首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Humic and fulvic acids were extracted from two Israeli and tour Italian soils and oxidized with alkaline permanganate solution after methylation. Following oxidation, the degradation products were separated by solvent extraction and chromatographic methods and identified by gas chromatography-mass spectrometry. Major oxidation products were aliphatic, phenolic and benzenecarboxylic acids. In toto, 33 oxidation products were identified. These were essentially the same compounds as those produced by the permanganate oxidation of methylated humic and fulvic acids extracted from soils formed under widely differing climatic and geologic conditions, except that yields of phenolic acids from Mediterranean humic and fulvic acids were lower than those produced under similar conditions from humic materials extracted from other soils. The information provided by chemical degradation suggests that humic and fulvic acids from widely differing soils have similar chemical structures.  相似文献   

2.
Five humic and three fulvic acids, extracted from Argentine soils, were methylated and oxidized with KMnO* solution. The oxidation products were extracted into ethyl acetate, remethylated, separated by preparative gas chromatography and identified by comparing their mass and micro-IR spectra with those of authentic specimens.The major oxidation products from the humic acids were benzenetetra, -penta-, and -tricarboxylic and hydroxybenepentacarboxylic acid. The major compounds isolated from the fulvic acid oxidation products were aside from benzenecarboxylic and phenolic acids, substantial amounts of ethyl-benzylsulfonate and N-methyl-benzylsulfonamide, one complex aromatic ester and two anhydrides. The origin of the S-containing compounds is uncertain; they could be impurities. Weight ratios of benzenecarboxylic to phenolic acids averaged 5·8 for humic acids but only 0·9 for fulvic acids, suggesting an enrichment in phenolic structures in the fulvic acids. Possible structural arrangements for humic and fulvic acids are discussed.  相似文献   

3.
We studied the acid‐base properties of 16 fulvic acids and 16 humic acids isolated from the surface (3–15 cm) and subsurface (> 45 cm) horizons of two types of acid forest soils, derived respectively from amphibolite and granite rocks, under five different types of vegetation. The observed differences between the contents of humic substances in the two types of soils were related to the degree of Al‐saturation of the soil organic matter, as indicated by the molar ratio between pyrophosphate extractable Al and C. Humic fractions were characterized in terms of elemental composition, and CPMAS 13C NMR spectrometry. The contents of carboxylic and phenolic groups were estimated by potentiometric titrations conducted in 0.1 m KNO3 in a nitrogen atmosphere. The fulvic acids contained more carboxylic groups but less phenolic groups than the humic acids: the ratio of phenolic to carboxylic groups in the humic acids was 0.48 ± 0.10 and in the fulvic acids 0.23 ± 0.05. The mean values of the protonation constants of each of the humic substance fractions can be used as generic parameters for describing the proton binding properties. The fulvic acids isolated from the subsurface horizon of the soil contained between 2.6 and 23% more carboxylic groups, and the humic acids between 8 and 43% more carboxylic groups than those isolated from the surface horizon of the same soil.  相似文献   

4.
Water-ex tractable poly carboxy lie acids and alkali-extractable humic acids and fulvic acids, were isolated from agricultural top-soils of two soil associations. Samples from four soil series from each association were selected with drainage status varying from well-drained to very poorly-drained. The amounts of atkali-extractable humic acid and water-ex tractable polycarboxylic acids were highest in the very poorly-drained soils whilst the amounts of alkali-extractable fulvic acid were generally similar in all the soils, although the fulvic acid accounted for a lower proportion of the total organic matter in the poorly-drained soils. Oxalate-extractable aluminium decreased with increased drainage impedance, whilst no such trend was observed for oxalate-extractable iron. It is suggested that the fulvic acid-like polycarboxylic acids are removed from the soil solution by adsorption onto sesquioxides; so that the lower content of aluminium oxides in the very poorly-drained soils results in depressed levels of fulvic acid and increased concentrations of water-extractable polycarboxylic acids.  相似文献   

5.
The fractional composition of dissolved organic matter and the chemical nature of humic and fulvic acids were studied in lysimetric waters from forest soils of different altitudinal zones in the Sikhote Alin Range. The elemental composition, infrared absorption spectra, concentrations of acid functional groups, and pK spectra of humic and fulvic acids were determined. Fulvic acids predominated in the upper soil horizons, and fraction of nonspecific dissolved organic substances predominated in the lower mineral horizons. The portion of humic acids in the humus horizons markedly decreased from the low-mountain soils to the high-mountain soils; the nitrogen content of humic and fulvic acids decreased in the same direction. Three classes of carboxyl and phenolic groups were determined in pK-spectra of humic and fulvic acids. The soils of high-mountain zones had stronger acidic properties of humic and fulvic acids in comparison with the soils of low-mountain zones. The determined characteristics of the composition of dissolved organic matter and the trends of their changes contribute to our knowledge of pedogenetic processes in the altitudinal sequence of forest landscapes of the Sikhote Alin Range.  相似文献   

6.
Humic and fulvic acids were isolated from an agricultural soil by conventional means. The same soil was extracted with water and the organic matter freed of inorganic and low molecular weight substances. The usual chemical differences between humic acid and fulvic acid were confirmed and the water extract was shown to resemble fulvic acid quite closely. Further fractionation of the fulvic acid and water extract showed that the elemental composition, carboxyl and acidic hydroxyl contents, molecular weights, and infrared spectra of the purified polycarboxylic acids were virtually identical. Both promoted the same growth response in cultured isolated tomato roots. It is suggested that the qualitative similarity of fulvic acid to the polycarboxylic acid extracted by water justifies the use of the more easily isolated fulvic acid in physiological experiments on the direct effects on plants of soil organic matter.  相似文献   

7.
To understand the effect of land use changes on the composition of humus in tropical soils, samples from land under primary forest, secondary forest, coffee plantation, and arable crops were investigated at three sites in south Sumatra, Indonesia. Total carbon and total nitrogen contents were 1.7 to 4.3 times and 1.1 to 2.8 times greater in the topsoil under primary forest than under the other types of land use. Following change from primary forest to other uses, the proportion of humic acids in the organic matter of the topsoils decreased while that of the fulvic acid fraction increased. Within the range of land uses, differences in the yields of humic acids and fulvic acid fractions were, respectively, larger and smaller than those in total carbon content. The humic acids were classified into the low and middle classes in the degree of humification. Absorption due to the green fraction of humic acids, Pg, was detected in the UV‐visible spectra of almost all the humic acids. No relation was observed between the degree of humification of humic acids or the strength of Pg absorption in their spectra and land use change. The fulvic acid fractions were fractionated on insoluble polyvinylpyrrolidone (PVP) into the adsorbed fractions consisting of humic substances and the non‐adsorbed fractions consisting of non‐humic substances. A positive correlation between the amount of the fulvic acid fraction and the percentage of the PVP‐adsorbed fraction within it indicated that the variation in the amount of the fulvic acid fraction was attributable to acid‐soluble humic substances. The ionization difference spectra of solutions between pH 12 and pH 7 suggested that the chemical structures of the PVP‐adsorbed fulvic acids have been altered by land use change.  相似文献   

8.
The change of humic acids in alkaline solution Five natural humic acids were fragmented under the conditions of the conventional method of extraction of humic substances with sodium hydroxide. Fulvic acid, hymatomelanic acid and a water soluble fraction (at pH 2) could be isolated as fragmentation products. The three fractions were formed directly after the treatment with sodium hydroxide, their quantities depend on the concentration and time of treatment with sodium hydroxide and from the function of the system. The deviating, differentiating and reproducing formation of fragments is explained by partial reversible reactions. Therefore fulvic acid and hymatomelanic acid must be regarded as artefacts. existing during the procedure of isolation of humic substances at high pH-values. Therefore the conventional isolation of humic substances from soils should always be accompanied by experiments, which inform about the arteficial production of ‘fulvic acids’ and ‘hymatomelanic acids’ during the procedure of isolation.  相似文献   

9.
A simple three step method is described for isolation of soil fulvic acids in high yield. The complexing agent H2P2O72? (at pH 2) is used to release soil-bound fulvic acids. Extraction of humic acids is minimal. Selective separation of the protonated fulvic acids from the ionic extractant is achieved on a non-ionic polyacrylate resin (Amberlite XAD-7); after washing the resin, fulvic acids were retrieved in >98% yield by adjusting the pH to 6.5. Two problems associated with the classical alkali extraction method are avoided: possible alkaline oxidation of phenolic components, and their oxidation by Fe3+ under the acidic conditions employed to precipitate humic acids. The product typically has an ash weight of <0.6% after one XAD treatment. The method has been applied to three soils and one IHSS peat sample.  相似文献   

10.
G. Ogner  T. Gr∅nneberg 《Geoderma》1977,19(3):237-245
Methylated fulvic and humic acids were oxidized by permanganate in chloroform in the presence of a cyclic polyether, 18-crown-6. The total amount of oxidation products identified was 6.5% for fulvic acid and 6.7% for humic acid. About 46% of the oxidation products found from both fractions were dicarboxylic acids (15 compounds), the rest were benzenecarboxylic acids and their methoxyl derivatives (15 compounds). Alkanes and fatty acids were also found.Nonandioic acid and 3,4-dimethoxy-benzenecarboxylic acid are found in almost equal amounts. Each accounts for 1.3% of the starting material, and together they represent 40% of the oxidation products. 3,4-Dimethoxy-benzoic acid and 4-methoxy-benzoic acid are believed to result from the oxidation of terminal groups in the humic polymer.Proton resonance spectra show that about 25% of the aliphatic protons are part of methylene chains. The most prominent chain lengths consist of 6–8 methylene groups as shown by the dicarboxylic acids formed by oxidation.  相似文献   

11.
Effects of acid pre-treatment and fractionation on the molecular weight distribution of OIM Na4P2O7 organic matter extracts were investigated in a chronosequence of weakly weathered soils developed on aeolian sand in New Zealand. Acid pre-treatment of soils with OIM HCl followed by OIM HCI:03M HF was found to enhance the polydispersion in the nominal molecular weights of the extracts. The same treatment resulted in significant increases in yield and reduction in ash content. However, prolonged standing of extracts in the acids led to acid-induced polymerization, resulting in a predominance of organic matter in the higher nominal molecular weight ranges. Fractionation of organic matter extracts by acid precipitation into humic and fulvic acids did not separate them according to molecular weight as commonly believed. Instead, fulvic acids from most soils were found to have similar nominal molecular weight distributions to those of their humic acid counterparts. A large proportion of soil fulvic acid compounds was in the > 100 000 nominal molecular weight range.  相似文献   

12.
The distribution of phosphorus among humus acid groups in different soil types was studied. It was shown that the binding of P with acid-soluble and-insoluble organic components is determined by the acid-base status of soils, which controls the predominant interaction of P with Fe and Al or with Ca and Mg, and the solubility of the resulting organic phosphates in acid and alkali. The major part of P is associated with the group of humic acids (HAs) in the acid soils and with fulvic acids (FAs) in the neutral and calcareous soils. During the fractionation of organic matter from acid soils, the amount of P redistributed from the HA to the FA group can increase with an increasing acid or alkaline impact on the soil, which breaks the bonds of the phosphorus-bearing organic components with metals.  相似文献   

13.
Competition in adsorption between humic acid (HA) or fulvic acid (FA) and phosphate on synthetic goethite, gibbsite and two tropical soils was studied. The results for both goethite and gibbsite showed that HA and FA competed strongly with phosphate for adsorption sites at low pH values. The soils showed a similar result with a reduction in phosphate adsorption resulting from the addition of HA at the pH of the soils. The competition between HA and phosphate at different pH levels is illustrated by comparing the adsorption envelopes for phosphate on goethite, gibbsite and the two soils in the presence and absence of HA. The trends observed may be explained by the relative positions of the maximum buffer-power (buffer capacity) of the organic acids and of phosphoric acid which are shown to lie in different pH ranges.  相似文献   

14.
A series of humic and fulvic acids isolated from different sources, size‐fractions separated from a humic acid, and three soils of different origin were subjected to CPMAS 13C‐NMR spectroscopy to obtain the distribution of their carbon contents. The relative areas of chemical shift regions in NMR spectra were used to apply a principal component analysis (PCA) to the three sets of samples. The multivariate analysis was successful in efficiently differentiating samples on the basis of the quality of their organic carbon content. The PC biplots based on two principal components distinguished objectively among samples as accurately as it was possible to do by subjective qualitative evaluation of the original spectra. In the case of the soils, a discriminant analysis (DA) was applied to build a classification model that allowed the validation of the three soils according to their origin. Percentage of validation in the classification model is expected to increase when a large number of NMR spectra are accumulated and/or the concentration of organic carbon in samples is enhanced. The multivariate analyses described are likely to become a useful tool to increase the importance of CPMAS 13C‐NMR spectra in the appraisal of natural organic matter variations in heterogeneous natural systems.  相似文献   

15.
Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils,we assessed various extraction methods of Al,Fe,and C fractions from montane volcanic ash soils in northern Ecuador,aiming at elucidating the role of Al and Fe in stabilizing soil organic matter(SOM).We found extractions with cold sodium hydroxide,ammonium oxalate/oxalic acid,sodium pyrophosphate,and sodium tetraborate to be particularly useful.Combination of these methods yielded information about the role of the mineral phase in stabilizing organic matter and the differences in type and degree of complexation of organic matter with Al and Fe in the various horizons and soil profiles.Sodium tetraborate extraction proved the only soft extraction method that yielded simultaneous information about the Al,Fe,and C fractions extracted.It also appeared to differentiate between SOM fractions of different stability.The fractions of copper chloride-and potassium chloride-extractable Al were useful in assessing the total reactive and toxic Al fractions,respectively.The classical subdivision of organic matter into humic acids,fulvic acids,and humin added little useful information.The use of fulvic acids as a proxy for mobile organic matter as done in several model-based approaches seems invalid in the soils studied.  相似文献   

16.
施用化肥对土壤腐殖质结构特征的影响   总被引:6,自引:3,他引:6  
张奇春  王光火 《土壤学报》2006,43(4):617-623
应用红外光谱法和^1H-NMR波谱法初步研究了不同配施化肥处理条件下HA和FA的化学基团组分,并探讨了不同施肥处理对腐殖质化学基团构成的影响。结果表明:不同配施化肥的处理明显影响了土壤腐殖质分子的结构和含量变化。施用化肥有利于HA结构的年轻化、简单化,其影响效果为平衡施化肥(NPK)〉不平衡施化肥(PK)。^1H-NMR研究结果表明不同配施化肥处理FA样品的谱图形态非常相似,出峰位置基本相同。长期平衡施化肥(NPK配施)FA中碳水化合物的H及其它与O、N相连的C上的H的相对含量较高,而长期不施N(施PK)处理FA中烷基链烃中的H相对含量较高。  相似文献   

17.
We have recently presented a method for the determination of quickly reacting aluminium in natural waters based on kinetic discrimination in a flow system. This method has been further validated using both an isolated fulvic acid and natural humus-rich waters. Different reaction times were used, further clarifying the response of aluminium complexed with humic and fulvic acids. Equilibrium dialysis was also used as a reference method for comparison. With the reaction time used normally, 2.3 s, aluminium complexed with humic or fulvic acids was shown not to be measured with our method. These results suggest that our method may be used for studies of the complexation of aluminium with humic and fulvic acids. We have compared results from a series of solutions with varying concentrations of fulvic acids with calculations based on two different models obtained from complexation studies performed by potentiometric titrations and by equilibrium dialysis. The results show fair agreement and suggest that our method can be used for such studies. This approach is more sensitive and rapid than potentiometric titrations, enabling studies of humus interactions with aluminium at concentrations similar to those found in natural waters.  相似文献   

18.
To investigate the chemical heterogeneity of humic substances in relation to molecular size, fulvic and humic acids were extracted and purified from the surface horizon of a Humic Gleysol in northern Switzerland. A fractionation scheme using hollow‐fibre ultrafiltration cartridges was developed and used to obtain four size fractions of the humic acid with nominal molecular weight ranges > 300 kDa, 100–300 kDa, 30–100 kDa, and 10–30 kDa. The fulvic acid and all humic acid fractions were characterized by size exclusion chromatography, elemental analysis (C, H, N, S), as well as spectroscopic techniques including UV‐VIS, CP‐MAS 13C‐NMR, FT‐IR, and fluorescence spectroscopy. Clear chemical differences between the humic acid size fractions were observed. Smaller size fractions of the soil humic acid contained more chargeable functional groups and a larger percentage of aromatic carbon than the larger size fractions. Conversely, the percentage of aliphatic carbon increased with increasing apparent molecular weight. The chemical composition of the smallest humic acid fraction differed clearly from the fulvic acid fraction, despite similar apparent molecular size and carboxyl carbon content. Small humic acids contained much more aromatic carbon and less aliphatic carbon than the fulvic acid fraction. Apparently, humic size fractions differ in their chemical composition, which can have important implications for their environmental behaviour.  相似文献   

19.

Purpose  

Chemometric methods were used to analyze chemical/spectroscopic data of fulvic acid (FA) isolated from soils in Hetao Irrigation District of China and to indicate humification degree of soil organic matter and assess soil salinization processes.  相似文献   

20.
Relationships between abiotic oxidation and adsorption of phenolic acids added to soils and soil chemical properties were investigated by using 32 soil samples and ferulic, vanillic, and p-hydroxybenzoic acids. Soil properties studied were as follows: (as adsorption factors) contents of acid oxalate extractable Al (Alo), Fe (Feo), dithionite-citrate-bicarbonate (DCB) extractable Fe (Fed), total carbon and clay, and (as oxidation factors) level of soil oxidative activity (Cr oxidation) determined by the amount of Cr(VI) converted from Cr(III) added to soils. Soil samples were divided into 3 types based on chemical properties: Andosols A (A horizon of Andosols), Andosols B (B horizon of Andosols and light-colored Andosols), and non-Andosols.

The recovery of all phenolic acids (RPA) was negatively correlated with the total carbon and Feo contents in Andosols A and B, respectively, which suggested adsorption onto soil organic matter in Andosols A and onto Feo in Andosols B. It was considered that almost no oxidation of phenolic acids occurred in Andosols A, because a very small amount of Cr(VI) was obtained. The recovery of ferulic acid (RFA) and vanillic acid (RVA), however, was negatively correlated with Cr oxidation in non-Andosols, suggesting that these phenolic acids were oxidized, while almost all of the p-hydroxybenzoic acid was recovered.

These results were also supported by the comparison between RFA and recovery of dissolved organic carbon (RTOC). RFA was very similar to RTOC in Andosols A and B, which indicated that adsorption occurred, whereas RFA was lower than RTOC in the non-Andosols that showed a high level of Cr oxidation, indicating that oxidation took place. Manganese dissolution which occurred when phenolic acids were added to soils was also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号