首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate molecular, cellular, and circuit changes that occur in the brain during learning, we investigated the role of a glutamate receptor subtype in fear conditioning. In this form of learning, animals associate two stimuli, such as a tone and a shock. Here we report that fear conditioning drives AMPA-type glutamate receptors into the synapse of a large fraction of postsynaptic neurons in the lateral amygdala, a brain structure essential for this learning process. Furthermore, memory was reduced if AMPA receptor synaptic incorporation was blocked in as few as 10 to 20% of lateral amygdala neurons. Thus, the encoding of memories in the lateral amygdala is mediated by AMPA receptor trafficking, is widely distributed, and displays little redundancy.  相似文献   

2.
Memories for habits and skills ("implicit or procedural memory") and memories for facts ("explicit or episodic memory") are built up in different brain systems and are vulnerable to different neurodegenerative disorders in humans. So that the striatum-based mechanisms underlying habit formation could be studied, chronic recordings from ensembles of striatal neurons were made with multiple tetrodes as rats learned a T-maze procedural task. Large and widely distributed changes in the neuronal activity patterns occurred in the sensorimotor striatum during behavioral acquisition, culminating in task-related activity emphasizing the beginning and end of the automatized procedure. The new ensemble patterns remained stable during weeks of subsequent performance of the same task. These results suggest that the encoding of action in the sensorimotor striatum undergoes dynamic reorganization as habit learning proceeds.  相似文献   

3.
Do learning and retrieval of a memory activate the same neurons? Does the number of reactivated neurons correlate with memory strength? We developed a transgenic mouse that enables the long-lasting genetic tagging of c-fos-active neurons. We found neurons in the basolateral amygdala that are activated during Pavlovian fear conditioning and are reactivated during memory retrieval. The number of reactivated neurons correlated positively with the behavioral expression of the fear memory, indicating a stable neural correlate of associative memory. The ability to manipulate these neurons genetically should allow a more precise dissection of the molecular mechanisms of memory encoding within a distributed neuronal network.  相似文献   

4.
New routes to early memories   总被引:3,自引:0,他引:3  
Stimulation of one side of the olfactory system during training with odor-milk pairings in neonatal rats results in their ability to recall an odor memory by using the trained but not the untrained side of the brain. In 12-day-old rats, olfactory learning can be recalled by stimulation of either the trained or untrained side. The development of bilateral recall reflects the maturation of olfactory commissural pathways that provide access to the olfactory memory stored on the contralateral side. Furthermore, the commissural pathways need not be present at the time of memory formation but can establish new and specific access to already existing olfactory memories.  相似文献   

5.
【目的】明确印楝素是否能诱导果蝇产生厌恶性味觉记忆,并探讨多巴胺信号在这种记忆形成中的调控作用。【方法】利用印楝素诱导果蝇产生短期厌恶性味觉记忆,并通过昆虫口器伸展反应测试诱导结果;采用压力注射给药方式及果蝇全脑膜片钳记录,研究印楝素对果蝇脑内不同亚群多巴胺能神经元兴奋性及受体电流的影响。【结果】印楝素A及印楝素干粉均能显著抑制果蝇口器伸展的概率,口器伸展反应(PER)分别为60.34%和17.24%,(P0.007),并且干粉的效果更加明显;印楝素对不同亚群的多巴胺能神经元的兴奋性有不同的作用,PPL1、PAM和PPM2亚群兴奋性呈现增加趋势,其中PPL1亚群兴奋性改变最为显著;印楝素对多巴胺D1受体具有激动效应,这种激动效应可被D1受体特异性拮抗剂抑制。【结论】印楝素可以诱导果蝇产生厌恶性味觉记忆,这种记忆受果蝇脑内多巴胺能信号的调控。  相似文献   

6.
We have found that two-photon fluorescence imaging of nicotinamide adenine dinucleotide (NADH) provides the sensitivity and spatial three-dimensional resolution to resolve metabolic signatures in processes of astrocytes and neurons deep in highly scattering brain tissue slices. This functional imaging reveals spatiotemporal partitioning of glycolytic and oxidative metabolism between astrocytes and neurons during focal neural activity that establishes a unifying hypothesis for neurometabolic coupling in which early oxidative metabolism in neurons is eventually sustained by late activation of the astrocyte-neuron lactate shuttle. Our model integrates existing views of brain energy metabolism and is in accord with known macroscopic physiological changes in vivo.  相似文献   

7.
Competition between neurons is necessary for refining neural circuits during development and may be important for selecting the neurons that participate in encoding memories in the adult brain. To examine neuronal competition during memory formation, we conducted experiments with mice in which we manipulated the function of CREB (adenosine 3',5'-monophosphate response element-binding protein) in subsets of neurons. Changes in CREB function influenced the probability that individual lateral amygdala neurons were recruited into a fear memory trace. Our results suggest a competitive model underlying memory formation, in which eligible neurons are selected to participate in amemorytrace as a function of their relative CREB activity at the time of learning.  相似文献   

8.
The mushroom bodies of the Drosophila brain are important for olfactory learning and memory. To investigate the requirement for mushroom body signaling during the different phases of memory processing, we transiently inactivated neurotransmission through this region of the brain by expressing a temperature-sensitive allele of the shibire dynamin guanosine triphosphatase, which is required for synaptic transmission. Inactivation of mushroom body signaling through alpha/beta neurons during different phases of memory processing revealed a requirement for mushroom body signaling during memory retrieval, but not during acquisition or consolidation.  相似文献   

9.
We investigated the effect of activating a competing, artificially generated, neural representation on encoding of contextual fear memory in mice. We used a c-fos-based transgenic approach to introduce the hM(3)D(q) DREADD receptor (designer receptor exclusively activated by designer drug) into neurons naturally activated by sensory experience. Neural activity could then be specifically and inducibly increased in the hM(3)D(q)-expressing neurons by an exogenous ligand. When an ensemble of neurons for one context (ctxA) was artificially activated during conditioning in a distinct second context (ctxB), mice formed a hybrid memory representation. Reactivation of the artificially stimulated network within the conditioning context was required for retrieval of the memory, and the memory was specific for the spatial pattern of neurons artificially activated during learning. Similar stimulation impaired recall when not part of the initial conditioning.  相似文献   

10.
Neurotransmitter plasticity at the molecular level   总被引:14,自引:0,他引:14  
Contrary to long-held assumptions, recent work indicates that neurons may profoundly change transmitter status during development and maturity. For example, sympathetic neurons, classically regarded as exclusively noradrenergic or cholinergic, can also express putative peptide transmitters such as substance P. This neuronal plasticity is directly related to membrane depolarization and sodium ion influx. The same molecular mechanisms and plastic responses occur in mature as well as developing neurons. Further, contrary to traditional teaching, adult primary sensory neurons may express the catecholaminergic phenotype in vivo. Transmitter plasticity is not restricted to the peripheral nervous system: ongoing studies of the brain nucleus locus ceruleus in culture indicate that specific extracellular factors elicit marked transmitter changes. Consequently, neurotransmitter expression and metabolism are dynamic, changing processes, regulated by a variety of defined factors. Transmitter plasticity adds a newly recognized dimension of flexibility to nervous system function.  相似文献   

11.
Human tissues have carbon-isotope ratios (13C/12C) that reflect dietary ratios. This observation has been used to determine the extent of metabolic turnover of DNA in cells of the adult human cerebellum (90 percent of which are neuronal). If adult human neuronal DNA were metabolically stable, its 13C/12C would reflect that in the maternal diet during fetal development as nearly all neurons are formed during maturation of the fetal brain and do not undergo cell division thereafter. The 13C/12C ratios in the food chains and body tissues of Europeans differ from corresponding American ratios by about 50 parts per million on the average. Therefore, turnover was studied by comparing 13C/12C ratios in cerebellar DNA of American-born Americans, European-born Americans, and European-born Europeans. The 13C/12C ratios in cerebellar DNA from European-born Americans were closer to 13C/12C ratios in cerebellar DNA from European-born Europeans than from American-born Americans, indicating that there was little or no turnover of neuronal DNA.  相似文献   

12.
Cell recognition by neuronal growth cones in a simple vertebrate embryo   总被引:5,自引:0,他引:5  
The mechanism that guides neuronal growth cones to their targets in vertebrate embryos has been difficult to study primarily because of the complexity and large number of neurons found in many vertebrate nervous systems. The spinal cord of a simple vertebrate, the fish embryo, is used to analyze pathfinding mechanisms. The early embryonic spinal cord consists of a relatively small number of identifiable neurons. From the beginning of axonal outgrowth the growth cones of these identified neurons extend along stereotyped and precise pathways in the spinal cord. Laser ablation experiments (i) support the hypothesis that early growth cones that pioneer specific spinal tracts appear to recognize cues on subsets of longitudinally arrayed neuroepithelial cells and (ii) demonstrate that later growth cones that selectively fasciculate in these spinal tracts appear to recognize cues on specific subsets of axons.  相似文献   

13.
Sustained exposure to glucocorticoids, the adrenocortical stress hormones, is toxic to neurons, and such toxicity appears to play a role in neuron loss during aging. Previous work has shown that glucocorticoids compromise the capacity of neurons to survive a variety of metabolic insults. This report extends those observations by showing that ischemic injury to neurons in rat brain is also potentiated by exposure to high physiological titers of glucocorticoids and is attenuated by adrenalectomy. The synergy between ischemic and glucocorticoid brain injury was seen even when glucocorticoid levels were manipulated after the ischemic insult. Pharmacological interventions that diminish the adrenocortical stress response may improve neurological outcome from stroke or cardiac arrest.  相似文献   

14.
Lasley EN 《Science (New York, N.Y.)》2000,288(5474):2111-2112
Although scientists have provided mounting evidence in the past few years that new neurons can be produced in some areas of the adult brain, the neocortex--the region most concerned with such higher brain functions as memory and learning--did not seem capable of such regeneration. Now, in the 22 June issue of Nature, neuroscientists report that when they induced certain neurons in the neocortex of adult mice to self-destruct, the loss triggered the formation of replacement neurons by brain stem cells. If similar regeneration of brain neurons can be triggered in humans, the findings could open the door for treatments that might restore memory in Alzheimer's disease, for example, or undo the damage wreaked by spinal cord injury.  相似文献   

15.
目的建立血管性痴呆(VD)动物模型,并探讨反复脑缺血再灌注对小鼠认知障碍和脑组织氧化损伤的影响.方法健康的昆明小鼠30只,随机分为3组,即正常组、假手术组、模型组.采用清醒小鼠反复脑缺血再灌注手术方法,应用跳台法、避暗法、Morris水迷宫研究脑缺血再灌注对小鼠行为学的影响;通过HE、尼氏染色观察病理形态学变化;用生化分析方法检测脑组织中SOD活性、MDA的含量.结果与正常组比较,反复脑缺血再灌注能导致小鼠出现明显的学习记忆功能障碍,模型VD小鼠SOD的活性降低(P〈0.01),MDA的含量增加(P〈0.01).结论反复脑缺血再灌注能引起小鼠学习记忆功能障碍,这可能与脂质过氧化反应、自由基代谢紊乱有关.  相似文献   

16.
S J Mayor 《Science (New York, N.Y.)》1969,166(909):1165-1167
Intracerebral injections of puromycin produced memory deficits in naive quail trained to discriminate between red and green stimuli. Puromycin aminonucleoside, acetoxycycloheximide, and saline had no such effect. After a single reversal of the visual cues, naive quail treated with puromycin performed better than control birds. Also, puromycin had no effect on performance when injected into previously trained animals. High doses both of puromycin and acetoxycycloheximide inhibited ribonucleic acid and protein synthesis to a similar extent, while low doses of puromycin inhibited only protein synthesis. Since only puromycin inhibited memory, the basis for its effect appears more likely to be mediated by the action of peptidyl-puromycin rather than by the quantitative inhibition of macromolecular synthesis or by some nonspecific toxic action.  相似文献   

17.
The primary psychoactive ingredient in cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), affects the brain mainly by activating a specific receptor (CB1). CB1 is expressed at high levels in many brain regions, and several endogenous brain lipids have been identified as CB1 ligands. In contrast to classical neurotransmitters, endogenous cannabinoids can function as retrograde synaptic messengers: They are released from postsynaptic neurons and travel backward across synapses, activating CB1 on presynaptic axons and suppressing neurotransmitter release. Cannabinoids may affect memory, cognition, and pain perception by means of this cellular mechanism.  相似文献   

18.
How do we decide if the people we meet and the things we see are familiar or new? If something is new, we need to encode it as a memory distinct from already stored episodes, using a process known as pattern separation. If familiar, it can be used to reactivate a previously stored memory, by a process known as pattern completion. To orchestrate these conflicting processes, current models propose that the episodic memory system uses environmental cues to establish processing biases that favor either pattern separation during encoding or pattern completion during retrieval. To assess this theory, we measured how people's memory formation and decisions are influenced by their recent engagement in episodic encoding and retrieval. We found that the recent encoding of novel objects improved subsequent identification of subtle changes, a task thought to rely on pattern separation. Conversely, recent retrieval of old objects increased the subsequent integration of stored information into new memories, a process thought to rely on pattern completion. These experiments provide behavioral evidence that episodic encoding and retrieval evoke lingering biases that influence subsequent mnemonic processing.  相似文献   

19.
The medial temporal lobe memory system   总被引:81,自引:0,他引:81  
Studies of human amnesia and studies of an animal model of human amnesia in the monkey have identified the anatomical components of the brain system for memory in the medial temporal lobe and have illuminated its function. This neural system consists of the hippocampus and adjacent, anatomically related cortex, including entorhinal, perirhinal, and parahippocampal cortices. These structures, presumably by virtue of their widespread and reciprocal connections with neocortex, are essential for establishing long-term memory for facts and events (declarative memory). The medial temporal lobe memory system is needed to bind together the distributed storage sites in neocortex that represent a whole memory. However, the role of this system is only temporary. As time passes after learning, memory stored in neocortex gradually becomes independent of medial temporal lobe structures.  相似文献   

20.
利用SABC免疫组织化学方法,对兔脑神经型一氧化氮合酶(nNOS)阳性神经元的形态、结构及分布规律进行了系统研究,结果表明:① nNOS阳性神经元呈深棕色,着色主要在胞质内,细胞核处较为浅淡;神经元胞体形态多种多样,有三角形、圆形、椭圆形、梭形等,神经元突起有一个或者数个;nNOS阳性神经纤维大多呈棕色串珠样,有些区域的阳性纤维交错分布,相互交织成网状。②家兔的各个脑区均有nNOS阳性神经元和神经纤维出现,其中在大脑皮质、小脑、丘脑下部、中脑和脑桥广泛分布,延髓分布极少。③nNOS阳性神经元,在仔兔时就已基本发育到成年兔水平,以后随着年龄增长逐渐发育成熟至衰老,到2岁龄(老年兔)时就出现了显著的衰老变化,即密度减小,表达强度减弱,第一级突起数减少,最长突起长度变短等。结果提示:nNOS阳性神经元及其催化产生的NO在家兔神经系统的发育和神经调控中起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号