首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optimum plant population densities are a key means of achieving higher seed yield in soya bean [Glycine max (L.) Merr.]. Limited information is available on yield‐density relation of glyphosate‐resistant soya beans in north‐eastern USA. The objective of this research was to determine the appropriate populations for glyphosate‐resistant soya beans, and if the yield potential of glyphosate‐resistant soya bean produced in light‐enriched conditions was affected by populations. Eight glyphosate‐resistant soya bean cultivars with three populations (300 000, 500 000 and 800 000 plants ha−1) were grown under both ambient and light‐enriched conditions in 2002 and 2003. Yield of all cultivars responded to density linearly. As density increased, grain yield was increased by up to 92 % among cultivars. Light enrichment increased yield for all cultivars across the 2 years, although some cultivars were more sensitive. Harvest index either remained unchanged or declined slightly at higher density in 2002, and there was no difference among treatments in 2003. Both pod number and seed number per plant were significantly decreased with the increase of density across the 2 years, while seeds per pod declined slightly or remained unchanged. Greater seed size was obtained in higher density with varied degree depending on cultivars across the 2 years except for those cultivars with relatively larger seed. The increase in seed size by light enrichment was cultivar and density dependent, and varied between years. 800 000 plants ha−1 could be a suitable practice in producing higher yield in north‐east USA for glyphosate‐resistant soya bean. Maintaining the mass of an individual seed is an important strategy in achieving high yield at high population. Establishing mechanisms responsible for the greatest yields via high population under light‐enriched conditions, may provide insights for management and phenotypic improvement.  相似文献   

2.
Two old (Huangsedadou and Longxixiaohuangpi (LX)) and two new (Jindou 19 (JD) and Zhonghuang 30 (ZH)) soya bean (Glycine max (L.) Merr.) cultivars were used to investigate the influence of soil drying on the abscisic acid (ABA) accumulation in leaves, stomatal conductance (gs), leaf water relations, osmotic adjustment (OA), leaf desiccation tolerance, yield and yield components. The greater ABA accumulation was induced by soil drying, which also inducing gs decreased at higher soil water contents (SWC) and leaf relative water content (RWC) significantly decreased at lower SWC in the new soya bean cultivars than in the old soya bean cultivars. The soil water threshold between the value at which stomata began to close and the RWC began to decrease was significantly broader in the new cultivars than in the old cultivars. The new cultivars had significantly higher OA and lower lethal leaf water potential than old cultivars when the soil dried. The old cultivars had greater biomass, but lower grain yield than the new cultivars in well‐watered, moderate stress and severe stress conditions. Thus with soil drying, the new soya bean cultivars demonstrated greater adaptation to drought by inducing greater ABA accumulation, stomatal closure at higher SWC, enhanced OA and better water relations, associated with increased leaf desiccation tolerance, greater water use efficiency and higher yield.  相似文献   

3.
Appropriate plant density is a key for gainful production of soya bean in various environments including the hot‐humid tropical environments (HHTE) of Ethiopia. A split‐plot factorial experiment was conducted under HHTE in south‐west Ethiopia to determine the effect of Variety (Clark, CSC‐1), Row spacing (50, 55, 60, 65, 70 cm) and Plant spacing (2.5, 5, 10 cm) on yield and yield components, and weed infestation of soya bean. The effect of Plant spacing was more Variety‐specific than that of Row spacing. Yield and yield components per m2 were significantly affected by both Row spacing and Plant spacing. However, per plant and per pod responses and weed infestation were affected mainly by Plant spacing, and not that much by Row spacing. Seed yield and yield components per m2 were the highest for the highest plant density (50 cm Row spacing, 2.5 cm Plant spacing), but individual plant and pod responses, and weed infestation were the highest for wider Plant spacing (10 cm). Regression analysis of various responses on planting density showed negative, cubic relationship albeit with different strength. This study demonstrated that these factors significantly modify soya bean yield and yield components as well as weed infestation, suggesting that they could be used as management tools for increased yield in HHTE.  相似文献   

4.
Soya bean yield gap can be caused by different factors resulting in uncertainties when the objective is to use such information for farm decision‐making and reference yield determination. Thus, this study aimed to quantify the soya bean yield gap for four sites, located in Southern and Midwestern Brazil, as well as the uncertainties of that related to cultivars, sowing dates, soil types and reference yields. The crop simulation model DSSAT‐CSM‐CROPGRO‐Soybean was calibrated for cultivars with similar maturity groups, based on the data obtained from the best farmers at the county level. The yield gap by water deficit (YGWD) was obtained through the difference between potential and attainable yields, and that one caused by sub‐optimum crop management (YGCM) by subtracting actual yield of each county, obtained from official statistics between 1989/90 and 2014/15 growing seasons, from the estimated attainable yield. The yield was simulated using four sowing dates, three soil types and two soya bean maturity groups by county. The reference yield uncertainty was quantified using yield reference from crop model and regional winners of the soya bean yield context, conducted by CESB (Brazilian Soybean Strategic Committee), for the growing seasons from 2013/14 to 2015/16. The crop model showed a good agreement between measured and simulated crop development and growth using calibration by maturity group, with low root mean square error (347 kg/ha). Southern sites had a mean YGWD of 1,047 kg/ha, while in the Midwest, it was lower than 100 kg/ha. The YGCM was 1,067, 528, 984 and 848 kg/ha, respectively, for Castro, PR, Mamborê, PR, Montividiu, GO and Primavera do Leste, MT, representing the opportunity for yield gain when having the best farmers as reference. The maturity groups, sowing dates and soil types showed to be an important source of uncertainty for yield gap determination, being recommended to investigate the farms in detail for an appropriate quantification. The reference yield showed expressive uncertainties, with some farmers presenting conditions to increase their soya bean yields by more than 3,000 kg/ha, when considering as reference the yields obtained by the winners’ farmers. These results show that uncertainties must be reduced when assessing farm yield gaps, in order to ensure that expected rate of soya bean yield growth could be reached by adopting the same technologies from CESB winners and best farmers in the county as a reference.  相似文献   

5.
Field experiments were conducted in 2003/2004 in Québec to determine the effects of irrigation levels (none, low and high) and cultivars (AC Orford, AC Proteina and Golden) on soya bean [Glycine max (L.) Merr.] isoflavone concentrations and yields. Seed yield, yield components, and oil and crude protein (CP) concentrations were concurrently determined. Response to irrigation was greater in 2003, which was substantially warmer and drier than in 2004. In both years, most responses were observed with the lower of the two irrigation levels evaluated, which increased total isoflavones concentration by an average of 45 % compared with a non‐irrigated control. Cultivars, however, responded differently to irrigation. In 2003, response of AC Proteina was greater than that of AC Orford, while Golden did not respond. In 2004, some responses were observed with AC Proteina and Golden but none with AC Orford. Overall, in both years, AC Proteina had the greatest isoflavone concentrations and AC Orford the lowest. Responses of seed yield and yield components depended on the year and were also greater in 2003. Both irrigation treatments generally increased seed yield and yield components compared with a non‐irrigated control; the response was greater with the higher irrigation level. Irrigation had no effect on oil and CP concentrations. Finally, isoflavone yield response to irrigation was again greater in 2003, and depended on the cultivar. Results thus demonstrate that specific soil moisture levels will maximize soya bean isoflavone concentrations, excess irrigation sometimes negating any potential benefits.  相似文献   

6.
Soya bean is often grown in regions subject to periodic flooding, with the rooting zone most affected by flooding due to its proximity to the source of stress. Our objectives were to examine the effects of flooding soya bean on its primary roots, adventitious roots and root nodules, and to determine relationships between root morphological changes and early‐season flood tolerance. The experiment was conducted in Belle Glade, FL with 11 soya bean genotypes subjected to (i) no flood, (ii) 2‐week flood 21–35 days after sowing (DAS) or (iii) 4‐week flood 21–49 DAS. All plants were harvested 49 DAS. Flooding reduced soya bean primary root weight, length and volume across genotypes. Adventitious root length and volume were greater in the 4‐week than the 2‐week flood. Soya bean nodule dry weight was threefold higher in the non‐flooded treatments. Genotypic differences in root development and tolerance to flooding were noted, with early‐season flood tolerance correlated with primary root dry weight, length and surface area, and adventitious root dry weight. However, there was no correlation between this study's early‐season root development and late‐season flood tolerance based on seed yield from previous studies. Our results indicate that full season trials may be necessary to identify flood‐tolerant soya bean germplasm.  相似文献   

7.
Chilling stress is a major factor limiting the yield of soya bean [Glycine max (L.) Merr.] on a global scale. However, the regulatory network that controls the chilling response of soya bean remains unclear. In the present study, phenotyping and quantitative analyses of miRNAs in soya bean under chilling stress were carried out to determine the impact of environmental constraints on soya bean productivity. Measurements done during soya bean growth in chilling along with the results of field trials indicated that the cultivars Augusta and Fiskeby V responded differently to low temperatures. Although chilling affected the reproductive development of both cultivars, the final seed output remained unchanged. The differential expression of miR169, miR319, miR397 and miR398 under cold stress was detected using ddPCR. Upon chilling in the reproductive stage, we found that these miRNAs had contrasting expression profiles in Augusta and Fiskeby V. A set of candidate target genes was predicted based on degradome sequencing data. A negative correlation was found between the expression of miR169, miR319 and miR398 and their targets in the roots of both cultivars. Our work elucidates the impact of chilling stress on the productivity of two soya bean cultivars and reveals the importance of miRNA involvement in the low temperature response.  相似文献   

8.
Drought stress limits crop growth and yield in soya bean (Glycine max [L.] Merr.), but there are relatively few tools available to assess the ability of different genotypes to tolerate drought. Aerial infrared image analysis was evaluated as a potential tool for identifying drought tolerance in soya bean. Drought effects were evaluated from late vegetative to mid‐reproductive stages of soya bean development in an experiment with ten genotypes including five slow‐ and five fast‐wilting genotypes that were from a population derived from Benning×PI416937. There were two deficit irrigation levels for 2 years and one deficit irrigation level for the third year along with a fully irrigated control level. When the canopy was completely closed, relative canopy temperature was determined using an infrared camera taken from an aerial platform 50–75 m above the experiment. As water availability decreased, the relative canopy temperature generally increased. Moreover, slow‐wilting soya bean genotypes generally had lower canopy temperature compared to fast‐wilting genotypes, and grain yield was generally positively associated with cool canopy temperatures. The results indicate that the determination of canopy temperature is a promising tool for rapid characterization of drought‐related traits in soya bean.  相似文献   

9.
Soya bean is often grown in regions prone to periodic flooding, thus selecting cultivars that maintain production under waterlogged conditions is desirable. An experiment involving flooded soya beans was planted in southern Florida to examine (1) stem and leaf growth; (2) morphological adaptations; and (3) the relationship between early‐season and late‐season flood tolerance in flooded soya beans. Eleven soya bean genotypes previously defined as tolerant or sensitive to flooding were subjected to three treatments at 21 days after sowing (DAS): (1) no flood, (2) 2‐week flood and (3) 4‐week flood. All plants were harvested 49 DAS. Flooded plants exhibited lower stem dry weights but greater partitioning to the stem. Non‐flood treatments had greater leaf dry weight, leaf area and partitioning to leaves than flooded plants. There were positive correlations of genotype stem dry weight and leaf dry weight to early‐season flood tolerance but stem partitioning was negatively correlated with early‐season flood tolerance. Genotypic rankings of early‐season flood tolerance in this study were not correlated with earlier studies basing flood tolerance on seed yield. Our study highlights the range of soya bean morphological adaptations in response to flood. However, our results indicate that early‐season screening may not be an accurate predictor of soya bean genotypic response to late‐season flood.  相似文献   

10.
Bush bean ( Phaseolus vulgaris L.) is widely intercropped with maize ( Zea mays L.) in North-west Spain. Little information is available on the relative performance of elite bush bean cultivars when intercropped or on the effect of bush bean on performance of the maize crop. This two-environment study presents the interactions between improved bush bean cultivars and maize on yield and yield components. Eight treatments (four bean/maize intercrops and four sole crops, two of bean and two of maize) were tested using a randomized complete block design with four replications in two environments. Bean and maize were planted simultaneously in alternate rows when intercropped. Significant treatment differences were observed for bean and maize moisture, pod and cob percentage, bean and maize yield, ears per plant and ear length. Location effects were significant for bean and maize moisture and pod percentage. Significant treatment by location interactions occurred for pod percentage and ear length. Intercropping reduced yield by between 40 and 60 % for bush bean cultivars, and by 45 % for both maize cultivars. Mean yields were used to calculate the land equivalent ratio (LER), which averaged 1.01 in Pontevedra but 0.93 in La Coruña. Intercropping of bush bean with maize did not make better use of land than conventional sole cropping under these environmental conditions. It is suggested that this was probably due to the amount and distribution of rain in relation to crop growth. Approaches that might be expected to result in improved land usage are presented.  相似文献   

11.
Eight sweet potato cultivars ( Ipomoea batatas Lam.) were grown under four different light regimes (0, 26, 42 and 60 % light reduction (LR)) at two experimental sites of the International Potato Center (CIP) in Peru during the 1990 and 1991 growing season. Increasing shade diminished the tuber yield of five cultivars, two showed a tolerance for slight (26 % LR) and moderate (42 % LR) shade and one had the same yield in full sunshine and slight shade. Shade mainly reduced the sink-size (tubers m −2) of sweet potato and to a lesser extent the sink-strength. The growth of the plant top was hardly affected by shade; slight shade even favoured shoot development of some cultivars. The plant top was the stronger sink under shade conditions and tuber yield was not only reduced by lesser assimilate production as a whole but also by an altered assimilate partitioning.  相似文献   

12.
Under Mediterranean conditions, drought affects cereals production principally through a limitation of grain filling. In this study, the respective role of post‐anthesis photosynthesis and carbon remobilization and the contribution of flag leaf, stem, chaff and awns to grain filling were evaluated under Mediterranean conditions in durum wheat (Triticum turgidum var. durum) cultivars. For the purpose, we examined the effects of shading and excision of different parts of the plant and compared carbon isotope discrimination (Δ) in dry matter of flag leaf, stem, chaff, awns and grain at maturity and in sap of stem, flag leaf, chaff and awns, this last measurement providing information on photosynthesis during a short period preceding sampling. Source–sink manipulations and isotopic imprints of different organs on final isotope composition of the grain confirmed the high contribution of both carbons assimilated by ears and remobilized from stems to grain filling, and the relatively low contribution of leaves to grain filling. Grain Δ was highly and significantly associated with grain yield across treatments, suggesting the utilization of this trait as an indicator of source–sink manipulations effects on grain yield. Chaff and awns Δ were better correlated with grain Δ than stem and leaf Δ, indicating that chaff were more involved in grain filling than other organs. Moreover, in chaff, sap Δ was highly significantly correlated with dry matter Δ. These results suggest the use of Δ for a rapid and non‐destructive estimation of the variation in the contribution of different organs to grain filling.  相似文献   

13.
Heat stress resulting from climate change and more frequent weather extremes is expected to negatively affect wheat yield. We evaluated the response of different spring wheat cultivars to a post‐anthesis high temperature episode and studied the relationship between different traits associated with heat tolerance. Fifteen spring wheat (Triticum aestivum L.) cultivars were grown in pots under semifield conditions, and heat stress (35/26 °C) and control treatments (20/12 °C) were applied in growth chambers for 5 days starting 14 days after flowering. The heat stress treatment reduced final yield in all cultivars. Significant variation was observed among cultivars in the reduction in average grain weight and grain dry matter yield under heat stress (up to 36 % and 45 %, respectively). The duration of the grain‐filling period was reduced by 3–12 days by the heat treatment. The reduction in the grain‐filling period was negatively correlated with grain nitrogen yield (r = ?0.60). A positive correlation (r = 0.73) was found between the treatment effect on green leaf area (GLA) and the reduction in yield resulting from heat stress. The amount of stem water‐soluble carbohydrates (WSC) was not related to treatment effects on grain yield or grain weight. However, the treatment effect on stem WSC remobilization was negatively correlated with reduction in grain‐filling duration due to heat stress (r = ?0.74) and positively with treatment effect on grain N yield (r = 0.52). The results suggest that the effect of the heat treatment on GLA was the trait most associated with yield reduction in all cultivars. These findings suggest the importance of ‘stay green’‐associated traits in plant breeding as well as the need for better modelling of GLA in crop models, especially with respect to brief heat episodes during grain filling. There is in particular a need to model how heat and other stresses, including interacting effects of heat and drought, affect duration of GLA after flowering and how this affects source–sink relations during grain filling.  相似文献   

14.
Chickpea (Cicer arietinum L.) has an indeterminate growth nature, and the plant canopy with an improved light environment during critical growth stages may increase biomass (BM) production and improve crop yield. This study examined (i) the effects of shading, light enrichment and defoliation applied at various growth stages on BM and seed yield of chickpea in northern latitudes; and (ii) the difference between cultivars with fern‐ vs. unfoliate‐leaf type in responding to the altered canopy light environments. Field studies were conducted at Saskatoon and Swift Current, Saskatchewan in 2004 and 2005. Different light environments were created by 50 % defoliation at vegetative growth and at first flower, 50 % shading from vegetative growth to first flower, and two light enrichment treatments initiated at the first flower and pod formation stages. The 50 % shade treatment prior to flowering significantly decreased harvest index (HI) and seed yield. Light enrichments increased seed yield only one of three location‐years (the fourth site excluded because of disease damage). Defoliation at vegetative growth or first flower had a marginal effect on seed yield, largely as a result of the regrowth of vegetative tissues compensating for the lost plant tissues. The cultivar CDC Yuma (fern‐leaf type) exhibited consistently greater maximum light interception (LI), cumulative intercepted radiation, HI and seed yield than the cultivar Sanford (unifoliate‐leaf type) across all location‐years. Selective use of chickpea cultivars with improved morphological traits such as fern‐leaf type will likely improve LI and increase crop yield for chickpea in northern latitudes. Moreover, optimized crop management practices should be adopted to ensure that chickpea be grown under conditions with minimum shading before flowering and optimum light environment within the canopy especially during reproductive growth period.  相似文献   

15.
Our objectives were to determine the influence of salinity on root cell wall composition in soya beans and the possible mechanism of salt tolerance. Two soya bean cultivars, Touzan 69 (salt sensitive) and Dare (salt tolerant), were selected as experimental material for comparison. Root growth was clearly inhibited by salinity in both cultivars, but Touzan 69 showed more severe reductions in root length than Dare. In the 0–5 mm root segment (from root tip), the total cell wall sugar content of Touzan 69 decreased considerably due to salinity as were the pectin, hemicellulose and cellulose fractions. In Dare, NaCl treatments only caused a slight decrease in the pectin fraction and no marked change in hemicellulose and cellulose fractions. Without salt treatment, the pectin fraction accounted for about 40 % and cellulose for 30 % of cell wall composition in the 0–5 mm root segment; in the 5–10 segment (from root tip), pectin and cellulose accounted for 27 % and 45 % in Touzan 69, and 34 % and 38 % in Dare. The percentage of pectin decreased and that of cellulose increased in the 5–10 mm root segment compared with the 0–5 mm segment. This indicates that pectin largely regulates cell growth, as the 0–5 mm region is considered the elongation zone of soya bean roots. Salt treatment decreased the percentage of pectin, but increased that of cellulose across root zones of the two cultivars, suggesting that salt presence may increase cell wall rigidity, and thus, inhibits root growth. Dare was able to maintain its main root cell wall substances, an apparent advantage for root cell growth that may overall improve its salt tolerance. Also, the less reduction in cell wall uronic acid was of some benefit in the positive regulation of root cell growth in Dare. The changes in cell wall composition, especially the pectin content had a close relation with the regulation of root growth. The difference in salt tolerance between the two tested cultivars can partly be explained on the basis of these changes in response to salinity. Sugar compounds in each cell wall constituent and their functions in ion transport as well as the relationship between root cell wall and soya bean salt tolerance need to be further investigated.  相似文献   

16.
不同施肥制度对夏玉米产量特性的影响   总被引:5,自引:0,他引:5  
研究了北京褐潮土13年长期定位不同施肥制度夏玉米生物产量和籽粒产量特性,主要结果:(1)长期N、P、K化肥配合(NPK处理)以及N、P、K化肥与有机肥或秸秆配合施用(NPKM与NPKS处理),生物产量和籽粒产量表现稳定且持续高产;(2)长期N、P、K化肥非平衡施肥的处理(NP、N、NK、PK处理)以及不施肥的CK,夏玉米生物产量和籽粒产量连年持续下降,植株矮小、瘦弱,甚至出现发育停滞现象。氮磷钾缺乏其中任何一种元素,都会造成植株和籽粒发育障碍,影响生物和籽粒产量。  相似文献   

17.
The effect of NaCl (?0.1, ?0.4 and ?0.7 MPa) on some physiological parameters in six 23‐day‐old soya bean cultivars (Glycine max L. Merr. namely A 3935, CX‐415, Mitchell, Nazl?can, SA 88 and Türksoy) at 25, 30 and 35 °C was investigated. Salt stress treatments caused a decline in the K+/Na+ ratio, plant height, fresh and dry biomass of the shoot and an increase in the relative leakage ratio and the contents of proline and Na+ at all temperatures. Effects of salt stress and temperature on Chl content, Chl a/b ratio (antenna size) and qN (heat dissipation in the antenna) varied greatly between cultivars and treatments; however, in all cases approximately the same qP value was observed. It indicates that the plants were able to maintain the balance between excitation pressure and electron transport activity. Pigment content and the quantum efficiency of photosystem II exhibited significant differences that depended on the cultivar, the salt concentration and temperature. The cultivars were relatively insensitive to salt stress at 30 °C however they were very sensitive both at 25 and 35 °C. Of the cultivars tested CX‐415 and SA 88 were the best performers at 25 °C compared with SA 88 and Türksoy at 35 °C.  相似文献   

18.
Increasing atmospheric carbon dioxide concentration (CO2) is an important component of global climate change that will have a significant impact on the productivity of crop plants. In recent years, growth and yield of agricultural crop plants have been shown to increase with elevated CO2 (EC) and have enticed considerable interest due to variation in the response of crop plants. In this study, comparative response of two mung bean cultivars (HUM‐2 and HUM‐6) was evaluated against EC at different growth stages under near‐natural conditions for two consecutive years. The plants were grown in ambient as well as EC (700 ppm) in specially designed open‐top chambers. Under elevated CO2, marked down‐regulation of reactive oxygen species (ROS) levels, membrane disruption and activities of superoxide dismutase and catalase were noticed in both the cultivars, but the extent of reduction was more in HUM‐6. As compared to ambient CO2, EC increased total chlorophyll, photosynthetic rate, growth and yield parameters. Cultivar‐specific response was noticed as HUM‐6 showed higher increase in yield attributes than HUM‐2. Under CO2 treatment, soluble protein and reducing sugars decreased while total soluble sugars and starch showed an opposite trend. Principal component analysis showed that both the cultivars responded more or less similarly to EC in their respective groupings of physiological and growth parameters, but the magnitude of ROS and antioxidative enzymes was variable. The experimental findings depict that both the cultivars of mung bean showed contrasting response against EC and paved the way for selecting the suitable cultivar having higher productivity in a future high‐CO2 environment.  相似文献   

19.
Irrigation is a management option available to farmers in the subhumid zones of Sri Lanka to increase mung bean yields during the dry Yala season. The objective of this study was to quantify the yield gain in response to irrigation at different stages of the crop and thereby determine the most suitable stage/s of irrigation. Four field experiments were conducted during Yala in 1995 and 1996 at two sites, Maha-Illuppallama (MI) and Kundasale (KS). Eight irrigation regimes consisting of all possible combinations of irrigation at three growth stages of the crop were defined. The respective growth stages were vegetative (from germination to appearance of first flower), flowering (from appearance of first flower to 75 % pod initiation) and pod-filling (from 75 % pod initiation to maturity). The treatments which received irrigation during two or more stages had significantly higher yields (793–1396 kg ha−1) than those which received irrigation during only one stage (401–756 kg ha−1) with the lowest yield being shown by the rain-fed treatment (227–396 kg ha−1). When at least two stages can be irrigated, irrigation during the flowering and pod-filling stages was most effective. Irrigation during flowering produced the highest yield gain when only one stage could be irrigated. Seed yield showed a strong positive correlation with number of pods m−2. Fifity per cent de-podding caused yield reductions at both sites, indicating sink limitation. In contrast, 50 % defoliation reduced the yields only at MI where the number of pods m−2 was greater than at KS. Hence, source limitation was present only when the number of pods was higher.  相似文献   

20.
The contributions of soya bean (Glycine max) to the maintenance of soil N, organic matter and physical properties in any cropping system is dependent on the amount of the crop residue returned after grain harvest. This amount of residue is a function of the dry matter accumulated during growth. In the topical moist savanna (MS) of West Africa where soya bean production has increased especially due to the cultivation of more hectarage of land, increase in soya bean dry matter with the resulting residue is limited by P deficiencies. In this study, the effect of P application on residue turnover by soya bean varieties of different maturity classes was evaluated across the MS. The amount of root residue in the late varieties was double that of the early and medium varieties. The effect of P application on root residue was also greater in the late varieties. Although root residue was 0.35–0.72 Mg ha?1, this was about 17–21 % of total dry matter at harvest. Among the varieties, litter residue averaged less than 1 Mg ha?1 in the early and medium varieties, and was 32 % higher in the late varieties. Litter residue increased by 42–46 % with P application. The total amount of soya bean residue that is a potential source of organic material in a cropping system after the export of grain is small and averaged 2.88 Mg ha?1 . Of this, root residue constituted 18 %, litter residue 41 % and stover residue 40 %. In this study C/N ratio averaged 17.1, 34.8 and 32.2 for root, litter and stover, respectively. The amount of total residue obtained in this study shows that the benefit of the effect of soya beans on soil organic matter and physical properties derivable from a single soya bean crop is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号