首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
β—蒎烯合成紫苏醇的研究   总被引:5,自引:1,他引:5  
研究β-蒎烯制备紫苏醇过程中的各种影响因素。探讨了β-蒎烯的四醋酸铅氧化,异构,皂化等合成紫苏醇的工艺条件及产品质量分析,结果表明,投料比:β-蒎烯:四氧化三铅:冰醋酸为1:1:16,温度为60±2℃时氧化1h;160-170℃异构10-12h;78℃皂化1h,可得纯度为84.5%的紫苏醇。产品质量与国外相比基本一致。为紫苏醇产品的工业化提供了依据。  相似文献   

2.
β-蒎烯四醋酸铅氧化反应的研究   总被引:3,自引:1,他引:2  
比较和分析了几种反应介质对β-蒎烯四醋酸铅氧化反应的影响。冰醋酸对β-蒎烯的影响较小,被认为是较适合作β-蒎烯四醋酸铅氧化反应的介质。在冰醋酸中进行β-蒎烯四醋酸铅氧化反应时,确认有99.4%的β-蒎烯参与了反应,生成含49种化合物的产物,主要为反-松香芹醋酸酯、桃金娘烯醋酸酯、1(7)-对(艹孟)烯-2-醇-8-醋酸酯和1-对(艹孟)烯-7-醇-8-醋酸酯等5种化合物,占产物总和的71%~74%。氧化产物经异构后,紫苏醋酸酯可达55%。整个研究结果为工业生产紫苏类香料产品提供了基础科学依据。  相似文献   

3.
β—蒎烯环氧化反应的研究   总被引:7,自引:1,他引:6  
用低浓度工业级H2O2制备过氧乙酸,研究β-蒎烯的环氧反应,重点考察了H2O2浓度,反应物投料配比(H2O2/β-蒎烯)反应温度和熔剂对环氧化反应的影响,实验结果表明:用50%的H2O2制备过氧乙酸,H2O2/β-蒎烯投料摩尔比为2.5:1,在二氯甲烷溶剂中于20℃反应3h,β-蒎烯转化率达97.0%,2,10-环氧蒎烷选择性为82.7%。  相似文献   

4.
蒎烯分离技术的研究   总被引:2,自引:0,他引:2  
用真空间歇精馏装置分离松节油中的α-蒎烯和β-蒎烯。在设计的日处理量为1t和1.5t松节油的两套网孔波纹填料塔中进行了生产性试验,在试验工艺条件下获得纯度为99.26%的α-蒎烯和纯度为97.5%的β-蒎烯产品。  相似文献   

5.
挪威云杉幼树韧皮部挥发性物质的测定   总被引:3,自引:0,他引:3  
通过GC-MS测定挪威云杉幼树主干上部与下部韧皮主要挥发性物质的化学成分与含量,结果表明:挪威云杉幼树的韧皮部挥发性物质的主要成分为α-蒎烯、茨烯、β-蒎烯、月桂烯、3-蒈烯、柠檬烯、β-水芹烯7种单萜化合物。α-蒎烯、β-蒎烯、月桂烯、3-蒈烯、β-水芹烯的含量在上部韧皮与下部韧皮有明显差异,其中上部韧皮部α-蒎烯、β-蒎烯和β-水芹烯的含量明显高于下部主干韧皮部,这为解释松树皮象的取食习性,打下了基础。  相似文献   

6.
光敏催化氧化β-蒎烯制备桃金娘烯醛   总被引:2,自引:0,他引:2  
研究了β-蒎烯光敏催化氧化不经还原制备桃金娘烯醛的新方法。反应在以高压钠灯为光源的自制光化学反应器中进行。考察了反应条件对β-蒎烯的转化率和桃金娘烯醛选择性的影响。气相色谱分析表明:吡啶-乙酐复合催化时,于32℃反应4h,β-蒎烯转化率可达93.4%,桃金娘烯醛的选择性可达85.7%。  相似文献   

7.
合成香叶基丙酮的研究   总被引:7,自引:2,他引:7  
近年来,我国湿地松采脂生产不断增长,其松节油中β-蒎烯含量约为25-35%。为了更好地利用它,重点研究了从它的热异构产物月桂正确性 基丙酮的新路线。香叶基丙酮是VE生产的重要支链化合物-C20的异植物醇的中间体。研究工作考察了月桂烯和氯化氢1、,4-加成反应过程中,月桂烯纯度、氯化氢加成量对该反应主产物香叶基氯和橙花基氯产率的影响,同时研究了它们和丙酮取代反应的条件及影响因素,如温度、催化剂、时间  相似文献   

8.
枫香树脂化学成分的研究   总被引:2,自引:0,他引:2  
从枫树树脂非挥发固体物分离得到肉桂酸肉桂酯、齐墩果酮醇、齐墩果酮酸、羽扇豆酮酸4种化合物,其中齐墩果酮醇为首次从该植物中得到。枫树脂的挥发油主要成分为α-蒎烯、β-蒎烯、莰烯、异松油烯、石竹烯、乙酸龙脑酯。  相似文献   

9.
-蒎烯的研究     
研究了以五氧化二钒合成的苯甲酸氧钒催化过氧化氢氧化β-蒎烯.考察了催化剂、过氧化氢和溶剂用量及水等因素对催化性能的影响.在苯甲酸氧钒用量为β-蒎烯质量的5%、丙酮与β-蒎烯的体积比为4:1、过氧化氢与β-蒎烯的物质的量之比为2:1的条件下、30℃反应24 h后,β-蒎烯转化率可达56.2%以上,主要产物诺蒎酮和马鞭草烯酮的选择性分别为42.8%和35.5%.  相似文献   

10.
β-蒎烯合成诺蒎酸的反应条件研究   总被引:4,自引:4,他引:0  
研究以松节油中的β-蒎烯为原料,通过KMnO4氧化合成诺蒎酸,并对氧化反应步骤中各因素对反应的影响进行了探讨。制备诺蒎酸的最佳条件为:β-蒎烯、KMnO4、NaOH的物质的量之比1∶2.5∶1,水为溶剂,温度25~30℃,反应时间4~5 h,得率达到35%。  相似文献   

11.
α—蒎烯催化异构制备双戊烯的研究   总被引:2,自引:0,他引:2  
以13X钠型分子筛为催化剂、α-蒎烯为原料制备双戊烯。探讨α-蒎烯异构化反应制备双戊烯的工艺,考察了反应温度、反应时间、催化剂处理方式、催化剂用量以及催化剂的颗粒大小对α-蒎烯异构产物分布的影响,确定了适宜的工艺条件。同时对反应机理作了初步的探讨。  相似文献   

12.
望春玉兰精油化学成分研究   总被引:8,自引:0,他引:8  
采用水中蒸馏法蒸取木兰科植物望春玉兰的花蕾(辛夷)和鲜花的精油,用GC面积归一化法和GC/MS定性法进行其化学成分的定性和定量研究。结果表明:望春玉兰花蕾含油量高达3.1%,有独特香气,主含α-蒎烯、桧烯、柠檬烯、桉叶油素、松油醇、依兰油烯和桉叶醇等成分,总量占全油93%以上。鲜花含油量约0.2%,香气宜人,主含α-蒎烯、桧烯、月桂烯、桉叶油素、松油醇、乙酸松油酯和依兰油烯等成分,总量占全油95%  相似文献   

13.
综述了比较常用的α-蒎烯、β-蒎烯以及3-蒈烯的异构方法.α-蒎烯、β-蒎烯以及3-蒈烯是松节油中含量较高的3种单萜烯烃,这3种单萜烯都可以在加热或者催化剂存在下,尤其是二者的共同作用下发生异构转化,生成苧烯、莰烯、月桂烯、对伞花烃等烯烃类化合物,可以作为原料或中间体而被进一步利用.  相似文献   

14.
β—蒎烯合成柑菁醛初报   总被引:2,自引:0,他引:2  
本文报道了从β—蒎烯合成柑菁醛在实验室规模下已获得成功。合成步骤包括β—蒎烯热异构化生成香叶烯和香叶烯与丙烯醛反应获得柑菁醛。 在管式炉中,加热β—蒎烯蒸汽,当温度为650~750℃、接触时间0.06~0.12秒时,有90%的β—蒎烯转化成香叶烯和苧烯等化合物。香叶烯的产率大于60%。 香叶烯与丙烯醛的狄耳斯—阿尔德反应于烧瓶中进行,当温度在130~160℃,经3~6小时,反应即可完成。柑菁醛的产率达70%。  相似文献   

15.
紫苏醛是一种重要的香料及医用有机中间体。本文主要综述了近年来紫苏醛合成的研究状况以及各种合成路线的优缺点,尤其是以α—蒎烯和β—蒎烯为起始原料的路线,并讨论和展望了未来反应和催化剂的改进和研究方向。为今后研究提供相关资料信息,以便更好地开发利用紫苏醛的价值。  相似文献   

16.
-蒎烯氧化制备诺蒎酸   总被引:1,自引:3,他引:1  
利用水和叔丁醇的混合溶液作为反应的溶剂,用高锰酸钾氧化β-蒎烯制备诺蒎酸,考察了叔丁醇含量、高锰酸钾和碱用量以及温度对产物收率的影响.最佳反应条件:反应温度15~25 ℃,β-蒎烯、KMnO4、NaOH物质的量的比为1:3:1.5,用 30 % 的叔丁醇水溶液做溶剂,诺蒎酸的收率(质量分数)在 70.0 % 以上.  相似文献   

17.
固体超强酸催化合成松油醇的研究   总被引:22,自引:7,他引:15  
将SO4^2-/SnO2固体超强酸用于催化合成松油醇,显示出很高的催化活性;获得了SO4^2-/SnO2制备及松油醇合成的较好工艺条件:硫酸浓度为1.0mol/L,焙烧温度550℃,焙烧时间3h,催化剂用量为松节油重量的8%,一氯乙酸与松节油的摩尔比为1.0 ̄1.4:1,反应温度60℃,反应时间8 ̄12h。SO4^2-/SnO2还具有良好的重复使用性能和再生效果。  相似文献   

18.
天目木兰的挥发性化学成分   总被引:2,自引:0,他引:2  
用水浴加热-反相柱吸附提取天目木兰(Magnolia amoena Cheng)的挥发性物质,用GC-MS对其化学成分和相对含量进行了系统分析,得到27个组分,鉴定出23种化合物,其中主要成分为α-蒎烯,β-蒎烯,茨烯,β-月桂烯,D-柠檬烯,鞋葑酮,十八烷等。  相似文献   

19.
【目的】元宝枫、雪松是华北地区常见的绿化树种,阔叶树和针叶树的典型代表,研究其挥发物释放规律并分析其对环境的影响,通过树种合理配置,科学指导绿地游憩林建设,创造更有利于人体健康的绿地环境。【方法】采用固相微萃取结合气质联用仪( SPME-GC-MS),选择生长健康的多年生元宝枫、雪松植株,摘取当年生向阳叶片与枝叶,在7月中旬从8:00—次日5:00,每隔3 h测定其挥发物成分与含量,同时同步测定植株生长环境的温度与湿度。采用 SPSS软件对各数据进行整理分析。【结果】1)元宝枫叶片挥发物主要成分是 C6,C8的酯、醇、醛和萜烯类化合物,乙酸叶醇酯、乙酸己酯、3-己烯醇、3-己烯醛和β-石竹烯约占挥发物总量的70.0%以上,使叶片呈现青叶香。各化合物的释放规律不同,主要成分 C8酯类化合物释放高峰在14:00,低谷在5:00; C15倍半萜类化合物释放呈现“2峰2谷”型,高峰在17:00和5:00左右,低谷出现在8:00和23:00左右。相关分析表明,3-己烯醛与3-己烯醇极显著正相关,乙酸叶醇酯与3-己烯醛、3-己烯醇极显著负相关,其他挥发物间无显著相关。2)雪松枝叶挥发物主要是萜烯类物质,相对含量达84.0%以上,主要成分是α、β-蒎烯、β-月桂烯、D -柠檬烯、β-石竹烯、吉马烯 D,使雪松枝叶呈现树脂香。各化合物的释放规律亦不同,大多数单萜物质如α、β-蒎烯、β-月桂烯、D-柠檬烯等,释放高峰在14:00左右,低谷出现在23:00—次日2:00;倍半萜类物质如β-石竹烯、吉马烯 D释放高峰在17:00和2:00,23:00和5:00则达最低。相关分析表明,α、β-蒎烯、β-月桂烯、D -柠檬烯等4种单萜化合物相关性较高;β-石竹烯与吉马烯 D 极显著相关,与单萜无显著相关。3)挥发物的释放除具有昼夜节律外也受到外界环境的影响,相关分析表明,挥发物总峰面积与温度呈正相关,与相对湿度呈负相关。【结论】元宝枫叶片挥发物以 C8的酯类为主,雪松枝叶挥发物以 C10,C15的萜烯类为主,这与挥发物合成途径有关,各挥发物释放具有不同的昼夜节律性。通常在一定范围内随温度升高、相对湿度减小,挥发物释放量增加。  相似文献   

20.
对β-蒎烯氧化制备诺蒎酮的合成工艺进行优化,探讨了反应时间、反应温度、催化剂类型及用量、氧化剂类型及用量和溶剂种类等因素对反应转化率和选择性的影响。研究结果显示:5.00 g β-蒎烯,3 mL 2 mol/L H2SO4,反应时间为3 h,反应温度为21~24℃,催化剂为十六烷基三甲基溴化铵(CTAB),用量0.20 g,氧化剂为高锰酸钾,n(高锰酸钾)∶n(β-蒎烯)为3.2∶1,溶剂为丙酮,在机械搅拌条件下,诺蒎酮合成反应的转化率达99.5%,选择性高达92.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号