首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用盆栽试验方法,研究尿素涂层后施用于水田土壤其渗出液NO3--N和NH4+-N含量的变化情况。研究结果表明:与未涂层尿素相比,施用尿素涂层可使氮素释放变得平缓,土壤渗出液中NH4+-N和NO3--N浓度明显降低,有利于水稻生长对氮素的吸收利用;在等氮量条件下,施用涂层尿素处理的土壤渗出液中的NH4+-N浓度明显低于未涂层尿素处理,且尿素用量越低这一差异越明显,而土壤渗出液中的NO3--N浓度施入土壤后前10天涂层尿素低于未涂层尿素处理,而至第18天则表现出高于未涂层尿素处理的趋势;涂层处理土壤渗出液NO3--N和NH4+-N之和大都小于未涂层处理。  相似文献   

2.
This paper reports a procedure for determining the content of strongly fixed NH4+ in soil. The procedure consists of a Kjeldahl digestion followed by an acid attack of the residue with a 5 m HF:1 m HCl solution. Distillations after each of the two treatments recover different forms of NH4+. The procedure was tested on fine earth (< 2 mm) and skeleton (> 2 mm) fractions of two forest soils developed on sandstone parent material. In both soil fractions we evaluated three different forms of NH4+-N: (i) Kjeldahl, (ii) non-exchangeable and (iii) micaceous. The last is located in the interlayer of mica flakes larger than 50 μm that resist the Kjeldahl digestion and is considered strongly fixed. The total NH4+-N content of a soil is obtained by the summation of the Kjeldahl and the micaceous NH4+-N. In the soils under consideration, the micaceous form prevails in the skeleton because this fraction is richer in micas of sand size (> 50 μm). Following the proposed procedure, we found that micas (muscovite and biotite) contain about 3000 mg kg–1 of NH4+-N in the interlayer. The presence of micaceous NH4+-N in soil is generally ignored because the skeleton is usually excluded from analyses, and the micas larger than 50 μm cannot be dissolved by the Kjeldahl treatments. The micaceous NH4+ is the least extractable form of NH4+-N, and we infer that it is the least available to plants.  相似文献   

3.
4.
5.
6.
The characteristics of production and immobilization of NO3-N were evaluated for soils from four forest types in Kochi Prefecture, southern Japan. Net NO3-N production during the laboratory incubation differed among the soils from the four forest types, being high under Japanese cedar (Cryptomeria japonica D. Don) and deciduous hardwood, and negligible under Japanese red pine (Pinus densiflora Sieb. et Zucc.) and hinoki cypress (Chamaecyparis obtusa Endlicher). Nitrification under Japanese cedar and hardwood was mainly autotrophic based on the fact that nitrification was inhibited by acetylene or nitrapyrin, and was not affected by cycloheximide. Net NO3-N production in these soils increased by glycine addition, but did not increase appreciably by NH4Cl addition. However, net NO3-N production increased after the addition of CaCO3 with NH4Cl. These results indicate that the substrate of nitrification is NH3 rather than NH4 + and that the added NH4 + is not utilized by nitrifiers at low pH values. With NO3-N addition to soils under red pine and hinoki cypress, immobilization of NO3-N was observed followed by rapid production of NH4-N. These findings suggested that mobile NO3-N can be converted to less mobile NH4-N by the activities of soil microorganisms. This microbial process may play an important role in retaining nitrogen within forest ecosystems where the potential of N loss is high due to the high precipitation in the area.  相似文献   

7.
Soil chemical properties affecting NH4+ sorption in forest soils   总被引:2,自引:0,他引:2  
Fourteen European forest soils from the boreal to the mediterranean climate on different parent materials were investigated with respect to their ability to store NH4+ in exchangeable form, using sorption isotherms. Distribution coefficients for NH4+ sorption per unit weight of soil were in the range of 0.02 to 0.77. NH4+ sorption coefficients were usually highest in the forest floor of a given soil. NH4+ sorption behaviour of mineral soil horizons was correlated to soil parameters that are determined during routine soil analysis. A combination of CEC and base saturation explained up to 95% of the variability Of NH4+ sorption. In the forest floors, variability in NH4+ sorption could not be explained quantitatively from independent soil parameters. The affinity of the sorption sites for NH4+ was the most important factor for explanation of the variability in NH4+ sorption in the forest floors but was of low importance in mineral soil horizons. As NH4+ exchanges predominantly base cations, susceptibility of NH4+ to transport through the soil profile increases with Iowbase saturation of a soil as well as with low CEC values.  相似文献   

8.
9.
Recent progresses in efficient management of nitrogen fertilizers for flooded rice in relation to nitrogen transformations in flooded soil were reviewed.Considerable progress has been achieved in the investigation on the mechanism of ammonia loss and the factors affecting it .However,little progress has been obtained in the investigations on nitrification-denitrification loss owing to the lack of method for estimating the fluxes of gaseous N products.Thus,so far the management practices developed or under investigation primarily for reducing ammonia loss are feasible or promising,while those for reducing nitrification-denitrification loss seem obscure,except the point deep placement. In addition,it was emphasized that the prediction of soil N supply and the recommendation of the optimal rate of N application based on it are only semi-quantitative.The priorities in research for improving the prediction are indicated.  相似文献   

10.
研究稻田不同施氮量下的农学效率和环境效应,对水稻高效优质环境保护型生产和合理施肥具有重要意义。在平湖稻区研究了不同施氮下水稻边际利润、最佳经济施肥量以及不同时期氮素利用率、土壤固定态铵、碱解氮及田面水铵氮浓度的动态变化。结果表明,当地水稻最佳经济施肥量为235kg N/hm2;施氮225kg/hm2时当季氮肥利用率仅为31.2%。土壤固定态铵以及碱解氮含量均在水稻生长时期内逐渐下降,但随施氮量的增加而增加。低氮处理促使土壤固定态铵含量有较大增幅,而高氮处理则使土壤碱解氮含量有较大增幅。在水稻不同生长时期的施肥后一个星期内,高于225kg N/hm2处理田面水NH4+-N急剧上升而后急剧下降;而75,150kg N/hm2处理田面水NH4+-N一直低于2mg/L。可见,浙北地区氮肥施用量保持在225kg/hm2为宜,过量施氮(超过225kg/hm2)将超过水稻的正常生长需求,造成土壤固铵量饱和,引起土壤碱解氮含量急剧上升,并导致田面水NH4+-N含量急剧上升。  相似文献   

11.
为了对沸石不同用途进行准确选材,实现其高效利用,研究了天然斜发沸石的6种粒径对NH_4~+-N、H_2PO_4~--P和K~+吸附、解吸的影响。结果表明:对沸石吸附和解吸3种离子,不同粒径间数值差异显著,表现规律也不同。NH_4~+-N的吸附量和解吸量分别相差4.31倍和4.93倍;K~+分别相差7.89倍和81.77倍。随粒径变小,沸石对NH_4~+-N和K~+的吸附与解吸量均呈先升高后降低的趋势,对H_2PO_4~--P的吸附量呈负值到较低正值的变化,解吸量为0。对3种离子的最大吸附量分别为8 354.62、74.33和2 722.25 mg/kg,最大解吸量分别为7 423.29、0和875.70 mg/kg。在NH_4~+-N和K~+的吸附方面,适宜选择粒径为40μm的天然沸石;而对H_2PO_4~--P,各粒径的天然沸石效果均不适宜,需要进行改性处理后应用。  相似文献   

12.
13.
ABSTRACT

Understanding the potential of clinoptilolite (CLI) for adsorption of NH4+ and K+, providing appropriate fertilizer formula, and evaluation of the produced zeolitic nutrient sources (ZNSs) to meet the plant need are the main objectives of this study. Three ZNSs (NH4+-saturated, K+-saturated and dual-purpose NH4+-K+ saturated CLI) were produced, assessed, and compared with commercial N and K fertilizers (CFs) on corn growth in a greenhouse. The results indicated that CLI can potentially adsorb both NH4+ and K+ to the maximum values of 25.00 mg-NH4+ g?1 and 47.61 mg-K g?1, respectively, and chemisorptions mainly followed the process of adsorption. Saturation of zeolite by NH4+ and K+ occurred after 10 and 15 d which lead to ZNSs with 2% and 5% of N and K, respectively. NH4+-K+ saturated CLI contained 1% N and 1% K. The greenhouse experiment showed no significant difference between ZNSs and CFs on plant growth. However, the application of both N and K in the form of zeolitic sources significantly increased the uptake of N by the plant. The highest uptake of K (2.05 g pot?1) occurred in plants supplied with both natural zeolite and CFs. The present results may benefit the future utilization of ZNSs in environmental friendly farming practices.  相似文献   

14.
To provide good quality of drinking water, a biological system to remove ammonium-nitrogen (NH4-N) from groundwater was studied in this research. The NH4-N removal system consists of two attached growth reactors: one for nitrification and the other for hydrogenotrophic denitrification (H. denitrification). The nitrification reactor, fed by the NH4-N contained water, could remove NH4-N without any need of aeration. The nitrification efficiency was increased by reactor length; the highest efficiency of 92?% was achieved at the longest reactor of 100?cm. A high Fe in groundwater affected the reactor performance by decreasing the efficiency, while a low inorganic carbon (IC) had no effects. Despite of good efficiency in terms of NH4-N removal, the nitrification reactor increased the concentration of NO3-N in its effluent. To treat the NO3-N, a H. denitrification reactor was set up after the nitrification reactor. Efficiency of the H. denitrification reactor was enhanced by increasing H2 flow rates. The efficiencies were 3, 27, and 90?% for 30, 50, and 70?mL/min of H2 flow rates, respectively. It was also found that the NO3-N contained water (water from the nitrification reactor) had to supply IC (i.e., NaHCO3 or CO2) for efficient H. denitrification; however, an on-site reactor showed that it can be achieved even without IC addition. The treated water contained low NH4-N and NO3-N of <1.5 and <11.3?mg/L, respectively, which comply with drinking water standards. The good performance of the reactors in terms of high efficiency, no aeration need, and low H2 supply indicated appropriateness of the system for groundwater treatment.  相似文献   

15.
刘顺国  汪景宽 《土壤通报》2006,37(3):443-446
棕壤长期定位试验结果表明,覆膜使表层土壤中NH4+-N含量明显增加,并使各个层次NO3--N含量都有所增加,有效地减少了NO3--N的淋失。研究同时表明施用有机肥和化肥都能提高土壤全氮、碱解氮、NH4+-N、NO3--N含量,而施用单一的氮肥则对土壤碱解氮几乎没有影响。因此,有机肥与无机肥配合施用是培肥覆膜土壤氮素肥力的有效措施。  相似文献   

16.
采用416-B最优混合设计,以珍珠岩作为保护地基质栽培小白菜.研究NO3^--N、P、K和NH4^ -N对保护地无土栽培小白菜产量和硝酸盐含量的影响。结果表明.氮素是影响小白菜产量和硝酸盐含量的主要因素;磷、钾的单效应作用较氮素小,主要通过对氮的互作效应影响产量和磷酸盐含量;最优的小白菜营养液配方为:NO3^--N、P、K和NH4^ -N的浓度分别为6.98,1.08,6.45和2.76mmol/L。  相似文献   

17.
蔬菜作为人们日常生活中与健康密切相关的重要副食品,其品质问题日益引起重视.19世纪70年代以来,国内外许多学者就蔬菜品质的概念、研究方法、影响蔬菜品质的因素以及未来人们对蔬菜品质的要求等方面进行了系统研究.蔬菜品质成为生产者、经营者和消费者共同追求的目标,提高蔬菜品质也已经成为21世纪蔬菜研究的中心[1].  相似文献   

18.
利用100%NO3--N、10%NH4+-N+90%NO3--N、10%NH4+-N+100%NO3--N营养液来研究生菜吸收NO3-的动力学特征。结果表明,生菜吸收NO3-的速率随着营养液中NO3-浓度的增加而增加,增加的幅度随着营养液中NO3-浓度的增加而减少。NH4+-N的存在对生菜吸收NO3-有明显抑制作用。与100%NO3--N处理相比,生菜在10%NH4+-N+90%NO3--N1、0%NH4+-N+100%NO3--N处理中吸收NO3-的速率和Vmax有明显下降,Km有少量增加,但差异不显著。申选1号在有NO3--N的营养液中吸收NO3-的速率均大于耐热耐抽苔生菜,且随着营养液中NO3-浓度的增加,两者的差距逐渐加大。在NH4+-N的存在情况下,耐热耐抽苔生菜Vmax下降的程度大于申选1号,而Km增加的程度小于申选1号。  相似文献   

19.
温室表层土壤硝态氮运移的水、热耦合效应研究   总被引:1,自引:0,他引:1  
为了探讨温室作物生产水肥管理和温度环境对土壤NO3--N向表层迁移的影响,选用5 a的温室土壤样品进行土柱蒸发模拟试验,研究蒸发温度、土壤初始含水量、初始NO3--N含量及其耦合效应对温室土壤迁移速率及其垂直剖面分布的影响。试验结果表明:蒸发温度和土壤初始含水量明显影响NO3--N向土壤表层的迁移,并随蒸发温度和土壤初始含水量的增加而加强;通过正交回归分析得出影响NO3--N迁移速率的因素依次为初始含水量、蒸发温度以及温度与含水量的交互作用;土壤初始NO3--N含量以及它与蒸发温度、土壤初始含水量的交互作用对NO3--N迁移速率的影响不显著,但它影响土壤中各层的NO3--N绝对含量;经过5 d蒸发后,NO3--N沿垂直剖面分布出现上高下低,并出现一小的回升后逐渐趋于稳定。本文建立了蒸发条件下NO3--N迁移速率的回归模型,利用该回归模型,可为温室土壤在不同环境及水肥条件下NO3--N向表层迁移速率的预测提供依据。  相似文献   

20.
本文介绍了双阻NH4+选择性微电极的制作方法、工作原理及操作方法。微电极电位响应値与溶液中NH4+的活度呈对数曲线的关系,NH4+选择性微电极与其他类型的电极(如H+、NO3-)最大区别是K+的干扰,在含有72 mmol/L K+的标定溶液中,电极标定曲线的斜率为48~58 mV,对NH4+的检出限小于10-4 mol/L,说明电极对NH4+有较高的选择性,受K+的影响较小,可以用来测定。用以测定2.5 mmol/L NH4+培养2周的水稻叶片,结果表明,叶片细胞中NH4+活度分布在高低不同的两个区间内,分别代表了细胞质和液泡中的测定,水稻叶片细胞质和液泡NH4+的活度分别为2.58~9.30 mmol/ L和11.36~25.20 mmol/L。水稻叶片组织中的NH4+主要来自液泡,流动分析仪测定的水稻叶片组织的NH4+浓度为11.12 mmol/L。NH4+选择性微电极为研究水稻对NH4+的吸收利用提供了技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号