首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experiment was conducted during rainy season (April-August) of 1994 and 1995 to assess the performance of rice, maize, sesame, greengram and blackgram grown in sole and intercropping system on Gangetic alluvial upland (Entisol) in West Bengal. India. All intercropping systems except sesame + rice had higher total productivity in terms of rice equivalent yield and net returns than all the sole crops. However, maximum advantage was obtained from paired row planted maize blackgram system followed by maize + sesame, maize + blackgram and paired row planted rice + blackgram. Paired row planted maize + blackgram increased land use efficiency (42%), rice equivalent yield (2955 kg ha−1), monetary return (Rs. 7294 ha−1), income equivalent ratio (1.22), monetary advantage (Rs. 3701 ha−1) compared with other cropping systems, which proved to be the most efficient system. The same treatment also indicated a modest competitive ratio (4.65:0.21) and gave a good value for the product of crowding coefficient (8.28).  相似文献   

2.
When one of the crops is a legume, intercropping has potential to reduce fertilizer nitrogen (N) needs and increase food quality. Total dry matter (DM) and grain yields of different plant populations of intercropped maize ( Zea mays L.) and climbing beans ( Phaseolus vulgaris L.), cowpeas ( Vigna unguiculata [L.] Walp.), or velvet beans ( Mucuna pruriens [L.] DC. var utilis [Wight] Bruck.) were compared in two experiments. Maize populations were 40,400 and 50,500 plants ha−1 in combination with climbing bean populations of 0, 20,200, 40,400 and 80,800 plants ha−1 in Experiment 1. In the second experiment, climbing beans, cowpeas and velvet beans at 215,200 plants ha−1 were intercropped with maize at 64,600 plants ha−1. Climbing beans contributed up to 5% to total DM yields in the first experiment. In the second experiment legume contributions to total DM were 20% for climbing beans, 12% for cowpeas and 8% for velvet beans. Increasing populations of maize and climbing beans increased grain and DM yields. Dry matter yield of maize was lowered by intercropping. However, DM yields of the intercrop were not different to maize sole cropped. Maize/cowpeas produced more total DM than maize/climbing beans. Cowpeas increased the total yield of crude protein by over 15% without lowering total DM yield of the intercrop compared to maize alone and are promising as a legume for intercropping with maize. Climbing beans show little promise as a possible legume for intercropping with maize.  相似文献   

3.
To compare the feasibilities of pearlmillet-based intercropping systems, field experiments were carried out for 2 years on loamy sand soils in the semi-arid plain zone of Rajasthan, India. Results showed that the pooled yields of pearlmillet from the single crop (1525 kg ha−1) and from the crop intercropped with legumes (1528, 1498 or 1540 kg ha−1) were statistically the same. The yields from intercrop legumes were obtained as a bonus. The highest value of land equivalent ratio (1.21) was recorded for the pearlmillet + clusterbean system, which gave significantly better results than the pearlmillet + cowpea system. It was also found that the dose of nitrogen can be reduced by up to 25 % when pearlmillet is grown with legumes. However, intercrop legumes required the recommended dose of fertilizer to produce their optimal yields. The practice of intercropping without fertilizer proved disadvantageous.  相似文献   

4.
In a field experiment conducted during 1992–95 at Lucknow, India, sugarcane was planted in rows 60 and 90 cm apart in three crop rotations (rice-sugarcane-ratoon, Sesbania aculeata for green manure-sugarcane-ratoon, and cowpea-sugarcane-ratoon) with 0, 150 and 300 kg N ha−1 as urea either with or without farmyard manure (FYM) at 10 t ha−1. Sugarcane yields were significantly greater in the Sesbania rotation than in the other because of a larger N uptake. N uptake of the crop was significantly affected by soil organic carbon, and available N and K contents. Ratoon yields, however, were largest in the cowpea sequence followed by the rice rotation, probably due to a prolonged residual effect of cowpea and rice root residues. The residual effect of a Sesbania green manure was negligible as demonstrated by the low NO3-N content of the soil profile after sugarcane harvest compared to the other two crop sequences. The total cane productivity (main sugarcane plus ratoon) was greater (156 t ha−1) in the cowpea rotation than the Sesbania (152 t ha−1) and rice (140 t ha−1) rotations.  相似文献   

5.
This study was conducted at the University of Jordan Research Station in the central Jordan Valley during 1988 and 1989 summer growing seasons, to determine the potential and response of summer crops to intercropping system and to poultry manure addition. Corn, soybean and watermelon were grown as sole crops and as intercrops in three paired combinations (corn: watermelon, corn: soybean, watermelon: soybean) with three levels of poultry manure (0, 20, 40 t/ha). The crop yields and land equivalent ratios (LERs) were determined for all treatments. The highest yields for the two cropping systems were obtained in response to the highest poultry manure addition. Corn gave the highest yield when intercropped with soybean, where increases in yield of 45 % and 66 % were obtained over those of corn sole crop at the same level of poultry manure (40 t/ha), in 1988 and 1989 seasons, respectively. Soybean gave the highest yield when grown with corn leading to an increase of 35 % and 34 % over soybean sole crop grown at the same level of poultry manure (40 t/ha) in 1988 and 1989, respectively. Watermelon gave the highest yield when grown with soybean, giving an increase which ranged from 390 to 920 kg ha−1 over the yield of sole cropping system under the same level of poultry manure (40 t/ha). The LER values for all intercrop treatments were greater than 1.0 which gave clearly an indication for the superiority of the intercropping over the sole cropping system especially when 40 t ha−1 poultry manure was added.  相似文献   

6.
Eleven upland rice genotypes of varying growth duration and plant stature were evaluated in two cropping systems: monocrop and intercrop, with pigeon pea cv. U pas 120, in order to study the effects of intercropping on rice grain yield and its contributing characteristics during 1990 to 1992 wet seasons. Cropping system and cropping system × genotype interaction effects were significant for yield ha−1, panicle weight, panicles m−2 and spikelet fertility suggesting the need for evaluating and selecting genotypes suitable for intercropping. Rice grain yield reduction in the intercrop ranged from 24.5 % in genotype RR 203-16 to 54.5 % in genotype Aditya. Panicle weight, total dry matter at flowering as well as at harvest, and harvest index were also reduced. Plant height and panicle weight were positively associated with yield in both systems, however, the yield was positively and significantly correlated with spikelets per panicle and spikelet fertility with the intercropping system. The correlation between cropping systems indicated the possibility of simultaneous improvement for these characteristics in monocropping and intercropping.  相似文献   

7.
施磷对不同间作体系间作优势与磷肥利用的影响   总被引:3,自引:1,他引:2  
为了探明施磷水平对不同间作体系产量间作优势和磷肥利用的影响,在河北曲周主要研究了施磷对玉米‖蚕豆、玉米‖大豆和玉米‖油菜3种间作体系土地当量比(LER)、磷吸收量、磷肥吸收效率和磷间作优势的影响。结果表明:玉米‖蚕豆的LER是1.24~1.31,玉米‖油菜的LER是1.20~1.24,玉米‖大豆的LER是1.11~1.15,均大于1,具有明显的间作优势;3个磷水平下,吸磷量表现为玉米‖大豆>玉米‖蚕豆>玉米‖油菜,除玉米‖油菜间作体系外,比单作玉米分别高21.5%%~40.2%和13.3%~22.9%,且均随着施磷量的增加而增加,但增加幅度降低;3种间作体系均具有明显的磷间作优势,除玉米‖大豆间作体系外,施磷后均降低;磷肥吸收效率除玉米‖蚕豆在施磷90 kg/hm2外均低于单作玉米,并且随着施磷量的增加而降低。这表明,通过活化磷能力强的作物与玉米间作可以提高土壤难溶性磷的利用,玉米‖大豆和玉米‖蚕豆比玉米‖油菜效果好,适宜的施磷量为90 kg/hm2。  相似文献   

8.
Four sweet potato cultivars were inter- and relay-cropped with maize at two locations in Peru. Increasing interspecific competition drastically reduced tuber yields of all cultivars; fewer tubers m −2 were produced and no tolerant genotype was identified. Likewise the mean tuber weight declined linearly for two cultivars when competition became severe. Shoot development was less affected. Under intense competition the plant top was favoured in assimilate partitioning to the detriment of tuber formation. Overall reduction in assimilate production due to mixed cropping was the major cause of yield loss. Various intercropping combinations were found with the same productivity but distinct proportions of the component crops (sweet potato + maize). Land equivalent ratio (LER) exceeded sole crop productivity only for the combinations with the highest maize yields. Biomass production was clearly increased by intercropping but there was no increment in marketable yields. Relay-cropping reduced tuber and maize yields and had the lowest productivity of all combinations tested.  相似文献   

9.
Intercropping of corn with legumes is an alternative to corn monocropping and has a number of advantages, for example, lower levels of inputs, lower cost of production and better silage quality than monocrop systems. An experiment was carried out at two sites in 1993 and 1994 to investigate the effects of seeding soybean or lupin alone or in combination with one of three forages (annual ryegrass, Lolium multiflorum Lam.; perennial ryegrass, Lolium perenne L.; red clover, Trifolium pratense L.) on silage yield and quality. The intercrop plots received 90 kg ha−1 less nitrogen fertilizer than monocrop plots, which received 180 kg ha−1. Corn biomass yield had a variable response to the treatments, but showed no change at most site-years. Soybean and lupin biomass yields were decreased by intercropping (80–98 % for soybean, and 94–100 % for lupin). However, when corn growth was limited due to poor establishment at one site in 1994, soybean was able to grow well and produce yields similar to those of monocropped soybean. The three underseeded forages did not grow well during the period examined (up to silage harvest) and had no effect on the yield of any crop. Total silage yields were similar to corn monocrop biomass yields even during 1994 at the site with low corn population densities because soybean was able to compensate for reduced corn growth.  相似文献   

10.
A 2-year study was conducted to determine the effects of tillage and cropping systems on soil moisture balance, growth and yield of pearl millet (Pennisetum glaucum (L.) R.Br.). Three tillage treatments, viz. minimum tillage (one harrowing), conventional tillage (two harrowing, cross) and deep tillage (ploughing followed by two har-rowings), and four cropping systems, viz. monoculture of pearl millet, pearl miliet-clusterbean (Cyamopsis tetra-gonoloba (L.) Taub.) rotation, monoculture of pearl millet with 5 t ha−1 farm yard manure (FYM), and intercropping of pearl millet and clusterbean, were compared. Deep tillage improved the soil moisture storage, water use efficiency and grain yield of pearl millet while consumptive use of water was higher with minimum tillage. Total dry matter yield with deep tillage and conventional tillage was 23.2 and 10.2% higher than minimum tillage in the season 1, and the corresponding values for season 2 were 30.7 and 13.3%. The Pearl millct-clusterbean rotation and monoculture of pearl millet with the application of 5 t ha−1 FYM gave 17.2 and 6.1% higher yield than monoculture of pearl millet, respectively. Maximum water use efficiency was observed in rotation followed by FYM application.  相似文献   

11.
Field experiments were conducted to determine the direct and residual contributions of legumes to the yield and nitrogen (N) uptake of maize during the wet seasons of 1994 and 1995 at the University Farm, Abubakar Tafawa Balewa University, Bauchi, Nigeria, located in the Northern Guinea savannah of Nigeria. Nodulating soybean, lablab, green gram and black gram contributed to the yield and N uptake of maize either intercropped with the legumes or grown after legumes as a sole crop. Direct transfer of N from the nodulating soybean, lablab, green gram and black gram to the intercropped maize was 24.9–28.1, 23.8–29.2, 19.7–22.1 and 18.4–18.6 kg N ha–1, respectively. However, the transfer of residual N from these legumes to the succeeding maize crop was 18.4–20.0, 19.5–29.9, 12.0–13.7 and 9.3–10.3 kg N ha–1, respectively. Four years of continuous lablab cropping resulted in yields and N uptake of the succeeding maize crop grown without fertilizer N that were comparable to the yields and N uptake of the succeeding maize crop supplied with 40–45 kg N ha–1 and grown after 4 years of continuous sorghum cropping. It may therefore be concluded that nodulating soybean, lablab, green gram and black gram may be either intercropped or grown in rotation with cereals in order to economize the use of fertilizer N for maize production in the Nigerian savannah.  相似文献   

12.
Field experiments were conducted at Tamil Nadu Rice Research Institute, Aduthurai, India, during the wet seasons of 1992 and 1993 to study the effect of full and partial substitution of fertiliser N with green manure N (Sesbania rostrata) on nitrogen uptake, yield attributes and yield of rice. The experiment consisted of eight treatments with two levels of N (100 and 200 kg ha−1) and three sources of N application viz., fertilizer, integrated (1:1 fertilizer and green manure N) and green manure N compared to the recommended practice (150 kg fertilizer plus 6.25 t ha−1 (72 kg N) green manure) and a no N control. Nitrogen application markedly increased the N uptake. Combined use of the two N sources at 200 and 222 kg N ha−1 and of single fertilizer N at 200 kg N ha−1 recorded the maximum N uptake, increased the yield attributes such as number of panicles per unit area, weight per panicle, number of total and filled grains per panicle and test weight. At 200 kg N ha−1 full substitution of N by green manure reduced the grain yield but only partial substitution of N by green manure resulted in almost similar yield as single fertilizer N. Thus 200 kg N ha−1 applied in equal proportions of fertilizer and green manure N can be recommended for medium duration rice cultivars.  相似文献   

13.
Intercropping of chilli ( Capsicum annuum ) and dwarf bean ( Phaseolus vulgaris ) is a recently adopted practice by farmers in Sri Lanka. As chilli fetches a higher market price, the bean population which could be incorporated into a 100% population of chilli has to be found. In the present experiment, effects of three bean populations (100, 75 and 50% of sole crop population 250 000 pl ha−1) and four row arrangements (1:1, 1:2, 2:1 and 2:2) were tested at Kundasale, Sri Lanka. The land equivalent ratio (LER) of all intercrops were significantly greater than one, indicating a greater productivity per unit land area in intercropping than sole cropping. At 100% and 75% bean populations, LER and intercrop yields of bean were significantly greater than at 50%. Row arrangement did not have a significant effect on either LER or bean yield in intercrops. Intercrop bean yields were lower than sole bean yields indicating significant competition from chilli. Chilli yields were not affected by either bean population or row arrangement. Intercrop chilli yields were greater than the sole chilli yield indicating significant positive effects from bean. Greater radiation interception and lower weed growth and the absence of overlap between yield formation periods of the two component crops were probably responsible for the greater productivity (LER) of intercrops.  相似文献   

14.
The effects of intercrop spacing patterns on the silage yields of both maize (lea mays L.) and soybean (Glycine max [L.] Merr.) were examined from 1985 to 1987. Dwarf maize was intercropped with nonnodulatmg or nodulating soybean in the spacing patterns, S40same (two crops in the same row, 40 cm row width) and S20ait or S40ak (two crops in alternate rows, 20 cm or 40 cm row width, respectively). Tall maize was intercropped with nodulating soybean in S40sames S40alt and S40pair (maize in 40 cm paired rows, soybean rows 20 cm outside each maize row and 80 cm from the next set of four rows) at 0 or 60 kg N ha−1 and at population densities of 67% maize: 67% soybean or 50 % maize: 50% soybean. Maize and soybean were also intercropped and stripcropped on a farm-scale. The only difference between intercrops arranged in the same rows versus those in alternate rows was that the average soybean protein yields were higher in S40same than in S40alt. In 1986, the S40alt maize-soybean intercrops produced higher maize yields, total biomass yields and Land Equivalent Ratios (LERs) than in S40pirs, and in 1987, these responses were higher in intercrops than in stripcrops. In 1986, at 0 kg N ha−1, the soybean biomass and protein yields were lower in S40alt, than in S40pairs and in 1987, these responses were lower in intercrops than in stripcrops.  相似文献   

15.
The effects of variations in the relative sowing time of component crops in okra/maize and okra/cowpea intercropping systems were examined in 1990 and 1991 cropping seasons. Okra was either sown the same day as, or two weeks before or after maize or cowpea. Intercropping reduced the growth and yield of okra, maize and cowpea relative to their sole crops. However, okra yield was depressed more by maize than by cowpea, especially when okra was sown two weeks after maize. Comparative assessment of okra/maize and okra/cowpea mixtures suggests that it is better to grow okra and cowpea together than intercropping okra and maize because yield advantages were always higher in okra/cowpea (67% and 59% in 1990 and 1991 respectively) than in okra/maize (15% and 29%). The results were discussed in light of competitive abilities of the various components in the mixtures.  相似文献   

16.
Rice–wheat cropping system to which graded levels of NPK fertilizers had been applied for 20 years were compared for yield trends, and changes in response function, soil organic-C and available N, P, K and S status. This study of system in which only chemical fertilizers had been used over a long period enabled long-term yield declines of rice and wheat at different levels and combinations of NPK fertilizers to be evaluated. The highest rate of yield decline in both rice and wheat was found when 120 kg ha−1 N was applied alone. The lowest rate of decline was observed when all three nutrients (N, P and K) were applied, at 40, 35 and 33 kg ha−1 for N, P and K, respectively, followed by 120, 35 and 33 kg ha−1 (currently recommended levels). The yield response of rice and wheat to N fertilizer declined over the 20 years, with a higher rate of decline in wheat. In contrast, the response to applied P and K increased with time in both crops, with a higher response rate in wheat. With continuous application of N and P fertilizers, there was a marginal change in available N and K in the soil over time, but an approximately 3-fold increase in available P and an approximately 2-fold increase in available S were obtained by regular dressing of P fertilizer (SSP: 7 % P, 12 % S) over 20 years. The results revealed that balanced, high doses of NPK fertilizers are required to maintain soil fertility and raise grain yields.  相似文献   

17.
A field experiment was conducted during 1994 and 1995 at Lucknow (26.5°N, 80.5°E, 120 m above mean sea level) to optimize planting density and fertilizer-N application for high essential oil yield of late transplanted mint ( Mentha arvensis ). The treatments studied were 2.5, 2.0 and 1.66 × 105 mint seedlings ha−1 and 0, 80, 160 and 240 kg N ha−1. Under 3 months delayed planting conditions using 2-month-old seedlings, the high planting density of 2.5 × 105 plants ha−1combined with 160 kg N ha−1 gave significantly higher herb and essential oil yields compared with those of lower planting densities (2 and 1.66 × 105 plants ha−1) and all other rates of N application. It is demonstrated that a transplanted mini crop, yielding essential oil at a level of 164 kg ha−1, is feasible after the harvest of rabi cereal, oil seed or legume crops in the north Indian plains.  相似文献   

18.
Determination of optimal N-fertilization rates, NOR , for crop production that minimize risk of environmental degradation require accurate application of a response model. Several models are available to describe crop yield response to N fertilization. The objective of this work was to compare the relative accuracy of a quadratic, f(N Q), a modified Mitscherlich, and tanh( N ) models on 48 data sets. Data were collected from a Tara silt loam (fine-silty, mixed, frigid Pachic Udic Haploboroll) over a 6-year period using two maize ( Zea mays L.) hybrids and four tillage treatments, mouldboard plough, chisel plough, ridge tillage and no-tillage. In about one-third of the cases, all models performed about equally well. Generally, the tanh( N ) and modified Mitscherlich models gave better fit between N rate and grain yield data. The NOR, ranged from about 140 to 170 kg ha−1 for the modified Mitscherlich model, 136 to 184 kg ha−1 for the tanh( N) function, and 124 to 173 kg ha−1 using the f(N Q) model. Estimated grain yields at these rates ranged between 6.58 ± 1.30 to 7.59 ± 1.69 Mg ha−1 for the 90-day Minnesota maturity rated (MR) hybrid and between 7.52 ± 2.40 to 8.72 ± 1.70 Mg ha−1 for the 95-day MR hybrid.  相似文献   

19.
The effects of nitrogen and sulphur on the yield and fatty acid composition of mustard ( Brassica juncea L.) oil were studied in a field experiment. Significantly higher grain and oil yields were obtained with N and S application. Applications of nitrogen up to 60 kg ha−1 and sulphur up to 40 kg ha−1 favourably influenced the grain yield. Increasing levels of N decreased the oil content while application of sulphur improved the oil content. The contents of linoleic and linolenic acid were maximum (16.82 and 8.73%, respectively) with 60 kg N along with 40 kg S ha−1. No use of fertilizers led to higher contents of undesirable fatty acids such as palmitic (hypercholesterimic) and erucic (do not have food value) acids.  相似文献   

20.
A field expenment was conducted during 1992–94 at CIMAP, Field Station, Bangalore, India to study the effect of depth (25, 37.5 and 50 mm) and methods (Ridge and furrow and Broad Bed and furrow method) of irrigation and nitrogen levels (0, 200 and 400 kg N ha−1 year−1) on herb and oil yields of Java citronella. At the highest level of N application (400 kg N ha−1 year−1) ridge and furrow method was better suited for irrigating citronella. However, under lower N levels (0 and 200 kgN ha−1 year−1), as much as 30 % water can be saved by the broad bed and furrow method. The results have shown that highest herb and oil yields of citronella were achieved with the application of 400 kg N and maintaining 25 mm depth of irrigation. Content and quality of oil were not affected either by irrigation or nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号