首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the endangered Kirtland's warbler in relation to landscape ecosystems were conducted from 1986–1988 on a large wildfire-burn surrounding Mack Lake in southeastern Oscoda County, Michigan. A landscape ecosystem approach was used to distinguish low- and high-elevation segments of the landscape, as well as 11 local ecosystem types. The ecosystems were distinguished by physiography, microclimate, soil, and vegetation. The early occurrence of the warblers was strongly related to landscape structure, i.e., to the broad low- and high-elevation areas and the local ecosystem types within them. Territories of male warblers were observed in 5 of the 11 ecosystems. The five ecosystem types where warblers were observed were characterized by (1) a physiography of level or rolling terrain; (2) soil series of Grayling, Graycalm, Montcalm, or Rubicon; (3) uplands with relatively warm temperature during the breeding season; (4) vegetation dominated by low sweet blueberry, bearberry, wintergreen, northern pin oak, blue stem grasses, and hair cap moss; and (5) canopy of relatively tall, dense, and patchy jack pine and oak. Landscape structure appears to be an important factor affecting the occurrence of the warbler in its summer habitat in northern Lower Michigan.  相似文献   

2.
Ecological processes such as plant–animal interactions have a critical role in shaping the structure and function of ecosystems, but little is known of how such processes are modified by changes in landscape structure. We investigated the effect of landscape change on mistletoe parasitism in fragmented agricultural environments by surveying mistletoes on eucalypt host trees in 24 landscapes, each 100 km2 in size, in south-eastern Australia. Landscapes were selected to represent a gradient in extent (from 60% to 2% cover) and spatial pattern of remnant wooded vegetation. Mistletoes were surveyed at 15 sites in each landscape, stratified to sample five types of wooded elements in proportion to their relative cover. The incidence per landscape of box mistletoe (Amyema miquelii), the most common species, was best explained by the extent of wooded cover (non-linear relationship) and mean annual rainfall. Higher incidence occurred in landscapes with intermediate levels of cover (15–30%) and higher rainfall (>500 mm). Importantly, a marked non-linear decline in the incidence of A. miquelii in low-cover landscapes implies a disproportionate loss of this species in remaining wooded vegetation, greater than that attributable to decreasing forest cover. The most likely mechanism is the effect of landscape change on the mistletoebird (Dicaeum hirundinaceum), the primary seed-dispersal vector for A. miquelii. Our results are consistent with observations that habitat fragmentation initially enhances mistletoe occurrence in agricultural environments; but in this region, when wooded vegetation fell below a threshold of ~15% landscape cover, the incidence of A. miquelii declined precipitously. Conservation management will benefit from greater understanding of the components of landscape structure that most influence ecological processes, such as mistletoe parasitism and other plant–animal mutualisms, and the critical stages in such relationships. This will facilitate action before critical thresholds are crossed and cascading effects extend to other aspects of ecosystem function.  相似文献   

3.
Managing the spatial distribution of crop and non-crop habitats over landscapes could be used as a means to reduce insect pest densities. In this study, we investigated whether or not landscape characteristics affected the number of codling moths in commercial orchards. To do this, we collected overwintering larvae in 2006 and 2007 in 76 orchards over a 70 km2 area in southeastern France. We analysed variations in the number of larvae using correlation tests and linear models. As independent variables, we took both characteristics of focus orchards (pear vs. apple, organic vs. conventional orchards) and of their surrounding landscape (orchard density and hedgerow network attributes) into account in buffers with widths varying from 50 to 500 m. Although the codling moth is specialised on orchards, the number of codling moths was lower in orchards within a high orchard density area. There was some indication that this effect was mostly due to the density of conventional orchards and thus to the intensity of insecticide treatments. Conversely, we found no particular effect of abandoned or organic orchards. In 2006, the number of codling moths was also significantly lower in a focus orchard when the hedgerow network acted as a protection against the prevailing wind. Finally, major effects of landscape variables on the number of codling moths were observed for distances of less than 150 m from the focus orchards, suggesting that codling moth management should be organised over areas of about 16 ha. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Scaling up ecosystem processes from plots to landscapes is essential for understanding landscape structure and functioning as well as for assessing ecological impacts of land use and climate change. This study illustrates an upscaling approach to studying the spatiotemporal pattern of ecosystem processes in the Changbai Mountain Nature Reserve in northeastern China by integrating simulation modeling, GIS, remote sensing data, and field-based observations. The ecosystem model incorporated processes of energy transfer, plant physiology, carbon dynamics, and water cycling. Using a direct extrapolation scheme, the patch-level ecosystem model was scaled up to quantify the landscape-level pattern of primary productivity and the carbon source-sink relationship. The simulated net primary productivity (NPP) for the entire landscape, consisting of several ecosystem types, was 0.680 kg C m−2 yr−1. The most widely distributed ecosystem type in this region was the mixed broad-leaved and Korean pine (Pinus koraiensis) forest, which had the highest NPP (1.084 kg C m−2 yr−1). The total annual NPP for all ecosystem types combined was estimated to be 1.332 Mt C yr−1. These results suggest that the Changbai Mountain landscape as a whole was a carbon sink, with a net carbon sequestration rate of about 0.884 Mt C yr−1 for the study period. The simulated NPP agreed reasonably well with available field measurements at a number of locations within the study landscape. Our study provides new insight into the relationship between landscape pattern and ecosystem processes, and useful information for improving management practices in the Changbai Mountain Nature Reserve, which is one of the most important forested landscapes in China. Several research needs are discussed to further refine the modeling approach and reduce prediction uncertainties.  相似文献   

5.
The study of ecosystems suggests principles by which energy flows generate hierarchies in all systems. All ecosystems in the landscapes are associated with energy transformation and the convergence of transformed products toward higher hierarchical levels, the recycling of materials to dispersed backgrounds, and feedbacks to reinforce the supporting environment. A hierarchy can be seen as an organized pattern with many small units at one level contributing to fewer units at the next higher level. Due to spatial variability in the natural environment, different types and amounts of energy received on the earth are not homogeneous; this in turn generates a heterogeneous pattern on the landscape. Energy from life-support and production systems of a heterogeneous landscape is transformed and converged spatially toward consumption centers. All energy transformation can be arranged in a series. The concept of transformity is used in this paper to indicate the position of an energy flow in the series. A hierarchical system can help to explain how energy and matter can be produced and recycled through each level of energy transfer. Building on the brief reviews of the concept of hierarchy in the landscape and the theoretical development of the concept of an ecological energetic hierarchy, this paper proposes two principles of energetic hierarchy for landscape sustainability. First, the landscape must be arranged spatially according to its energy hierarchy. Evaluation of normalized energy flows (emergy) can help identify zones of different spatial hierarchies, which will help establish the strategies needed for the landscapes to be sustainable. Second, a sustainable landscape must comprise a hierarchy of self-organizing ecosystems that can enable the systems to maximize useful power at all levels of the energy hierarchy.  相似文献   

6.
Rippel  Tyler M.  Mooring  Eric Q.  Tomasula  Jewel  Wimp  Gina M. 《Landscape Ecology》2020,35(10):2179-2190
Context

Habitat fragmentation is known to be one of the leading causes of species extinctions, however few studies have explored how habitat fragmentation impacts ecosystem functioning and carbon cycling, especially in wetland ecosystems.

Objectives

We aimed to determine how habitat fragmentation, defined by habitat area and distance from habitat edge, impacts the above-ground carbon cycling and nutrient stoichiometry of a foundation species in a coastal salt marsh.

Methods

We conducted our research in a salt marsh in the Mid-Atlantic United States, where the foundation grass species Spartina patens is being replaced by a more flood-tolerant grass, leading to highly fragmented habitat patches. We quantified decomposition rates, live biomass, and litter accumulation of S. patens at patch edges and interiors. Additionally, we measured relevant characteristics (e.g., habitat area, elevation, microclimate) of S. patens patches.

Results

Habitat edge effects, and not habitat area effects, had distinct impacts on ecosystem functioning. Habitat edges had less litter accumulation, faster decomposition rates, a warmer and drier microclimate, and lower elevations than patch interiors. Patches with low elevation edges had the fastest decomposition rates, while interiors of patches at any elevation had the slowest decomposition rates. Notably, these impacts were not driven by changes in primary production.

Conclusion

Habitat fragmentation impacts the above-ground carbon cycling of S. patens in coastal wetlands by altering litter decomposition, but not primary production, through habitat edge effects. Future research should investigate whether this pattern scales across broader landscapes and if it is observable in other wetland ecosystems.

  相似文献   

7.
This study quantified the redistribution of leaf litter in and among distinct patches within Neotoma Valley, a 73 ha watershed in the unglaciated Allegheny Plateau of Ohio. Total vertical litterfall and Quercus litterfall were greater on the Quercus dominated east slope and valley bottom than on the west slope or on the ridgetops. To measure net downslope movement of leaf litter following deposition, sets of littertraps with upslope or downslope sides open were placed at seven sites within this watershed. Net downslope litter movement was as large as vertical litterfall at all sites except the valley bottom. Quercus litter was 1.3–1.5 × as likely to be redistributed as non-Quercus litter, depending on slope. Most redistribution occurred during the January–April leafless season. On the drier, Quercus-dominated ridgetops and east slope, 14–24% of the litter falling within 20 m upslope of a trap subsequently was redistributed down into that trap. In the more mesic patches, only 1–8% of vertical litterfall was redistributed. On an area basis, the west ridgetop and the upper east slope lost the most litter to redistribution (60–80 g m-2 yr-1 dry mass); the lower east and west slope positions and the valley bottom received the greatest litter subsidies from redistribution. Donor sites lost 4.5–5.7 kg ha-1 yr-1 of N and 0.3–0.5 kg ha-1 yr-1 of P through redistributed litter; sink areas received subsidies of 2.2–6.1 kg ha-1 yr-1 N and 0.2–0.4 kg ha-1 yr-1 of P. Litter redistribution helps maintain and even accentuate the gradient of soil fertility among patches in this watershed by accelerating the normal loss of nutrients during soil development in some patches while retarding it in others.  相似文献   

8.
Agricultural intensification has led to dramatic losses in biodiversity over the past several decades. Many studies have shown the effects of intensification on vegetation or soil communities at field or local scales. However, the functional significance of biodiversity may only appear at larger spatial and temporal scales, due to exchanges among local ecosystems throughout a landscape. To examine how patterns of biodiversity loss are reflected at larger spatial scales, plant and soil biodiversity and associated indicators of ecosystem functions were assessed in riparian areas over a 150 km2 agricultural landscape in the Sacramento Valley of California. Publicly-available GIS data were first used to classify and select sites over the range of soils, topography and plant community types. Representative sites from the landscape were sampled for soil physiochemical properties, as well as microbial, nematode, and plant communities. Higher agricultural intensification, based on field and landscape indices, was negatively correlated with richness and diversity of plant and soil taxa, and was related to indicators of ecosystem functions, such as increased soil nitrate and phosphorus loading, decreased riparian health ratings, and lower soil carbon, soil microbial biomass and soil food web structure. Both field- and landscape-scale factors played important roles in the measured losses. The study area was composed of a wide array of soils, vegetation, and land management, indicating that the observed trends transcended site-specific conditions.  相似文献   

9.
Chen  Jiquan  Sciusco  Pietro  Ouyang  Zutao  Zhang  Rong  Henebry  Geoffrey M.  John  Ranjeet  Roy  David. P. 《Landscape Ecology》2019,34(12):2917-2934
Context

The open and free access to Landsat and MODIS products have greatly promoted scientific investigations on spatiotemporal change in land mosaics and ecosystem functions at landscape to regional scales. Unfortunately, there is a major mismatch in spatial resolution between MODIS products at coarser resolution (≥?250 m) and landscape structure based on classified Landsat scenes at finer resolution (30 m).

Objectives

Based on practical needs for downscaling popular MODIS products at 500 m resolution to match classified land cover at Landsat 30 m resolution, we proposed an innovative modelling approach so that landscape structure and ecosystem functions can be directly studied for their interconnections. As a proof-of-concept of our downscaling approach, we selected the watershed of the Kalamazoo River in southwestern Michigan, USA as the testbed.

Methods

MODIS products for three fundamental variables of ecosystem function are downscaled to ensure the approach can be extrapolated to multiple functional measurements. They are blue-sky albedo (0–1), evapotranspiration (ET, mm), and gross primary production (GPP, Mg C ha?1 year?1). An object-oriented classification of Landsat images in 2011 was processed to generate a land cover map for landscape structure. The downscaling model was tested for the five Level IV ecoregions within the watershed.

Results

We achieved satisfactory downscaling models for albedo, ET, and GPP for all five ecoregions. The adjusted R2 was?>?0.995 for albedo, 0.915–0.997 for ET, and 0.902–0.962 for GPP. The estimated albedo, ET, and GPP values appear different in the region. The estimated albedo was the lowest for water (0.076–0.107) and the highest for cropland (0.166–0.172). Estimated ET was the highest for the built-up cover type (525.6–687.1 mm) and the lowest for forest (209.7–459.7 mm). The estimated GPP was the highest for the build-up cover type (8.65–9.85 Mg C ha?1 year?1) and the lowest for forest.

Conclusions

Estimated values for albedo, ET, and GPP appear reasonable for their ranges in the Kalamazoo River region and are consistent with values reported in the literature. Despite these promising results, the downscaling approach relies on strong assumptions and can carry substantial uncertainty. It is only valid at a spatial scale where similar climate, soil, and landforms exist (i.e., values in isolated patches of the same cover type are similar). Plausibly, the uncertainties associated with each estimation, as well as the model residuals, can be explored for other pattern-process relationships within the landscape.

  相似文献   

10.
In an increasingly human-dominated landscape, effective management of disturbance-maintained ecosystems, such as grasslands and savannas, is critical to the conservation of biodiversity. Yet, the response of individual organisms to landscapes created by disturbances and management is rarely studied. In this study, we examined the endangered Karner blue butterfly, Lycaeides melissa samuelis, in a heterogeneous oak savanna. Our objective was to quantify the butterfly’s habitat use and behavior to assess the effects of prescribed burning. The oak savanna management in Ohio, USA divides each Karner blue site (n = 4) into three units. Each one-third unit is then burned, mowed, or unmanaged in an annual rotation within each site, and the result is a fire return interval of ~3 years. Our surveys measured habitat use, while behavior observations quantified reproduction and foraging for the two annual broods. Our habitat use results showed burned treatments were recolonized quickly, but there was not a clear selection for burned treatments. Foraging rates were similar in all treatments; however, females oviposited significantly less in unmanaged treatments (only 5 of 127 ovipositions). This oviposition preference was likely due to habitat degradation and the availability of recently burned, early successional habitat. Since Karner blues avoided reproduction in units unburned for ≥4 years, these units could be burned to create high quality early successional habitat. These results demonstrate how behavioral decisions can be pivotal forces driving spatial population dynamics. Our case study demonstrates how a fine-scale landscape perspective combined with measurements of behavioral processes can assist with management decision-making.  相似文献   

11.
The dryland agricultural landscape of north-west Victoria, Australia, includes isolated remnants of eucalypt woodland that are exposed to ongoing disturbance from sheep grazing and cropping activity. Biological soil crusts are a functionally important feature of these woodland communities. We used a modern form of regression (boosted regression tree (BRT) models) to investigate relationships between crust abundance and environmental and landscape variables. We also investigated whether the use of broad morphological groups of crust organisms is more informative than simply measuring total crust cover. Remnant size was the single most influential variable for crust abundance, with negligible crust cover in small patches (<5 ha). The BRT model also identified relationships between crust abundance and available P, soil C and perennial grass. We argue that disturbance from stock grazing and camping is the mechanism driving these relationships. Other variables related to crust abundance were proximity to the windward edge, litter cover and tree cover. Morphological groups showed a differential response to some variables, suggesting assessment of total cover may mask important patterns in community structure. Crust disturbance represents a serious issue for maintenance of ecosystem function in the study region, particularly loss of crusts from small remnants because the majority of remnants are small.  相似文献   

12.
Landscape structure can influence the fine-scale movement behavior of dispersing animals, which ultimately may influence ecological patterns and processes at broader scales. Functional grain refers to the finest scale at which an organism responds to spatial heterogeneity among patches and extends to the limits of its perceptual range. To determine the functional grain of a model insect, red flour beetle (Tribolium castaneum), we examined its movement behavior in response to experimental flour landscapes. Landscape structure was varied by manipulating habitat abundance (0%, 10%, 30%, and 100%) and grain size of patches (fine-2 × 2 cm, intermediate-5 × 5 cm, and coarse-10 × 10 cm) in 50 × 50 cm landscapes. Pathway metrics indicated that beetles used a similar proportion of all landscape types. Several pathway metrics indicated a graded response from the fine to the coarse grain landscape. Lacunarity analysis of beetle pathways indicated a non-linear change in space use between the fine and intermediate landscapes and the coarse-grained landscape. Beetles moved more slowly and tortuously (with many turns), and remained longer in both the overall landscape and individual patches, in fine-grained compared to coarse-grained landscapes. Our research demonstrates how detailed examination of movement pathways and measures of lacunarity can be useful in determining functional grain. Spatially explicit, organism-centered studies focusing on behavioral responses to different habitat configurations can serve as an important first step to identify behavioral rules of movement that may ultimately lead to more accurate predictions of space use in landscapes.  相似文献   

13.

Context

The study of ecosystem services has extended its influence into spatial planning and landscape ecology, the integration of which can offer an opportunity to enhance the saliency, credibility, and legitimacy of landscape ecology in spatial planning issues.

Objectives

This paper presents a conceptual framework suitable for spatial planning in human dominated environments supported by landscape ecological thinking. It seeks to facilitate the integration of ecosystem services into current practice, including landscape metrics as suitable indicators.

Methods

A literature review supported the revision of existing open questions pertaining to ecosystem services as well as their integration into landscape ecology and spatial planning. A posterior reflection of the current state-of-the-art was then used as a basis for developing the spatial planning conceptual framework.

Results and conclusion

The framework is articulated around four phases (characterisation, assessment, design, and monitoring) and three concepts (character, service, and value). It advocates integration of public participation, consideration of “landscape services”, the inclusion of ecosystem disservices, and the use of landscape metrics for qualitative assessment of services. As a result, the framework looks to enhance spatial planning practice by providing: (i) a better consideration of landscape configuration in the supply of services (ii) the integration of anthropogenic services with ecosystem services; (iii) the consideration of costs derived from ecosystems (e.g. disservices); and (iv) an aid to the understanding of ecosystem services terminology for spatial planning professionals and decision makers.
  相似文献   

14.
Forest fragmentation is an increasingly common feature across the globe, but few studies examine its influence on biogeochemical fluxes. We assessed the influence of differences in successional trajectory and stem density with forest patch size on biomass quantity and quality and N transformations in the soil at an experimentally fragmented landscape in Kansas, USA. We measured N-related fluxes in the laboratory, not the field, to separate effects of microclimate and fragment edges from the effects of inherent biomass differences with patch size. We measured net N mineralization and N2O fluxes in soil incubations, gross rates of ammonification and nitrification, and microbial biomass in soils. We also measured root and litterfall biomass, C:N ratios, and δ13C and δ15N signatures; litterfall [cellulose] and [lignin]; and [C], [N], and δ13C and δ15N of soil organic matter. Rates of net N mineralization and N2O fluxes were greater (by 113% and 156%, respectively) in small patches than in large, as were gross rates of nitrification. These differences were associated with greater quantities of root biomass in small patch soil profiles (664.2 ± 233.3 vs 192.4 ± 66.2 g m−2 for the top 15 cm). These roots had greater N concentration than in large patches, likely generating greater root derived organic N pools in small patches. These data suggest greater rates of N cycling in small forested patches compared to large patches, and that gaseous N loss from the ecosystem may be related to forest patch size. The study indicates that the differences in successional trajectory with forest patch size can impart significant influence on soil N transformations in fragmented, aggrading woodlands.  相似文献   

15.
Selection of scale for Everglades landscape models   总被引:3,自引:0,他引:3  
This article addresses the problem of determining the optimal “Model Grain” or spatial resolution (scale) for landscape modeling in the Everglades. Selecting an appropriate scale for landscape modeling is a critical task that is necessary before using spatial data for model development. How the landscape is viewed in a simulation model is dependent on the scale (cell size) in which it is created. Given that different processes usually have different rates of fluctuations (frequencies), the question of selection of an appropriate modeling scale is a difficult one and most relevant to developing spatial ecosystem models. The question of choosing the appropriate scale for modeling is addressed using the landscape indices (e.g., cover fraction, diversity index, fractal dimension, and transition probabilities) recently developed for quantifying overall characteristics of spatial patterns. A vegetation map of an Everglades impoundment area developed from SPOT satellite data was used in the analyses. The data from this original 20 × 20 m data set was spatially aggregated to a 40 × 40 m resolution and incremented by 40 meters on up to 1000 × 1000 m (i.e., 40, 80, 120, 160 … 1000) scale. The primary focus was on the loss of information and the variation of spatial indices as a function of broadening “Model Grain” or scale. Cover fraction and diversity indices with broadening scale indicate important features, such as tree islands and brush mixture communities in the landscape, nearly disappear at or beyond the 700 m scale. The fractal analyses indicate that the area perimeter relationship changes quite rapidly after about 100 m scale. These results and others reported in the paper should be useful for setting appropriate objectives and expectations for Everglades landscape models built to varying spatial scales.  相似文献   

16.
Context

Lack of quantitative observations of extent, frequency, and severity of large historical fires constrains awareness of departure of contemporary conditions from those that demonstrated resistance and resilience to frequent fire and recurring drought.

Objectives

Compare historical and contemporary fire and forest conditions for a dry forest landscape with few barriers to fire spread.

Methods

Quantify differences in (1) historical (1700–1918) and contemporary (1985–2015) fire extent, fire rotation, and stand-replacing fire and (2) historical (1914–1924) and contemporary (2012) forest structure and composition. Data include 85,750-ha tree-ring reconstruction of fire frequency and extent; >?375,000-ha timber inventory following >?78,900-ha fires in 1918; and remotely-sensed maps of contemporary fire effects and forest conditions.

Results

Historically, fires?>?20,000 ha occurred every 9.5 years; fire rotation was 14.9 years; seven fires?>?40,469 ha occurred during extreme drought (PDSI <?? 4.0); and stand-replacing fire occurred primarily in lodgepole (Pinus contorta var. murrayana). In contemporary fires, only 5% of the ecoregion burned in 30 years, and stand-replacing fire occurred primarily in ponderosa (Pinus ponderosa) and mixed-conifer. Historically, density of conifers?>?15 cm dbh exceeded 120 trees/ha on?<?5% of the area compared to 95% currently.

Conclusions

Frequent, large, low-severity fires historically maintained open-canopy ponderosa and mixed-conifer forests in which large fire- and drought-tolerant trees were prevalent. Stand-replacing patches in ponderosa and mixed-conifer were rare, even in fires >?40,469 ha (minimum size of contemporary “megafires”) during extreme drought. In this frequent-fire landscape, mixed-severity fire historically influenced lodgepole and adjacent forests. Lack of large, frequent, low-severity fires degrades contemporary forest ecosystems.

  相似文献   

17.
The interaction between physical environment and land ownership in creating spatial heterogeneity was studied in largely forested landscapes of northern Wisconsin, USA. A stratified random approach was used in which 2500-ha plots representing two ownerships (National Forest and private non-industrial) were located within two regional ecosystems (extremely well-drained outwash sands and moderately well-drained moraines). Sixteen plots were established, four within each combination of ownership and ecosystem, and the land cover on the plots was classified from aerial photographs using a modified form of the Anderson (U.S. Geological Survey) land use and land cover classification system.Upland deciduous forests dominated by northern hardwoods were common on the moraines for both ownerships. On the outwash, the National Forest was dominated by pine plantations, upland deciduous forests, and upland regenerating forests (as defined by <50% canopy coverage). In contrast, a more even distribution among the classes of upland forest existed on private land/outwash. A strong interaction between ecosystem and ownership was evident for most comparisons of landscape structure. On the moraine, the National Forest ownership had a finer grain pattern with more complex patch shapes compared to private land. On the outwash, in contrast, the National Forest had a coarser grain pattern with less complex patch shapes compared to private land. When patch size and shape were compared between ecosystems within an ownership, statistically significant differences in landscape structure existed on public land but not on private land. On public land, different management practices on the moraine and outwash, primarily related to timber harvesting and road building, created very different landscape patterns. Landscape structure on different ecosystems on private land tended to be similar because ownership was fragmented in both ecosystems and because ownership boundaries often corresponded to patch boundaries on private land. A complex relationship exits between ownership, and related differences in land use, and the physical environment that ultimately constrains land use. Studies that do not consider these interactions may misinterpret the importance of either variable in explaining variation in landscape patterns.  相似文献   

18.

Context

Freshwater ecosystems depend on surrounding terrestrial landscape for resources. Most important are terrestrial leaf litter subsidies, which differ depending on land use. We lack a good understanding of the variation of these inputs across spatial scales.

Objectives

We sought to determine: (1) the relative importance of local versus catchment-level forestation for benthic leaf litter biomass in streams, (2) how landscape configuration alters these relationships, and (3) how land use affects the quality and diversity of leaf litter subsidies.

Methods

We measured biomass and identity of benthic leaf litter in 121 reaches in 10 independent catchments seasonally over the course of a year. We assessed direct and indirect effects of forestation, reach position, and seasonality on leaf litter biomass using structural equation models, and assessed how leaf litter diversity varied with land use.

Results

In catchments with forested headwaters, the degree of forestation and reach position in the catchment influenced benthic leaf litter biomass indirectly through local reach-scale forestation. In catchments where forest was only located downstream, or with minimal forest, none of these factors influenced reach-level benthic leaf litter. Leaf litter diversity peaked in fall in all land use types, but was generally lowest in forested reaches.

Conclusions

Not only habitat amount, but its location relative to other habitats is important for ecosystem function in the context of cross-ecosystem material flows. Here, lack of upstream forest altered spatial patterns of leaf litter storage. Studies with high spatiotemporal resolution may further reveal effects of landscape configuration on other ecosystems.
  相似文献   

19.
Three central related issues in ecology are to identify spatial variation of ecological processes, to understand the relative influence of environmental and spatial variables, and to investigate the response of environmental variables at different spatial scales. These issues are particularly important for tropical dry forests, which have been comparatively less studied and are more threatened than other terrestrial ecosystems. This study aims to characterize relationships between community structure and landscape configuration and habitat type (stand age) considering different spatial scales for a tropical dry forest in Yucatan. Species density and above ground biomass were calculated from 276 sampling sites, while land cover classes were obtained from multi-spectral classification of a Spot 5 satellite imagery. Species density and biomass were related to stand age, landscape metrics of patch types (area, edge, shape, similarity and contrast) and principal coordinate of neighbor matrices (PCNM) variables using regression analysis. PCNM analysis was performed to interpret results in terms of spatial scales as well as to decompose variation into spatial, stand age and landscape structure components. Stand age was the most important variable for biomass, whereas landscape structure and spatial dependence had a comparable or even stronger influence on species density than stand age. At the very broad scale (8,000–10,500 m), stand age contributed most to biomass and landscape structure to species density. At the broad scale (2,000–8,000 m), stand age was the most important variable predicting both species density and biomass. Our results shed light on which landscape configurations could enhance plant diversity and above ground biomass.  相似文献   

20.

Context

Landscape metrics represent powerful tools for quantifying landscape structure, but uncertainties persist around their interpretation. Urban settings add unique considerations, containing habitat structures driven by the surrounding built-up environment. Understanding urban ecosystems, however, should focus on the habitats rather than the matrix.

Objectives

We coupled a multivariate approach with landscape metric analysis to overcome existing shortcomings in interpretation. We then explored relationships between landscape characteristics and modelled ecosystem service provision.

Methods

We used principal component analysis and cluster analysis to isolate the most effective measures of landscape variability and then grouped habitat patches according to their attributes, independent of the surrounding urban form. We compared results to the modelled provision of three ecosystem services. Seven classes resulting from cluster analysis were separated primarily on patch area, and secondarily by measures of shape complexity and inter-patch distance.

Results

When compared to modelled ecosystem services, larger patches up to 10 ha in size consistently stored more carbon per area and supported more pollinators, while exhibiting a greater risk of soil erosion. Smaller, isolated patches showed the opposite, and patches larger than 10 ha exhibited no additional areal benefit.

Conclusions

Multivariate landscape metric analysis offers greater confidence and consistency than analysing landscape metrics individually. Independent classification avoids the influence of the urban matrix surrounding habitats of interest, and allows patches to be grouped according to their own attributes. Such a grouping is useful as it may correlate more strongly with the characteristics of landscape structure that directly affect ecosystem function.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号