首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O. P. Yadav 《Plant Breeding》1996,115(2):140-142
The performance of pearl millet hybrids involving four sources of cytoplasmic male sterility (CMS), including the most-exploited A1 source, was compared to evaluate the effects of cytoplasm on grain yield. The mean grain yield of hybrids possessing A2, A3 and A4 cytoplasms was either similar to or significantly higher than that of their counterpart hybrids with A1 cytoplasm. Hybrids based on A3 and A4 cytoplasms produced, on average, 8% more grain compared with those based on A1 cytoplasm. This suggested that these CMS sources could be used as alternatives to A1 cytoplasm to widen the cytoplasmic base of hybrids. The results indicated that most of the variation in hybrids was accounted for by pollinator and cytoplasm × pollinator interactions, suggesting the use of genetically diverse pollinators in pearl millet hybrid breeding.  相似文献   

2.
A new cytoplasmic-nuclear male sterility system in pearl millet   总被引:1,自引:0,他引:1  
K. N. Rai 《Plant Breeding》1995,114(5):445-447
Among the cytoplasmic-nuclear male sterility (CMS) systems reported in pearl millet, Pennisetum glaucum (L.) R. Br., the Am= A4 system produces the highest frequency of male-sterile hybrids. A CMS source identified in a large-seeded gene pool (LSGP) was compared with the A4 system. Seven diverse restorer lines of the A4 system produced hybrids with 81A4 that were all fertile (pollen-shedding score 4 and 68–89% selfed seedset). In contrast, all the hybrids of these inbreds made with the isonuclear line with the LSGP cytoplasm were sterile (pollen-shedding score 1 and 0–3% selfed seedset). Topcross hybrids of four diverse composites made with 81A4 had 10–35% plants that had good fertility (> 50% selfed seedset). In comparison, no plant of any topcross hybrid with the isonuclear line having LSGP cytoplasm exceeded 20% selfed seedset, and it was rare for a plant to exceed even 10% selfed seedset. These differential fertility restoration patterns of hybrids indicate that the LSGP cytoplasm represents a CMS system that is different from the A4 and, by implication, from all those reported to date. This new CMS system is designated A5.  相似文献   

3.
Commercial viability of three cytoplasmic-nuclear male sterility (CMS) systems (A4, A5 and Av) as potential alternatives to the most widely used A1 system in pearl millet (Pennisetum glaucum (L.) R.Br.) was evaluated in terms of stability of complete male sterility of four isonuclear A-lines (81A1, 81A4, 81A5 and 81Av) and the level and stability of male fertility restoration of their 44 single-cross hybrids. Lines 81A4 and 81A5 had no pollen shedders (PS), and there were very low frequency of non-PS plants of these A-lines that had a maximum of 1–5% selfed seedset (SSS). In 81A1 and 81Av,there were, albeit low frequency (<1%) of PS plants, and relatively higher frequency of the non-PS plants in these two lines, the more so in 81Av,had 1–5% and even greater SSS. Some hybrids made on each of the three A-lines (81A1, 81A4 and 81Av) had high and stable male fertility, while others made on the same three A-lines displayed large variation in SSS across the environments, the more so in case of hybrids made on 81Av. These results indicate that the A4 CMS system provides a better alternative to the A1 CMS system, while the Av system does not. On the basis of highly stable male sterility and the highest frequency of pollinators behaving as maintainers, the A5 CMS system appeared to be the best for A-line breeding. The commercial viability of this CMS system in breeding R-lines of grain hybrids, however, still remains to be ascertained as no hybrid on it was fully male fertile in any environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Pearl millet (Pennisetum glaucum (L.) R. Br.) hybrids based on the A1 cytoplasmic-nuclear male-sterile (CMS) lines are more susceptible to smut (Tolyposporium penicillariae Bref.) than open-pollinated varieties. Seventy eight pairs of hybrids, made onto male-sterile (A) lines and their counterpart maintainer (B) lines, were evaluated to examine the effects of male sterility and genetic resistance of parental lines on the smut severity of hybrids. The A-line hybrids had higher smut severity and lower selfed seedset than the counterpart B-line hybrids, indicating that it is the CMS-mediated male sterility rather than the A1 cytoplasm per se that caused greater smut severity of A-line hybrids. However, with the use of resistant parental lines even male-sterile hybrids of A-lines, in several cases, were as resistant as some of the highly resistant male-fertile hybrids of B-lines. It would be possible to produce smut resistant hybrids (< 10% severity) on A-lines, albeit in low frequency, even if only one parent of a hybrid were resistant. However, the probability of producing such hybrids would be higher when both parents were resistant to smut. Thus, improvement in smut resistance of parental lines and fertility restoration ability of pollinators would provide the most effective genetic approach to smut disease management in hybrids.Submitted as JA No 1737 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

5.
K. N. Rai  R. P. Thakur 《Euphytica》1995,83(3):225-231
Summary High ergot (Claviceps fusiformis Loveless) susceptibility of pearl millet (Pennisetum glaucum (L.) R. Br.) hybrids has often been associated with the A1 cytoplasm of male-sterile lines (A-lines). To understand the underlying basis of this association and to examine the prospects of breeding ergot-resistant hybrids, we evaluated 56 hybrids and their 15 parental lines for ergot reaction and selfed seedset for 2 years in disease nurseries at ICRISAT Asia Center. Hybrids were made by crossing seven pollen parents (2 susceptible and 5 resistant) onto two resistant and two susceptible A-lines, and their four corresponding maintainer lines (B-lines). A-lines had no selfed seedset while B-lines had 32–75% selfed seedset. Hybrids of A-lines had significantly less selfed seedset than the hybrids of the corresponding B-lines. The reduced seedset of A-lines and their hybrids, however, was not always accompanied by significantly higher ergot susceptibility. Highly resistant hybrids were obtained where both A-lines and pollen parents were highly resistant, regardless of male fertility levels of the hybrids. Thus, although the A1 cytoplasm, by its reduction of male fertility, had a large and significant effect in increasing ergot severity of hybrids, the contribution of nuclear genetic factors of female parents was about 1.8 times larger than that of the cytoplasm.Submitted as JA No. 1776 by the International Crops Research Institute for the Semi Arid Tropies.  相似文献   

6.
Influence of a range of cytoplasms on microsporogenesis and anther development in pearl millet was studied using six isonuclear A-lines having five cytoplasms (A1, A2, A3, A4 and Av) and the nuclear genome of 81B. 81B was used as a male-fertile control. Microsporogenesis and anther development were normal in 81B. However, pollen mother cell (PMC)/microspore/pollen degeneration in the six A-lines occurred at different stages of anther development. Each cytoplasm had its unique influence on microsporogenesis and anther development as evidenced by different developmental paths followed by them leading to pollen abortion. The cause of pollen abortion differed from line to line, from floret to floret within a spikelet, from anther to anther within a floret, and in some cases even from locule to locule within an anther. Events that led to male sterility included anomalies in tapetum and callose behaviour, persistence of tapetum, endothecium thickness, and other unknown causes. The present study also indicated that anther/pollen development was more irregular in Pb 406A3. In 81A4 and 81A1 > 95% of anther locules followed a definite developmental path to pollen abortion. In the other A-lines many developmental paths were observed within the line and pollen degeneration occurred at various stages. This could be one of the reasons for greater instability of male sterility in the A2 and A3 systems and greater stability of male sterility in the A1 and A4 systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Inter‐population hybrids of pearl millet, Pennisetum glaucum (L.) R. Br., have a substantial grain yield advantage over open‐pollinated varieties that makes them an appropriate and economically viable proposition for many African agricultural situations, provided that stable male‐sterile populations can be developed for use as seed parents. The objective of this research was to examine the feasibility of breeding stable male‐sterile populations, using the d2 dwarf version of Nigerian Composite NCD2 and the A4 cytoplasmic‐nuclear male sterility system as a test case. Results showed that two cycles of recurrent selection for sterility maintenance ability led to the development of a fully effective maintainer version of NCD2. There was no significant difference between the original C0 cycle bulk and the C3 cycle bulk (developed from the third and final cycle of recurrent selection) for grain yield and other agronomic traits. The male‐sterile population at the third backcross stage, developed from the maintainer version of NCD2, had as high a level of stable male sterility as the A1 system commercial inbred male‐sterile line 841A1. Thus, it is concluded that with the use of the A4 cytoplasmic male‐sterile system, it would be possible rapidly to develop a maintainer version of any population without detrimental effects on grain yield and agronomic traits. Male sterility of populations developed from these maintainers will be highly stable, paving the way for their effective utilization as seed parents in breeding inter‐population hybrids.  相似文献   

8.
Summary Five near-isonuclear polycytoplasmic versions of 81A1 and two of Pb 402A3 male sterile lines of pearl millet (Pennisetum typhoides), along with their corresponding maintainer lines (81B and Pb 402B) were studied for 14 agronomic and two disease traits, and for isozymes of peroxidase in anthers and leaves for assessing cytoplasmic differences. Significant differences among isonuclear polycytoplasmic lines of both 81A1 and Pb 402A3, having the same genome and variable cytoplasms, were observed for several agronomic traits. Banding pattern of peroxidase isozymes revealed clear cut differences among cytoplasms. The results provide evidence for the influence of cytoplasmic factors on the phenotypic expression of nuclear genes.  相似文献   

9.
S. P. Yang    M. P. Duan    Q. C. Meng    J. Qiu    J. M. Fan    T. J. Zhao    D. Y. Yu    J. Y. Gai 《Plant Breeding》2007,126(3):302-305
The F1, F2 and F2:3 of the NJCMS1A × 'Zhongdou 5' cross were used to analyse the inheritance of the male fertility restoration of the cytoplasmic-nuclear male-sterile line NJCMS1A in soybean. The results of genetic analysis showed two pairs of dominant genes conferring the male fertility restoration of NJCMS1A, which further confirmed previous results. The F2 population from the NJCMS1A × 'Zhongdou 5' cross was used for tagging the restorer genes for NJCMS1A with 664 pairs of simple sequence repeat primers selected randomly from the genetic linkage map of soybean published by Cregan et al. (1999) . Satt626 on linkage group M and Satt300 on linkage group A1 of the integrated linkage map by Song et al. (2004) were found to link to the two restorer genes of NJCMS1A. The maximum-likelihood estimates of the genetic distance between the two markers, Satt626 and Satt300, and the two restorer genes of 'Zhongdou 5' were 9.75 and 11.18 cM, respectively.  相似文献   

10.
Mitochondrial DNA from two pairs of cytoplasmic male-sterile (cms) and maintainer lines of pearl millet was investigated by restriction-enzyme analysis and Southern-blot hybridization using three mitochondrial gene probes. Each pair of male-sterile and maintainer lines was of a different nuclear origin. The objective was to distinguish differences in the DNA base-sequence organization of the mitochondrial genomes of cms and maintainer lines from the two sources. Restriction-enzyme analysis revealed differences between the different cms and maintainer lines. Southern-blot hybridization experiments using cloned mitochondrial gene probes further distinguished differences between different lines. It is expected that the restriction-fragment-length polymorphisms revealed in the Southern-blot-hybridization experiments will be useful in distinguishing and classifying cms and maintainer lines obtained from different nuclear backgrounds.  相似文献   

11.
D. A. Diz  S. C. Schank 《Euphytica》1993,67(1-2):143-149
Summary Successful widespread use of a forage or biomass plant depends largely on its ease of establishment. Elephantgrass (Pennisetum purpureum Schum.) is used for both forage and biomass production, due to its high dry matter production, aggressiveness, perenniality, and forage quality. However, lack of high quality seed has limited the use of elephantgrass and its hybrids to pearl millet (P. glaucum L. R.Br.). Development of a seed-propagated pearl millet x elephantgrass hexaploid cultivar, which would combine desirable characteristics from both of these species, would be highly desirable. The objectives of this study were to characterize morphological and seed-related traits from the selfed progeny of seven hexaploid hybrids, and to determine whether seed size had any influence on these traits. Traits studied included number of tillers, height, leaf length and width, panicles per plant, days to flowering, panicle length, seed set, seed production, and weight of 100 seeds. Genetic differences were found among the progeny of the seven hybrids. Differences were also found between plants derived from large- and small-seed lots within families. Plants descended from larger seed had better growth and seed-related characteristics, which resulted in more desirable plants. These hexaploid hybrids showed potential for direct seeding into the field for biomass or forage production.  相似文献   

12.
Summary Effect of A1 male sterile cytoplasm on smut severity in pearl millet (Pennisetum glaucum (L.) R.Br.) was studied by comparing 35 pairs of F1 hybrids, each pair carrying male sterile and normal cytoplasm. Mean smut severity was not significantly different in the hybrids carrying male sterile or normal cytoplasm. This suggests that in pearl millet male sterile cytoplasm is not associated with higher smut susceptibility. Partitioning of variance into different components showed that pollinators, A/B line pairs and their interaction primarily influenced smut severity of hybrids. Smut susceptibility might be attributed to effects of cytoplasm × nuclear interactions.  相似文献   

13.
Summary The susceptible pearl millet hybrid Tifleaf 1, the resistant hybrid Tifleaf 2, and two experimental 3-way hybrids with different proportions of resistant and susceptible plants were evaluated for rust resistance and forage yield and quality in 1990, 1991, and 1992. Different environmental conditions were obtained by varying planting date, planting density, and fungicide applications across three years of evaluation in the field. Rust severity of forage was negatively correlated with late season green yield, dry matter yield, in vitro dry matter digestibility, and digestible dry matter yield. The stability across environments of the 3-way hybrids was intermediate between resistant Tifleaf 2 and susceptible Tifleaf 1 for rust severity and the yield and quality measurements negatively correlated with rust severity. Mixtures of resistant and susceptible plants would probably provide greater control of rust than measured in these small-plot experiments. Although a mixture of resistant and susceptible plants appears to provide an alternative to monogenic control of rust in forage pearl millets, identification and utilization of additional sources of resistance would be beneficial to improve the performance of 3-way hybrids.  相似文献   

14.
Pearl millet (Pennisetum glaucum (L.) R. Br.) cultivars for marginal, arid environments need to combine the adaptation to stress conditions of indigenous landraces with an improved yield potential and disease resistance, to allow them to both perform well in farmers fields and to meet the requirements for cultivar release. This paper evaluates landrace-based topcross hybrids (adapted landraces crossed on high-yielding male-sterile lines), as a quick and efficient way of achieving this objective. Topcross hybrids showed a consistent increase in biomass production across all test environments, including the harsh arid zone environments. Depending upon the plant type of the male-sterile used to make the hybrid, this was expressed as increased grain yield only, or increased grain and fodder yields. The downy mildew (Sclerospora graminicola) reaction of the topcross hybrids was determined by the reaction of the male-sterile line used, with the resistant male-sterile producing resistant topcross hybrids and vice-versa. Topcrossing adapted landraces on high-yielding male-sterile lines thus provides an opportunity to improve disease resistance and grain and/or fodder yields, with no apparent loss of adaptation to the marginal environments in which the landraces have evolved.ICRISAT Journal Article no. 1575  相似文献   

15.
A Brassica juncea line carrying an introgression from Moricandia arvensis restored male fertility to two cytoplasmic male‐sterile (CMS) B. juncea lines carrying either M. arvensis or Diplotaxis catholica cytoplasm. Genetics of fertility restoration was studied in the F1, F2, F3 and backcross generations of the cross between CMS and fertility‐restorer lines. No male‐sterile plants were found in F1‐F3 generations of the cross between CMS [M. arvensis] B. juncea and the restorer. However, a 1: 1 segregation for male sterility and fertility was observed when the F1 was pollinated with non‐restorer pollen from a euplasmic line. These results clearly show that restoration is mono‐genic and gametophytic. In CMS lines carrying D. catholica cytoplasm, the restorer conferred male fertility to the F1 and showed 3: 1 and 1: 1 segregations for male fertility and sterility in F2 and BC1 generations, respectively, indicating a monogenic, sporophytic mode of fertility restoration. The results were also supported by pollen stainability in the F1 which was about 65% in M. arvensis‐based CMS and >90% in D. catholica‐based CMS. The above results are discussed in the light of previous molecular studies which showed association between CMS and atpA in both systems.  相似文献   

16.
Summary Fertility restoration genes in Triticum aestivum L. in Texas Restorer Composite (TRC), D6301, and four CIMMYT restorer lines were studied, and selection was made for higher fertility in TRC. Mean-while, outcrossing percentages of seed set for 27 spring habit cytoplasmic male sterile (cms) varieties were evaluated for 3 to 5 years at Davis. The winter-habit TRC material did not restore reasonably good fertility, and the response to selection for higher fertility seemed to be slow. This poor fertility could be partly due to its late winter growth habit causing flowering at a period of high temperature and low humidity at Davis. The highest F1 fertility was 46.6% in the cross cms Ramona x TRC-6, and its F2 segregated into the ratio of 15 fertile to 1 sterile, with fertility ranging from 3.2 to 100%. Suggested for its improvement was intensive selection in the original TRC material and in the segre-gating F2 population, followed by intercrossing. D6301 has 2 fertility restoration genes with different strengths which restore fertility up to 45.2% when both genes are heterozygous. D6301 is quite likely heterogeneous for these genes. Four CIMMYT restorer lines, D7464, D7465, D7466, and D7467, had satisfactory F1 fertility restoration after crossing with cms Ramona 50. In 1975, the fertilities of the F1's ranged from 71 to 85% and were over 90% in 1976. The F2 population of the cross cms Ramona 50 × D7464 segregated into a ratio of 3 fertile to 1 sterile, indicating that D7464 has a single dominant gene for fertility restoration. The F2's of crosses cms Ramona 50 × D7465, cms Ramona 50 × D7466, and cms Ramona 50 × D7467 gave a ratio of 15 fertile to 1 sterile, indicating that two gene pairs in these three lines were responsible for the fertility restoration. The best of this group was D7467 which restored fertility fully after being crossed with cms Ramona 50 (T. timopheevi cytoplasm).The early-flowering cms male-sterile varieties had higher outcrossing rates (16 to 38%) than late varieties (6 to 30%) over a 5-year period. This was due to hot and dry weather during the late growing season as well as to the rarity of windborne pollen. In 1970, 1971, 1972, and 1976, the variation among varieties was rather great. Some of them such as Roque 66 and Bajio 67, had consistently high outcrossing rates. This outcrossing ability seemed to be inherited and probably associated with the open-flowering characteristics of each variety.  相似文献   

17.
M.N. Inagaki  A. Mujeeb-Kazi 《Euphytica》1998,100(1-3):253-259
The effects of drying and freezing on viability of pearl millet pollen were examined with the aim of using stored pollen in polyhaploid production of hexaploid wheat. Freshly collected pollen of pearl millet line NEC 7006 with 55% water content, germinated at a frequency of 80%. Pollen that was dried for two hours to 6% water content showed 50% germination frequency and maintained similar frequencies after the freezing process. In crosses of hexaploid wheat variety Norin 61 with fresh pearl millet pollen, embryos were obtained at a frequency of 27.6%. In crosses with pollen stored at -196 °C, -80 °C and -20 °C for one month, embryo formation frequencies ranged from 27.5 to 17.4%. After five and twelve months of storage, the frequencies ranged from 29.7 to 14.6% at storage temperatures of -196 °C and -80 °C, and from 8.0 to 3.2% at -20 °C, indicating significant differences among storage temperatures. However, no significant frequency difference was found among pollen water contents at the time of collection. All plants regenerated from crosses with pearl millet pollen stored for five months were wheat polyhaploids. These results suggest that stored pearl millet pollen is an efficient medium for producing polyhaploids in hexaploid wheat. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Two male-sterile lines, KalashreeA and PadminiA, with a Miz.21 cytoplasm source were developed through indica/indica hybridization followed by repeated backcrossing with their respective recurrent male parents (Kalashree and Padmini) up to the BC6 generation. These two cytoplasmic male-sterile lines are suitable for use in the development of hybrids for lowland situations owing to their intermediate to semi-tall stature, late flowering duration, good grain quality and easy fertility restoration ability.  相似文献   

19.
O. P. Yadav 《Euphytica》1994,78(1-2):77-80
Summary The threshing percentage (TH%) has been suggested as a selection criterion to identify the pearl millet (Pennisetum glaucum (L.) R.Br.) lines with improved ability to fill and set grains under water limiting conditions. In this study, eight genetically diverse pearl millet inbreds and their 28 crosses produced by half diallel crossing design were used to examine range in TH%, to evaluate general combining ability (GCA) of parents and specific combining ability (SCA) effects of crosses. The results showed significant variation among parental lines for TH%. The inbreds differed for their GCA effects and crosses for their SCA effects. Parents with high TH% and positive GCA effects were identified. The results of the study revealed that both additive and dominance components, with the preponderance of later, were important in the inheritance of TH%. Heritability in narrow sense was moderate (55%) indicating that selection for high TH% might be effective.  相似文献   

20.
C. C. Jan    B. A. Vick 《Plant Breeding》2007,126(2):213-217
The inheritance of fertility restoration of six mitomycin C and streptomycin‐induced cytoplasmic male‐sterile (cms) mutants and one cms line derived from Native American cultivar PI 432513 in sunflower was evaluated. These seven new cms sources were also compared with the commercially used cms PET1 (Helianthus petiolaris Nutt.) cytoplasm, using USDA inbred lines with restoration genes (Rf1) specific for cms PET1 and new restoration lines identified for cms PI 432513. Restoration genes for cms PI 432513 were found in ‘Armavir’, VNIIMK, P21 and male‐fertile (MF) plants of PI 432513. F2 and F3 segregation ratios of crosses between cms PI 432513 and these restoration sources indicated a single dominant gene controlled fertility restoration. Progenies of cms PI 432513 testcrossed with F1’s of half‐diallel crosses among the respective four homozygous restoration lines and RHA 274 suggested that the restoration genes of RHA 274, VNIIMK, P21 and PI 432513 were at the same locus. Restoration genes from VNIIMK, P21 and PI 432513 satisfactorily restored pollen stainability in the heterozygous condition. A very weak expression of the Rf gene in ‘Armavir’ was observed in the heterozygous condition. Fertility restoration capability of these genes for the six mutant cms HA 89 and cms HA 89 (in PET1 cytoplasm) was observed. The mutant cms HA 89 lines were also restored completely by RHA 266, RHA 274, RHA 280 and RHA 296, and F2’s segregation ratios indicated single dominant gene control, implying a common cytoplasmic male sterility in all lines. F1’s of half‐diallel crosses among RHA 266, RHA 273, RHA 274, RHA 280 and RHA 296 were testcrossed onto the cms lines, and their all MF progenies among lines, except RHA 280, confirmed that fertility restoration was controlled by a single Rf1 gene locus. The restoration gene in confection line RHA 280, namely Rf3, was at a different locus than Rf1 and was equally capable of restoring all the cms lines. Cms HA 89 mutants and cms PI 432513 are in H. annuus cytoplasm, and are agronomically equal in hybrid performance to the cms PET1 used in commercial sunflower hybrids. These new cms lines will provide immediate alternative cms sources for reducing the genetic vulnerability resulting from the exclusive use of the single cms source PET1 in sunflower hybrid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号