observed in the well in submicrometer double-barrier resonant tunneling devices. In order to distinguish between the effects of size quantization and the single-electron charging, the heterostructure material was grown asymmetrical so that one barrier is substantially less transparent than the other. In the voltage polarity such that the emitter barrier is more transparent than the collector barrier, electrons accumulate in the well; incremental electron occupation of the well is accompanied by Coulomb blockade, which leads to sharp steps of the tunneling current. In the opposite voltage polarity the emitter barrier is less transparent than the collector barrier and the tunneling current reflects resonant tunneling through size-quantized well states.  相似文献   

3.
Tunneling of electrons through a potential barrier is fundamental to chemical reactions, electronic transport in semiconductors and superconductors, magnetism, and devices such as terahertz oscillators. Whereas tunneling is typically controlled by electric fields, a completely different approach is to bind electrons into bosonic quasiparticles with a photonic component. Quasiparticles made of such light-matter microcavity polaritons have recently been demonstrated to Bose-condense into superfluids, whereas spatially separated Coulomb-bound electrons and holes possess strong dipole interactions. We use tunneling polaritons to connect these two realms, producing bosonic quasiparticles with static dipole moments. Our resulting three-state system yields dark polaritons analogous to those in atomic systems or optical waveguides, thereby offering new possibilities for electromagnetically induced transparency, room-temperature condensation, and adiabatic photon-to-electron transfer.  相似文献   

4.
Electron tunneling paths in proteins   总被引:2,自引:0,他引:2  
One of the crucial issues in biological electron transfer is the determination of the role of spatially intermediate amino acid residues in controlling or directing the electronic tunneling interaction between redox sites. A quantum path integral Monte Carlo method is developed for the analysis of electronic tunneling pathways in a highly structured environment. This path integral method is applied to intramolecular electron transfer in a ruthenium-modified myoglobin that contains a tryptophan in the "line-of-flight." A principal result is the identification of the relevant cylindrical zone swept out by the tunneling electron.  相似文献   

5.
The Kondo effect arises from the quantum mechanical interplay between the electrons of a host metal and a magnetic impurity and is predicted to result in local charge and spin variations around the magnetic impurity. A cryogenic scanning tunneling microscope was used to spatially resolve the electronic properties of individual magnetic atoms displaying the Kondo effect. Spectroscopic measurements performed on individual cobalt atoms on the surface of gold show an energetically narrow feature that is identified as the Kondo resonance-the predicted response of a Kondo impurity. Unexpected structure in the Kondo resonance is shown to arise from quantum mechanical interference between the d orbital and conduction electron channels for an electron tunneling into a magnetic atom in a metallic host.  相似文献   

6.
Wet electrons at the H2O/TiO2(110) surface   总被引:1,自引:0,他引:1  
Onda K  Li B  Zhao J  Jordan KD  Yang J  Petek H 《Science (New York, N.Y.)》2005,308(5725):1154-1158
At interfaces of metal oxide and water, partially hydrated or "wet-electron" states represent the lowest energy pathway for electron transfer. We studied the photoinduced electron transfer at the H2O/TiO2(110) interface by means of time-resolved two-photon photoemission spectroscopy and electronic structure theory. At approximately 1-monolayer coverage of water on partially hydroxylated TiO2 surfaces, we found an unoccupied electronic state 2.4 electron volts above the Fermi level. Density functional theory shows this to be a wet-electron state analogous to that reported in water clusters and which is distinct from hydrated electrons observed on water-covered metal surfaces. The decay of electrons from the wet-electron state to the conduction band of TiO2 occurs in 相似文献   

7.
Wu SW  Ogawa N  Ho W 《Science (New York, N.Y.)》2006,312(5778):1362-1365
Spatial resolution at the atomic scale has been achieved in the coupling of light to single molecules adsorbed on a surface. Electron transfer to a single molecule induced by green to near-infrared light in the junction of a scanning tunneling microscope (STM) exhibited spatially varying probability that is confined within the molecule. The mechanism involves photo-induced resonant tunneling in which a photoexcited electron in the STM tip is transferred to the molecule. The coupling of photons to the tunneling process provides a pathway to explore molecular dynamics with the combined capabilities of lasers and the STM.  相似文献   

8.
When low-energy electrons strike a titanium dioxide surface, they may cause the desorption of surface oxygen. Oxygen vacancies that result from irradiating a TiO2(011)-2x1 surface with electrons with an energy of 300 electron volts were analyzed by scanning tunneling microscopy. The cross section for desorbing oxygen from the pristine surface was found to be 9 (+/-6) x 10(-17) square centimeters, which means that the initial electronic excitation was converted into atomic motion with a probability near unity. Once an O vacancy had formed, the desorption cross sections for its nearest and next-nearest oxygen neighbors were reduced by factors of 100 and 10, respectively. This site-specific desorption probability resulted in one-dimensional arrays of oxygen vacancies.  相似文献   

9.
We observe spin blockade due to Pauli exclusion in the tunneling characteristics of a coupled quantum dot system when two same-spin electrons occupy the lowest energy state in each dot. Spin blockade only occurs in one bias direction when there is asymmetry in the electron population of the two dots, leading to current rectification. We induce the collapse of the spin blockade by applying a magnetic field to open up a new spin-triplet current-carrying channel.  相似文献   

10.
Energy flow in biological structures often requires submillisecond charge transport over long molecular distances. Kinetics modeling suggests that charge-transfer rates can be greatly enhanced by multistep electron tunneling in which redox-active amino acid side chains act as intermediate donors or acceptors. We report transient optical and infrared spectroscopic experiments that quantify the extent to which an intervening tryptophan residue can facilitate electron transfer between distant metal redox centers in a mutant Pseudomonas aeruginosa azurin. Cu(I) oxidation by a photoexcited Re(I)-diimine at position 124 on a histidine(124)-glycine(123)-tryptophan(122)-methionine(121) beta strand occurs in a few nanoseconds, fully two orders of magnitude faster than documented for single-step electron tunneling at a 19 angstrom donor-acceptor distance.  相似文献   

11.
Tunneling electrons from a low-temperature (5 kelvin) scanning tunneling microscope were used to control, through resonant electronic excitation, the molecular dynamics of an individual biphenyl molecule adsorbed on a silicon(100) surface. Different reversible molecular movements were selectively activated by tuning the electron energy and by selecting precise locations for the excitation inside the molecule. Both the spatial selectivity and energy dependence of the electronic control are supported by spectroscopic measurements with the scanning tunneling microscope. These experiments demonstrate the feasibility of controlling the molecular dynamics of a single molecule through the localization of the electronic excitation inside the molecule.  相似文献   

12.
A method for confining electrons to artificial structures at the nanometer lengthscale is presented. Surface state electrons on a copper(111) surface were confined to closed structures (corrals) defined by barriers built from iron adatoms. The barriers were assembled by individually positioning iron adatoms with the tip of a 4-kelvin scanning tunneling microscope (STM). A circular corral of radius 71.3 A was constructed in this way out of 48 iron adatoms. Tunneling spectroscopy performed inside of the corral revealed a series of discrete resonances, providing evidence for size quantization. STM images show that the corral's interior local density of states is dominated by the eigenstate density expected for an electron trapped in a round two-dimensional box.  相似文献   

13.
Marcus theory has explained how thermal nuclear motions modulate the energy gap between donor and acceptor sites in protein electron transfer reactions. Thermal motions, however, may also modulate electron tunneling between these reactions. Here we identify a new mechanism of nuclear dynamics amplification that plays a central role when interference among the dominant tunneling pathway tubes is destructive. In these cases, tunneling takes place in protein conformations far from equilibrium that minimize destructive interference. As an example, we demonstrate how this dynamical amplification mechanism affects certain reaction rates in the photosynthetic reaction center and therefore may be critical for biological function.  相似文献   

14.
Li B  Zhao J  Onda K  Jordan KD  Yang J  Petek H 《Science (New York, N.Y.)》2006,311(5766):1436-1440
The coupling of electron and nuclear motions in ultrafast charge transfer at molecule-semiconductor interfaces is central to many phenomena, including catalysis, photocatalysis, and molecular electronics. By using femtosecond laser excitation, we transferred electrons from a rutile titanium dioxide (110) surface into a CH3OH overlayer state that is 2.3 +/- 0.2 electron volts above the Fermi level. The redistributed charge was stabilized within 30 femtoseconds by the inertial motion of substrate ions (polaron formation) and, more slowly, by adsorbate molecules (solvation). According to a pronounced deuterium isotope effect (CH3OD), this motion of heavy atoms transforms the reverse charge transfer from a purely electronic process (nonadiabatic) to a correlated response of electrons and protons.  相似文献   

15.
We studied the dynamics of a single cobalt (Co) atom during lateral manipulation on a copper (111) surface in a low-temperature scanning tunneling microscope. The Co binding site locations were revealed in a detailed image that resulted from lateral Co atom motion within the trapping potential of the scanning tip. Random telegraph noise, corresponding to the Co atom switching between hexagonal close-packed (hcp) and face-centered cubic (fcc) sites, was seen when the tip was used to try to position the Co atom over the higher energy hcp site. Varying the probe tip height modified the normal copper (111) potential landscape and allowed the residence time of the Co atom in these sites to be varied. At low tunneling voltages (less than approximately 5 millielectron volts), the transfer rate between sites was independent of tunneling voltage, current, and temperature. At higher voltages, the transfer rate exhibited a strong dependence on tunneling voltage, indicative of vibrational heating by inelastic electron scattering.  相似文献   

16.
Electron transfer, under conditions of weak interaction and a medium acting as a passive thermal bath, is very well understood. When electron transfer is accompanied by transient chemical bonding, such as in interfacial coordination electrochemical mechanisms, strong interaction and molecular selectivity are involved. These mechanisms, which take advantage of "passive self-organization," cannot yet be properly described theoretically, but they show substantial experimental promise for energy conversion and catalysis. The biggest challenge for the future, however, may be dynamic, self-organized electron transfer. As with other energy fluxes, a suitable positive feedback mechanism, through an active molecular environment, can lead to a (transient) decrease of entropy equivalent to an increase of molecular electronic order for the activated complex. A resulting substantial increase in the rate of electron transfer and the possibility of cooperative transfer of several electrons (without intermediates) can be deduced from phenomenological theory. The need to extend our present knowledge may be derived from the observation that chemical syntheses and fuel utilization in industry typically require high temperatures (where catalysis is less relevant), whereas corresponding processes in biological systems are catalyzed at environmental conditions. This article therefore focuses on interfacial or membrane-bound electron transfer and investigates an aspect that nature has developed to a high degree of perfection: self-organization.  相似文献   

17.
The radiation-induced polymerization of formaldehyde has been studied in the solid state. The time of addition of one new link to a polymer chain increases exponentially in accordance with the Arrhenius law at 140 to 80 K, but approaches a constant value (approximately 10(-2) second) at temperatures below 10 K. Thus, a low-temperature limit to a chemical reaction rate has been observed. It is interpreted as a quantum effect caused by tunneling from the zero vibration level of the initial state, and a semiquantitative theory is given. The phenomenon should be taken into account for understanding tunneling of electrons in biological systems when such tunneling is accompanied by conformational changes. It could also be significant in slow, exothermic chemical reactions at low and ultralow temperatures, which may have had a role in chemical and biological evolution (cold prehistory of life?).  相似文献   

18.
Removing electrons from the CuO2 plane of cuprates alters the electronic correlations sufficiently to produce high-temperature superconductivity. Associated with these changes are spectral-weight transfers from the high-energy states of the insulator to low energies. In theory, these should be detectable as an imbalance between the tunneling rate for electron injection and extraction-a tunneling asymmetry. We introduce atomic-resolution tunneling-asymmetry imaging, finding virtually identical phenomena in two lightly hole-doped cuprates: Ca(1.88)Na(0.12)CuO(2)Cl2 and Bi2Sr2Dy(0.2)Ca(0.8)Cu2O(8+delta). Intense spatial variations in tunneling asymmetry occur primarily at the planar oxygen sites; their spatial arrangement forms a Cu-O-Cu bond-centered electronic pattern without long-range order but with 4a(0)-wide unidirectional electronic domains dispersed throughout (a(0): the Cu-O-Cu distance). The emerging picture is then of a partial hole localization within an intrinsic electronic glass evolving, at higher hole densities, into complete delocalization and highest-temperature superconductivity.  相似文献   

19.
Reaction rates extracted from measurements of donor luminescence quenching by randomly dispersed electron acceptors reveal an exponential decay constant of 1.23 per angstrom for electron tunneling through a frozen toluene glass (with a barrier to tunneling of 1.4 electron volts). The decay constant is 1.62 per angstrom (the barrier, 2.6 electron volts) in a frozen 2-methyl-tetrahydrofuran glass. Comparison to decay constants for tunneling across covalently linked xylyl (0.76 per angstrom) and alkyl (1.0 per angstrom) bridges leads to the conclusion that tunneling between solvent molecules separated by approximately 2 angstroms (van der Waals contact) is 20 to 50 times slower than tunneling through a comparable length of a covalently bonded bridge. Our results provide experimental confirmation that covalently bonded pathways can facilitate electron flow through folded polypeptide structures.  相似文献   

20.
We measured rate constants of thermal, interfacial electron transfer through oligophenylenevinylene bridges between a gold electrode and a tethered redox species in contact with an aqueous electrolyte using the indirect laser-induced temperature jump technique. Analysis of the distance dependence indicates that, unlike other bridges studied to date, the rate constants are not limited by electronic coupling for bridges up to 28 angstroms long. The energy levels of the bridges relative to those of the redox species rule out hopping through the bridge. We conclude that, out to 28 angstroms, the transfer is limited by structural reorganization and that electron tunneling occurs in less than 20 picoseconds, suggesting that oligophenylenevinylene bridges could be useful for wiring molecular electronic elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号