首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of GHRP-2 (also named KP102), a new growth hormone-releasing peptide, on the release of growth hormone (GH) and growth performance were examined in swine. The single intravenous (i. v.) injection of GHRP-2 at doses of 2, 10, 30 and 100 microg/kg body weight (BW) to cross-bred castrated male swine stimulated GH release in a dose-dependent manner, with a return to the baseline by 120 min. The peak GH concentrations and GH areas under the response curves (GH AUCs) for 180 min after the injections of GHRP-2 were higher (P < 0.05) than those after the injection of saline. The GH responses to repeated i.v. injections of GHRP-2 (30 microg/kg BW) at 2-h intervals for 6 h were decreased after each injection. The chronic subcutaneous (s.c.) administration of GHRP-2 (30 microg/kg BW) once daily for 30 days consistently stimulated GH release. The GH AUCs for 300 min after the injections on d 1, 10 and 30 of treatment in GHRP-2-treated swine were higher than those in saline-treated swine. However, chronic administration of GHRP-2 caused a partial attenuation of GH response between d 1 and 10 of treatment. The chronic s.c. administration of GHRP-2 also increased average daily gain for the entire treatment period by 22.35% (P < 0.05) and feed efficiency (feed/gain) by 20.64% (P < 0.01) over the saline control values, but did not significantly affect daily feed intake. These results indicate that GHRP-2 stimulates GH release and enhancing growth performance in swine.  相似文献   

2.
To investigate the effects of high and low somatostatinergic tone on GH-releasing peptide-2 (GHRP-2) and GH-releasing hormone (GHRH)-induced growth hormone (GH) secretion in swine, we examined GHRP-2- and GHRH-induced GH secretion after pretreatment with atropine or pyridostigmine. Pretreatment of swine with atropine (80 µg/kg bodyweight (BW), intravenous (i.v.)) 15 min before i.v. administration of saline, GHRP-2 (30 µg/kg BW), GHRH (1 µg/kg BW) or a combination of GHRP-2 and GHRH, reduced plasma GH area under the curve ( P  < 0.05), completely blocked GH response to GHRH, and attenuated GH response to GHRP-2 and GHRH combined ( P  < 0.05), without affecting GH response to GHRP-2 only. A synergistic effect of GHRP-2 and GHRH was not observed. In contrast, pretreatment of swine with pyridostigmine (100 µg/kg BW, i.v.), under the same pretreatment conditions as above, increased plasma GH concentration ( P  < 0.01), augmented GH response to GHRP-2 ( P  < 0.05), and GHRP-2 and GHRH combined ( P  < 0.05), but did not affect GH response to GHRH. These results suggest that the cholinergic muscarinic agents atropine and pyridostigmine modulate the GH response to GHRP-2 and GHRH, and that GHRP-2 acts antagonistically on the inhibitory effect of somatostatin in swine.  相似文献   

3.
To assess the oral activity of KP102 (also known GHRP-2) on growth hormone (GH) release in ruminant animals, 5 or 10 mg/kg body weight (BW) of KP102 dissolved in saline was orally administered twice at 2 hr-intervals to either 1- or 3-mo-old goats (n = 5-6). Plasma GH concentrations in the 1-mo-old goats were elevated at 15 min after the first administration of both 5 and 10 mg/kg BW of KP102. Significant elevation of GH concentrations continued until 180 min after 10 mg/kg BW of KP102, whereas the elevated GH levels after the administrations of 5 mg/kg BW of KP102 subsided to basal concentrations within 90 min. The second administration of 10 mg/kg BW of KP102 failed to elevate the GH concentration, but 5 mg/kg BW of KP102 abruptly stimulated GH release. Plasma GH concentrations in the 3-mo-old goats were also significantly elevated after the administration of both 5 and 10 mg/kg BW of KP102. The plasma GH responses to 5 and 10 mg/kg BW of KP102 were almost identical. The elevated GH levels after the first administration of KP102 tended to be maintained throughout the experiment, and a transient increase in plasma GH levels was observed after the second administration. However, the stimulatory effect of KP102 on GH release in the 3-mo-old goats was small and less abrupt than that in the 1-mo-old goats. The concentrations of insulin-like growth factor-I were not increased by KP102 during the brief sampling periods used in this experiment. These results show that the oral administration of the peptidergic GH secretogogue KP102 stimulates GH release in a ruminant species, and that the oral activity of KP102 on GH release is modified by the age.  相似文献   

4.
The study was performed to determine whether orally administered KP102 (also known as GHRP-2) stimulates GH release in adult goats, and how the orally administered KP102 passes through the digestive tract and stimulates GH release in ruminant animals. Five mg/kg body weight (BW) of KP102 dissolved in 9 ml of saline were administered into the oral cavity, rumen, omasum and duodenum of adult goats, and GH release after administration of KP102 was examined. The GH levels were significantly elevated at 20 min after administration of KP102 into the oral cavity, and plasma concentrations of GH remained significantly elevated until 60 min (P < 0.05). The GH levels after administration of KP102 into the abomasum were variable. However, the GH level tended to increase within 30 min after administration, and were significantly higher than those of controls after 120 to 150 min (P < 0.05). The GH levels after administration of KP102 into the duodenum were significantly elevated at 40 min after administration, and plasma concentrations of GH remained significantly elevated until 140 min (P < 0.05). The administration of KP102 into the rumen failed to stimulate GH release. The GH response curves (AUC) produced after administration of KP102 into the abomasum or duodenum were 2.2-fold greater than those for after administration into the oral cavity (P < 0.05). The oral administration of 5 mg/kg BW of KP102 in the powder state, not dissolved in 9 ml of saline, failed to stimulate GH release. These results suggested that orally administered KP102 dissolved in saline transiently stimulates GH release in adult goats, and this phenomenon might be due to small amounts of the peptides entering directly into the abomasum with liquid bypassing the rumen.  相似文献   

5.
Two experiments were conducted to determine 1) the effect of acute feed deprivation on leptin secretion and 2) if the effect of metabolic fuel restriction on LH and GH secretion is associated with changes in serum leptin concentrations. Experiment (EXP) I, seven crossbred prepuberal gilts, 66 +/- 1 kg body weight (BW) and 130 d of age were used. All pigs were fed ad libitum. On the day of the EXP, feed was removed from four of the pigs at 0800 (time = 0) and pigs remained without feed for 28 hr. Blood samples were collected every 10 min from zero to 4 hr = Period (P) 1, 12 to 16 hr = P 2, and 24 to 28 hr = P 3 after feed removal. At hr 28 fasted animals were presented with feed and blood samples collected for an additional 2 hr = P 4. EXP II, gilts, averaging 140 d of age (n = 15) and which had been ovariectomized, were individually penned in an environmentally controlled building and exposed to a constant ambient temperature of 22 C and 12:12 hr light: dark photoperiod. Pigs were fed daily at 0700 hr. Gilts were randomly assigned to the following treatments: saline (S, n = 7), 100 (n = 4), or 300 (n = 4) mg/kg BW of 2-deoxy-D-glucose (2DG), a competitive inhibitor of glycolysis, in saline iv. Blood samples were collected every 15 min for 2 hr before and 5 hr after treatment. Blood samples from EXP I and II were assayed for LH, GH and leptin by RIA. Selected samples were quantified for glucose, insulin and free fatty acids (FFA). In EXP I, fasting reduced (P < 0.04) leptin pulse frequency by P 3. Plasma glucose concentrations were reduced (P < 0.02) throughout the fast compared to fed animals, where as serum insulin concentrations did not decrease (P < 0.02) until P 3. Serum FFA concentrations increased (P < 0.02) by P 2 and remained elevated. Subcutaneous back fat thickness was similar among pigs. Serum IGF-I concentration decreased (P < 0.01) by P 2 in fasted animals compared to fed animals and remained lower through periods 3 and 4. Serum LH and GH concentrations were not effected by fast. Realimentation resulted in a marked increase in serum glucose (P < 0.02), insulin (P < 0.02), serum GH (P < 0.01) concentrations and leptin pulse frequency (P < 0.01). EXP II treatment did not alter serum insulin levels but increased (P < 0.01) plasma glucose concentrations in the 300 mg 2DG group. Serum leptin concentrations were 4.0 +/- 0.1, 2.8 +/- 0.2, and 4.9 +/- 0.2 ng/ml for S, 100 and 300 mg 2DG pigs respectively, prior to treatment and remained unchanged following treatment. Serum IGF-I concentrations were not effected by treatment. The 300 mg dose of 2DG increased (P < 0.0001) mean GH concentrations (2.0 +/- 0.2 ng/ml) compared to S (0.8 +/- 0.2 ng/ml) and 100 mg 2DG (0.7 +/- 0.2 ng/ml). Frequency and amplitude of GH pulses were unaffected. However, number of LH pulses/5 hr were decreased (P < 0.01) by the 300 mg dose of 2DG (1.8 +/- 0.5) compared to S (4.0 +/- 0.4) and the 100 mg dose of 2DG (4.5 +/- 0.5). Mean serum LH concentrations and amplitude of LH pulses were unaffected. These results suggest that acute effects of energy deprivation on LH and GH secretion are independent of changes in serum leptin concentrations.  相似文献   

6.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic neuropeptide that stimulates release of growth hormone (GH) from cultured bovine anterior pituitary gland cells, but the role of PACAP on the regulation of in vivo secretion of GH in cattle is not known. To test the hypothesis that PACAP induces secretion of GH in cattle, meal-fed Holstein steers were injected with incremental doses of PACAP (0, 0.1, 0.3, 1, 3, and 10 microg/kg BW) before feeding and concentrations of GH in serum were quantified. Compared with saline, injection of 3 and 10 microg PACAP/kg BW increased peak concentrations of GH in serum from 11.2 ng/ml to 23.7 and 21.8 ng/ml, respectively (P < 0.01). Peak concentrations of GH in serum were similar in steers injected with 3 or 10 microg PACAP/kg BW. Meal-fed Holstein steers were then injected with 3 microg/PACAP/kg BW either 1 hr before feeding or 1 hr after feeding to determine if PACAP-induced secretion of GH was suppressed after feeding. Feeding suppressed basal concentrations of GH in serum. Injection of PACAP before feeding induced greater peak concentrations of GH in serum (19.2 +/- 2.6 vs. 11.7 +/- 2.6 ng/ml) and area under the response curve (391 +/- 47 vs. 255 +/- 52 ng. ml(-1) min) than injection of PACAP after feeding, suggesting somatotropes become refractory to PACAP after feeding similar to that observed by us and others with growth hormone-releasing hormone (GHRH). We concluded that PACAP induces secretion of GH and could play a role in regulating endogenous secretion of GH in cattle, perhaps in concert with GHRH.  相似文献   

7.
This study was conduct to determine the influence of dietary protein on the response of plasma insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding proteins (IGFBPs) to exogenous growth hormone releasing peptide-2 (GHRP-2 or KP 102) in Holstein steers. Eight 16-month-old Holstein steers were grouped by liveweight to two feeding treatments; high protein (HP; CP 1.38 kg/day and TDN 4.5 kg/day DM intake, n=4) or low protein (LP; CP 0.66 kg/day and TDN 4.42 kg/day DM intake, n=4). The experiment was a single reverse design whereby each group was injected twice daily with GHRP-2 (12.5 microg/kg body weight (BW)/day) or saline solution into the jugular vein for a 6-day period. Plasma IGF-1 in the HP group were higher than in the LP group (P<0.05), but plasma 34 kDa IGFBP-2 was lower in the HP than the LP group (P<0.05). The amplitude of the maximum growth hormone (GH) peaks responding to GHRP-2 injection were higher at day 1 than at day 6 of saline or GHRP-2 treatment in both LP and HP steers (P<0.05). The area under the GH response curve for 180 min after the GHRP-2 injection was not significantly different between the LP and the HP groups at days 1 and 6. A response in plasma IGF-1 concentration to GHRP-2 treatment in the HP group was observed at day 1 (198.9+/-18.1 ng/ml), day 2 (195.2+/-21.1 ng/ml) and day 6 (201.3+/-14.8 ng/ml) (P<0.05). No increase in plasma IGF-1 was observed from GHRP-2 administration in the LP group. Although the response of plasma IGF-1 concentration to GHRP-2 administration was increased in the HP group (P<0.05), there was no apparent effect of GHRP-2 treatment on plasma 38-43 kDa IGFBP-3 and 34 kDa IGFBP-2 at days 2 and 6 of treatment. In conclusion, it is proposed that the 34 kDa IGFBP-2 is sensitive to dietary protein level and may play an important role in the regulation of circulating IGF-1 in ruminant. In addition, increased plasma IGF-1 concentration observed in the HP group in response to the GHRP-2 treatment did not appear to affect plasma IGFBPs.  相似文献   

8.
选择体重(33±2)kg的DLY猪20头,随机分成4组,每组5头,分别以0、3、9、27μg/kgBW的剂量每日肌肉注射GHRP-228d。在试验的第3周进行4d的代谢试验;在第4周末测量活体背膘和眼肌厚度。结果表明:在第1周末随着剂量的增加,猪的日增重在处理组较对照组分别提高了10.51%、12.06%、16.21%(P<0.05);28d的平均日增重在处理组分别提高了4.5%、1.27%、8.99%(p<0.05)。饲料氮在第3周的消化率各组分别为82.92%、81.29%、82.3%、85.15%;代谢率52.59%6、51.8%、53.20%、56.67%。GHRP-2处理组有减少背膘和增加眼肌厚度的趋势。在试验条件下,以27μg/kgBW的剂量每日肌肉注射GHRP-22周可显著提高生长猪日增重,采食量在整个试验期处理组间无差异;连续处理的第3周出现生长抑制现象,其机理有待于进一步研究。  相似文献   

9.
The effects of growth hormone-releasing peptide-6 (GHRP-6) on peripheral plasma concentrations of growth hormone (GH) and hypophysial portal plasma concentrations of growth hormone-releasing hormone (GHRH) and somatostatin (SRIF) were investigated in conscious ewes. Paired blood samples were collected from the hypophysial portal vessels and from the jugular vein of nine ewes for at least 2 hr. The sheep were then given a bolus injection of 10 μg of GHRP-6 per kg followed by a 2-hr infusion of GHRP-6 (0.1 μ/kg · hr). Blood sampling continued throughout the infusion and for 2 hr afterwards. An increase in plasma GH concentration was observed in the jugular samples of six of the nine ewes (1.4 ± 0.3 vs 7.4 ± 2.0 ng/ml, P < 0.05) 5–10 min after the GHRP-6 bolus injection, but in no case did we observe a significant coincident release of GHRH. During the infusion period, mean plasma GHRH levels were not significantly increased but there was a 50% increase (P < 0.05) in GHRH pulse frequency; GHRH pulse amplitude was not changed. Mean SRIF concentration, pulse frequency, and pulse amplitude were unchanged by GHRP-6 treatment. These data indicate that GHRP-6 causes a small, but significant effect on the pulsatile secretion of GHRH, indicating action at the hypothalamus or higher centers of the brain. The large initial GH secretory response to GHRP-6 injection does not appear to be the result of GHRP-6 action on GHRH or SRIF secretion.  相似文献   

10.
Sixteen male Holstein calves averaging 168 kg body weight (BW) were used to determine the effects of human growth hormone-releasing factor (1–29)NH2 (hGRF (1–29)NH2; .22 μg/kg BW), thyrotropin-releasing factor (TRF; .165 μg/kg BW) or hGRF (1–29)NH2 plus TRF (.22 and .165 μg/kg BW, respectively) on growth hormone (GH) release in animals exposed to 16 hr of light (L): 8 hr of dark (D) (lights on at 0100 hr) and hGRF plus TRF (.22 and .165 μg/kg BW, respectively) in animals exposed to 8L:16D (lights on at 0900 hr). For each treatment, times of iv injection were 0400, 1000, 1600 and 2200 hr. In animals exposed to 16L:8D, average GH peaks reached after hGRF (1–29)NH2 or TRF injections were 49.7 and 32.0 ng/ml while the area under the GH response curve (AUC) were 1247 and 1019 ng/ml*min, respectively. There was no significant effect of times of injection on GH release following the separate injection of hGRF (1–29)NH2 or TRF. In animals exposed to 16L:8D, GH peaks and AUC after hGRF plus TRF injections were 226.4, 189.2 and 116.8 ng/ml, and 4340, 3660 and 2415 ng/ml*min at 0400, 1000 and 1600 hr (lights on), respectively but only 42.3 ng/ml and 1692 ng/ml*min at 2200 hr (lights off). In animals exposed to 8L:16D, GH levels and AUC after hGRF plus TRF injections reached 177.5 and 180.5 ng/ml, and 2759 and 3704 ng/ml*min at 1000 and 1600 hr (lights on) but only 84.0 and 72.7 ng/ml, and 1544 and 1501 ng/ml*min at 0400 and 2200 hr (lights off), respectively. These results demonstrated that hGRF (1–29)NH2 and TRF can act in synergy to potentiate GH release in dairy calves. This synergistic action occurred only when both peptides were injected during the lighted phase of short and long day photoperiods.  相似文献   

11.
Fusaric (5-butylpicolinic) acid is a phytotoxin produced especially by Fusarium moniliforme, a mold commonly found in Canadian-grown corn. Experiments were conducted to determine the effects of acute doses of fusaric acid on brain neurochemistry and behavior in swine. A total of 40 crossbred barrows (initial weight 10 kg) were orally dosed with 0 or 200 mg of fusaric acid/kg of BW and five animals from each treatment were killed 4.5, 9, 18, or 36 h after dosing. All brains were dissected, and concentrations of indoleamine and catecholamine neurotransmitters and metabolites were determined. Animals in the group killed 36 h after dosing were observed for behavioral changes. Vomiting was noted in 60% of the pigs dosed with fusaric acid. These pigs also seemed more lethargic than controls and appeared sedated. The major neurochemical changes due to exposure to fusaric acid were seen in the hypothalamus 18 h after dosing. Brain tryptophan, serotonin, and 5-hydroxyindoleacetic acid all tended to be elevated by the action of fusaric acid. Brain catecholamine concentrations were largely refractory to treatment. It was concluded that exposure to acute doses of fusaric acid can cause vomiting and neurochemical changes in swine. Fusaric acid may, therefore, be acting synergistically with trichothecene mycotoxins to cause vomiting and feed refusal in pigs consuming trichothecene-contaminated feedstuffs.  相似文献   

12.
A study was undertaken to determine the effective dosage of GH-releasing hormone (GRF) required to produce blood GH response in mithun (Bos frontalis), a semi-wild ruminant species. For the purpose, 12 mithuns averaging 11.5 months of age and 146 kg body weight (BW) were randomly assigned to receive GRF (n = 12), administered at 0 (normal saline), 5, 10 and 20 mug per 100 kg BW. Blood samples were collected prior to and after GRF administration at -60, -45, -30, -15, -10, -5, 0 min and 5, 10, 15, 30 and thereafter, at 15-min interval up to 8 h post-GRF were assayed for plasma GH. For all the dosages, the pre-treatment GH concentrations and corresponding area under GH response curve (AUC) were similar (p > 0.05). The post-GRF plasma GH responses to different dosages of GRF viz. 5, 10 and 20 mug per 100 kg BW and corresponding AUCs were higher (p < 0.05) than those recorded in normal saline-treated controls. The GH responses to 10 and 20 mug GRF per 100 kg BW and corresponding AUCs were higher (p < 0.05) than those registered in mithuns administered with 5 mug GRF per 100 kg BW. Interestingly, post-GRF concentration of plasma GH and AUCs were not different for 10 and 20 mug GRF per 100 kg BW dosages. In all animals treated with GRF, a peak of GH was registered within 10 to 20 min post-GRF. Following 5 mug GRF per 100 kg BW, GH concentrations were maintained at higher level for 90 min post-GRF and thereafter became similar to that of controls and it was 435 min for 10 and 20 mug GRF per 100 kg BW dosages. In conclusion, our results suggest that 10 mug GRF per 100 kg BW is the dosage, which can be used for augmentation of mithun production.  相似文献   

13.
The effects of n-methyl-d,l-aspartate (NMA), a neuroexcitatory amino acid agonist, on luteinizing hormone (LH), prolactin (PRL) and growth hormone (GH) secretion in gilts treated with ovarian steroids was studied. Mature gilts which had displayed one or more estrous cycles of 18 to 22 d were ovariectomized and assigned to one of three treatments administered i.m.: corn oil vehicle (V; n = 6); 10 micrograms estradiol-17 b/kg BW given 33 hr before NMA (E; n = 6); .85 mg progesterone/kg BW given twice daily for 6 d prior to NMA (P4; n = 6). Blood was collected via jugular cannulae every 15 min for 6 hr. Pigs received 10 mg NMA/kg BW i.v. 2 hr after blood collection began and a combined synthetic [Ala15]-h GH releasing factor (1-29)-NH2 (GRF; 1 micrograms/kg BW) and gonadotropin releasing hormone (GnRH; .2 micrograms/kg BW) challenge given i.v. 3 hr after NMA. NMA did not alter LH secretion in E gilts. However, NMA decreased (P < .02) serum LH concentrations in V and P4 gilts. Serum LH concentrations increased (P < .01) after GnRH in all gilts. NMA did not alter PRL secretion in P4 pigs, but increased (P < .01) serum PRL concentrations in V and E animals. Treatment with NMA increased (P < .01) GH secretion in all animals while the GRF challenge increased (P < .01) serum GH concentrations in all animals except in V treated pigs. NMA increased (P < .05) cortisol secretion in all treatment groups. These results indicate that NMA inhibits LH secretion and is a secretagogue of PRL, GH and cortisol secretion with ovarian steroids modulating the LH and PRL response to NMA.  相似文献   

14.
Adrenergic and perhaps dopaminergic neurons provide inhibitory regulation of growth hormone (GH) secretion in ruminants. This suggests that either serotonergic or other neurons regulate the stimulatory release of GH. The nature of neurotransmitter control of adrenocorticotropin (ACTH) secretion in ruminants has not been determined. Parachlorophenylalanine (PCPA; serotonin synthesis inhibitor), quipazine (serotonin receptor agonist) and cyproheptadine (serotonin receptor antagonist) were utilized in Holstein steers to determine whether serotonin receptors mediate stimulatory actions on GH and ACTH secretion. PCPA (100 mg/kg BW) administered each day at 1900 hr for three successive days did not alter mean GH concentrations, amplitude of GH peaks, nor the number of GH peaks. Likewise, PCPA altered none of these parameters for ACTH. Quipazine injected iv at .1 or .5 mg/kg BW increased plasma GH (P<.05) and ACTH (P<.001) concentrations. There was a dose effect of quipazine on both GH (P<.05) and ACTH (P<.001) secretion. Pretreatment of steers with cyproheptadine (.06 and .6 mg/kg BW) reduced the stimulation of GH by quipazine (P<.0001) and decreased basal GH concentrations (P<.0004). Cyproheptadine at .06 mg/kg BW did not alter quipazine effects on ACTH, however, the higher dose decreased the peak ACTH response (P<.02) to quipazine. Studies with quipazine and cyproheptadine indicated that serotonergic mechanisms are likely involved in the regulation of GH and ACTH secretion in steers.  相似文献   

15.
Three experiments were conducted to determine the effects of n-methyl-D,L-aspartate (NMA), an agonist of the excitatory amino acid glutamate, on secretion of hormones in boars. In Exp. 1, boars (185.0+/-.3 d of age; mean +/- SE) received i.v. injections of either 0, 1.25, 2.5, 5, or 10 mg of NMA/kg BW. There were no effects of NMA (P>.1) on secretion of LH and testosterone. Treatment with NMA, however, increased (P<.01) circulating GH concentrations in a dose-dependent manner. In Exp. 2, boars (401 d of age) received an i.v. challenge of NMA at a dose of 10 mg/kg BW or .9% saline. Treatment with NMA, but not saline (P>.1), increased serum concentrations of LH (P<.01), GH (P <.01), and testosterone (P<.06). In Exp. 3, boars that were 152, 221, or 336 d of age were treated i.v. with NMA (10 mg/kg BW). Across ages, treatment with NMA increased circulating concentrations of LH (P<.07) and testosterone (P<.01). However, NMA increased (P<.01) mean GH concentrations in only the oldest boars. Treatment with NMA had no effect (P>.1) on circulating concentrations of estradiol or leptin; however, estradiol concentrations increased (P<.03) with age. In summary, NMA increased secretion of LH, GH, and testosterone in boars. However, endocrine responses to treatment with NMA may be influenced by age of the animal. Finally, NMA did not influence circulating concentrations of estradiol or leptin.  相似文献   

16.
The objectives of our experiments were 1) to determine the effect of N-methyl-D,L-aspartate (NMA), an agonist of the neuroexcitatory amino acids aspartate and glutamate, on growth hormone (GH) release in ovariectomized ewes, and 2) to determine the effect of naloxone, an opioid antagonist, on the GH response to NMA. Jugular blood was collected via venipuncture at 12-min intervals for 2 h before and 2 h after i.v. injection of NMA. In Exp. 1, ewes received either 0, 6, 12 or 24 mg NMA/kg BW dissolved in .9% saline solution (n = 4 per treatment). Growth hormone concentrations were similar (P greater than .1) between groups prior to injection (9.8 +/- .7 ng/ml; mean +/- SEM) and were unaffected (P greater than .1) by saline treatment. In contrast, 6, 12 or 24 mg NMA/kg BW increased mean GH concentration by 210% (P less than .04), 273% (P less than .02) and 234% (P less than .02), respectively. In Exp. 2, ewes received NMA (6 mg/kg BW) 5 min after either saline (n = 4) or naloxone (1 mg/kg BW; n = 4) pretreatment. Serum GH concentrations averaged 7.0 +/- 1.1 ng/ml before pretreatment and increased similarly (238%; P greater than .1) in both groups following NMA. In summary, NMA increased GH concentrations in ovariectomized ewes by some mechanism that does not involve opioid receptors that are antagonized by naloxone.  相似文献   

17.
The response of GH to GHRH at weaning is known to predict postweaning growth and body composition in beef bulls. The objective of this study was to determine whether GH response to a challenge of GHRH and plasma IGF-I can predict growth rate and body composition in the beef heifer. Growth hormone response to a challenge with two doses of GHRH was measured in 67 Angus heifers averaging 225 d of age (SD = 21) and 217 kg BW (SD = 32). Blood samples were collected at 0 and 10 min relative to an initial "clearance dose" (4.5 micrograms GHRH/100 kg BW) and again, 3 h later, relative to a challenge dose (1.5 or 4.5 micrograms GHRH/100 kg BW). Each animal received each of the two challenge doses, which were randomly assigned across 2 d of blood collection. Serum GH concentration was measured by RIA. Plasma was collected every 28 d during a 140-d growth test and assayed for IGF-I by RIA. Body weight was measured every 28 d and hip height was measured at weaning and at the end of a 140-d growth test. Average daily gain was calculated on d 140 of the growth test and body composition measurements were estimated by ultrasound 2 wk after completion of the growth test. Responses to the two GHRH challenges were dose-dependent (P < 0.05). Average daily gain tended to be related to GH response to the 1.5 micrograms GHRH/100 kg BW dose (R2 = 0.05; P = 0.06), but no relationship was observed at the 4.5 micrograms GHRH/100 kg BW dose (R2 = 0.00; P = 0.93). An inverse relationship (R2 = 0.06; P = 0.02) was observed between response to the 1.5 micrograms GHRH/100 kg BW dose and intramuscular fat percentage. Mean plasma IGF-I concentration was positively associated with ADG (R2 = 0.06; P < 0.01). Growth hormone response to GHRH is modestly related to body composition but not to ADG in weanling beef heifers and likely has limited use in evaluation of growth performance in replacement beef heifers.  相似文献   

18.
In three experiments (Exp), ovariectomized gilts received intracerebroventricular (ICV; Exp 1 - with restraint, Exp 2 - without restraint) or intravenous (i.v.; Exp 3) injections of urocortin or saline to assess effects on feed intake and serum GH, LH, and cortisol. Following a 20-hr fast, feed was presented at 1 hr (Exp 1) or 30 min (Exp 2 and 3) after injection (time = 0 hr) of saline or 5 (U5) or 50 (U50) μg/pig (Exp 1 and 2) or 5 μg/kg BW (Exp 3) of urocortin. Blood samples were collected every 15 min from –2 to 6 hr relative to injection and hormone data pooled 2 hr before and hourly after treatment. Treatment with U50 decreased feed intake, relative to saline (treatment x time interaction; P < 0.05), when delivered ICV but not i.v. A treatment by time interaction was detected for GH (Exp 1, 2, 3) and LH (Exp 1 and 2; P < 0.01). Serum GH increased over time (relative to −2 hr; P < 0.05) following treatment with urocortin but not saline regardless of route of administration. Conversely, in Exp 1 (U5 and U50) and Exp 2 (U50), LH decreased relative to −2 hr with a delayed decrease during Exp 1. Serum cortisol was not affected by treatment in Exp 1, but increased following urocortin in Exp 2 and 3 (treatment by time interaction, P < 0.01). These data provide evidence that urocortin modulates GH and LH concentrations and suppresses feed intake in gilts via mechanisms which may be independent of cortisol and may depend upon dose and route of administration.  相似文献   

19.
The effects of propylthiouracil (PTU)-induced thyroid hormone imbalance on GH, TSH and IGF-I status in cattle were examined. In the first study, four crossbred steers (avg wt 350 kg) were fed a diet dressed with PTU (0, 1, 2 or 4 mg/kg/d BW) in a Latin square design with four 35-d periods. On day 29 in each period, steers were challenged with an intrajugular bolus of thyrotropin releasing hormone (TRH, 1.0 μg/kg). Blood samples were obtained to assess the change in plasma GH and TSH as affected by PTU. Plasma IGF-I was measured from blood samples obtained before and after (every 6 hr for 24 hr) intramuscular injection of bovine GH (0.1 mg/kg, day 31). Doses of 1 and 2 mg/kg PTU increased plasma T4 (P<.01). At 4 mg/kg, PTU depressed T4 concentrations to 30% of control (P<.01). Plasma T3 linearly decreased with increasing doses of PTU (P<.01). Plasma TSH increased when PTU was fed at 4 mg/kg (P<.05) while the TSH response to TRH declined with increasing PTU (P<.02). Neither basal nor TRH-stimulated plasma concentration of GH was affected by PTU; the IGF-I response to GH tended to increase at the 1 and 2 mg/kg PTU (P<.01). In a second study 24 crossbred steers were fed PTU (1.5 mg/kg) for 119 d in a 2 × 2 factorial design with implantation of the steroid growth effector, Synovex-S (200 mg progesterone + 20 mg estradiol), as the other main effect. Basal plasma GH and IGF-I were not affected by PTU treatment. Synovex increased plasma concentration (P<.01) of IGF-I without an effect on plasma GH. The data suggest that mild changes in thyroid status associated with PTU affects regulation of T3, T4 and TSH more than GH or IGF-I in steers.  相似文献   

20.
Secretion of growth hormone (GH) is reduced for several hours after feeding when access to feed is restricted to a 2-hr period each day. We hypothesized that increased secretion of insulin after feeding inhibits release of GH from the anterior pituitary gland. Our objectives were to determine whether: 1) alloxan prevents concentrations of insulin from increasing after feeding steers; 2) concentrations of GH remain high after feeding alloxan-treated steers; and 3) GH-releasing hormone (GHRH) stimulates greater release of GH in alloxan-treated, than in control, steers after feeding. Steers were injected iv with either saline (control) or with alloxan (110 mg/kg) (n = 4 per group). Concentrations of insulin were not different (P = 0.61) between control and alloxan-treated steers before feeding (87.5 +/- 33.6 pmol/l). However, alloxan prevented insulin from increasing (P < 0.001) after feeding (131.8 pmol/1) compared with control steers (442.0 pmol/l) (pooled SEM = 47.5). Overall, GH was higher (P < 0.05) in alloxan-treated (6.4 ng/ml) than in control steers (3.7 ng/ml) (pooled SEM = 0.7), but GH decreased (P < 0.001) after feeding in both groups. Iv injection of GHRH stimulated release of GH 1 hr before, but not when injected 1 hr after feeding (P < 0.001). In addition, net areas under the GH curve were not significantly different between control and alloxan-treated groups. We conclude that increased concentrations of insulin after feeding do not mediate feeding-induced suppression of GH secretion in steers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号