首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to assess the effects of climate change on green and blue water use with temporal change in the transplanting and growing season for paddy fields in South Korea using the representative concentration pathway (RCP) 4.5 and 8.5 scenarios in 2025 (2011–2040), 2055 (2041–2070), and 2085 (2071–2100). The optimal transplant date determined by an accumulated temperature analysis, between 27 April and 21 May in 1995, was delayed until 29 June in 2085, and the average growing period was decreased by about 20 days in 2085. Changes in the transplanting season and growing period could influence the efficiency of future green water use and blue water savings. Approximately 810.5 Mm3 of green water was available during the 1995 transplanting season, but the predicted use of green water was 1524.7 Mm3 in future for the optimal transplanting season. In addition, 923.0 Mm3 of blue water savings can be expected in 2025. This study showed that appropriate change of transplanting season could mitigate the water requirements in paddy fields by optimizing phenology, improving green water efficiency, and blue water savings.  相似文献   

2.
Water use efficiency and crop coefficients of dry season oilseed crops   总被引:1,自引:0,他引:1  
Eastern India receives higher average annual rainfall (1000–2000 mm) but 80% of it occurs within the June–September (rainy season), whereas the winter season (November–March) is dry. Due to a shortage of soil moisture, most rainfed areas of the region remain fallow during the winter season and cultivation (mainly rice) is confined to the rainy season only (June–September). To explore the possibility of double cropping in the rainfed rice areas, three oilseed crops, viz., linseed (Linum usitatissimum L.), safflower (Carthamous tinctorious L.), mustard (Brassica juncea L.), were grown in a representative rainfed area of eastern India, i.e. Dhenkanal, Orissa, during the dry/winter season by applying irrigation water at phonological stages. Study revealed that with three supplemental irrigations, the highest WUE was achieved by safflower followed by linseed with the mean values being 3.04 and 2.59 kg ha−1 mm−1, respectively. Whereas, with one irrigation, the highest water use efficiency (WUE) was achieved for safflower (1.23 kg ha−1 mm−1) followed by linseed (0.93 kg ha−1 mm−1). Of the three crops studied, safflower withdrew maximum water followed by mustard and crops were shown to use 90–105 mm more water than linseed. With three irrigations, average maximum rooting depths were 1.66, 1.17 and 0.67 m for safflower, mustard and linseed, respectively, which were 13.5, 10.6 and 11.4% higher than for single irrigated crops because of more wet sub soils and decrease of soil strength. The crop growth parameters like leaf area, dry biomass were also recorded with different levels of irrigation. The research work amply revealed the potential of growing these low water requiring oilseed crops in rice fallow during dry/winter season utilizing limited irrigation from harvested rainwater of rainy season. Crop coefficients (Kc) of three winter season oilseed crops were derived using field water balance approach. Study showed that LAI was significantly correlated with Kc values with the R2 values of 0.91, 0.89 and 0.94 in linseed, safflower and mustard, respectively. When LAI exceeded 3.0, the Kc value was 1 in safflower and mustard whereas in linseed corresponding LAI was 2.5. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection.  相似文献   

3.
为了评价农业引水总量的生产效益,从全国459个主要灌区的实际灌溉水和粮食生产数据入手,计算、比较了1998,2005和2010年31个省区的灌溉水粮食生产率,利用空间自相关分析方法对1998—2010年中国灌溉水粮食生产率的时空变异规律进行探究.结果显示:各省区灌溉水粮食生产率呈增大趋势,代表年的中国均值为1.03 kg/m3,最大、最小值分别为河南的2.15kg/m3和海南的0.25 kg/m3,区域间差异较大;灌溉水粮食生产率在空间上存在显著的聚集现象,聚集程度随时间变化不明显,高值省区以黄淮海平原为核心集中分布,长江以南则密集了低值省区;江西、安徽及重庆灌溉水粮食生产率的变化幅度与其相邻省区不同步,造成了局部分异特征的变化.分析了中国灌溉水粮食生产率格局的形成及其随时间变化的原因.  相似文献   

4.
Summary The effects to climate and management practices on crop water requirement coefficients were studied for a soybean crop growing on a sandy soil using a mechanistic model that computes evaporation and transpiration in response to soil, crop, and climatic factors. It was found that seasonal errors could the as high as 190 mm when crop coefficients developed under one set of conditions were used under different climate and management conditions. The largest error in ET occurred when vapor pressure was reduced from 26 mb to 14 mb; next in importance were site differences in wind speed, radiation, irrigation interval, temperature and planting date. Correction factors needed to adjust crop coefficients to those site specific conditions ranged from 0.73 to 1.30 depending on the time of season and climate or management variable that was changed. When the overall crop coefficient was divided into a plant specific and a soil specific coefficients, the plant coefficient was relatively stable compared to soil coefficients. The results of this study can help establish a practical range of conditions over which crop coefficients developed at one site can be used to compute the appropriate values for sites where measurements have not been made.Approved for publication as Florida Agricultural Experiment Station Journal Series No. 9514. This research was partially supported by the US AID project, International Benchmark Sites Network for Agrotechnology Transfer, No. DAN-4054-c-00-2071-00  相似文献   

5.
The purpose of this study was to estimate precipitation (P), reference evapotranspiration (ETo), precipitation deficit (PD = P − ETo) and relative crop yield reduction (YR) for a generic crop under climate change conditions for three locations in Puerto Rico: Adjuntas, Mayagüez, and Lajas. Reference evapotranspiration was estimated by the Penman-Monteith method. Precipitation and temperature data were statistically downscaled and evaluated using the DOE/NCAR PCM global circulation model projections for the B1 (low), A2 (mid-high) and A1fi (high) emission scenarios of the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios. Relative crop yield reduction was estimated from a water stress factor, which is a function of soil moisture content. Average soil moisture content for the three locations was determined by means of a simple water balance approach.Results from the analysis indicate that the rainy season will become wetter and the dry season will become drier. The 20-year average September precipitation excess (i.e., PD > 0) increased for all scenarios and locations from 121 to 321 mm between 2000 and 2090. Conversely, the 20-year average February precipitation deficit (i.e., PD < 0) changed from −27 to −77 mm between 2000 and 2090. The results suggest that additional water could be saved during the wet months to offset increased irrigation requirements during the dry months. The 20-year average relative crop yield reduction for all scenarios decreased on average from 12% to 6% between 2000 and 2090 during September, but increased on average from 51% to 64% during February. Information related to the components of the hydrologic water budget (i.e., actual evapotranspiration, surface runoff, aquifer recharge and soil moisture storage) is also presented. This study provides important information that may be useful for future water resource planning in Puerto Rico.  相似文献   

6.
The study explores the potential of introducing an additional crop during dry season in Rwanda, comparing the efficiency of in situ soil moisture conservation techniques to sustain rain-fed agriculture. Comparative study of in situ soil moisture conservation techniques in bench terraces and unterraced field with maize crop had been conducted from June 2007 to October 2007. Bench terrace increased the average soil moisture content in 90 cm soil depth by more than 50% than that of unterraced land. Within the bench terraced field compartment bund and ridges and furrows increased soil moisture by 19.5% and 27.9% higher than plain bed. In terms of efficiency of moisture conservation, ridges and furrows performed well with 85.8% followed by compartment bund with 75.9% in terraced field. Unterraced field conserved moisture very poorly with 13.9% efficiency inferring importance of bench terraces for soil moisture conservation. No maize grain yield was recorded in all the techniques because soil water depleted to 60% and above from the beginning of the cropping period inferring the need of supplementary irrigation. Analysis of rainfall, crop water demand and in situ moisture conservation reveals exciting opportunities for water productivity enhancements by integrating components of water management within the context of rain-fed farming through water harvesting and supplemental or microirrigation for dry spell mitigation. Detailed analysis is needed for feasibility of lift irrigation with different crops under different altitudes to derive suitable policy for hill land irrigation.  相似文献   

7.
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580–663 mm and 466–656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R2 = 0.89) and ETc/ETp (R2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.  相似文献   

8.
The impact of climate change on maize yields in the United States and China   总被引:1,自引:0,他引:1  
This study analyzes the impacts of climate change on maize yields using an econometric model that incorporates climate, economic, and technology variables. The major finding is climate change will not universally cause negative impacts of maize yields in the United States and China. The results of a simulation of climate change on maize yields over the period 2008-2030 show that a combination of changes in temperature and precipitation can either bring positive or negative effects on maize yields. Furthermore, variation in regional climatic and economic conditions makes the impacts of climatic change on maize yields substantially different in different regions. In this research, the impacts of climate change on maize yields are not simply examined by climate factors. Economic and technology adaptation effects on maize yields are also incorporated. Thus, even with significant changes in climate conditions that alter the maize crop’s growing environment and affect crop yields, a decrease in maize supply due to a decrease in maize yields would lead to an increase in the maize price, which in turn would induce farmers to add more investments in production inputs to raise yields. Thus, the decrease in actual yields may not be as dramatic as predicted in only climate factor considered cases. In this research, findings gained from the study can be used for early-staged policymaking decisions and advanced problem prevention programs. To ensure the continuous increase in maize yields in the future, further studies and research, as well as efficient environmental policies and actions are required.  相似文献   

9.
Field experiments were performed at the HsuehChia Experimental Station from 1993 to 2001 to calculate the reference and actual crop evapotranspiration, derived the crop coefficient, and collected requirements input data for the CROPWAT irrigation management model to estimate the irrigation water requirements of paddy and upland crops at the ChiaNan Irrigation Association, Taiwan. For corn, the estimated crop coefficients were 0.40, 0.78, 0.89 and 0.71 in the initial, crop development, mid-season and late-season stages, respectively. Meanwhile, the estimated crop coefficients for sorghum were 0.44, 0.71, 0.87 and 0.62 in the four stages, respectively. Finally, for soybean, the estimated crop coefficients were 0.45, 0.89, 0.92 and 0.58 in the four stages, respectively. With implementation of REF-ET model and FAO 56 Penman–Monteith method, the annual reference evapotranspiration was 1268 mm for ChiaNan Irrigation Association.In the paddy fields, the irrigation water requirements and deep percolation are 962 and 295 mm, respectively, for the first rice crop, and 1114 and 296 mm for the second rice crop. Regarding the upland crops, the irrigation water requirements for spring and autumn corn are 358 and 273 mm, respectively, compared to 332 and 366 mm for sorghum, and 350 and 264 mm for soybean. For the irrigated scheme with single and double rice cropping patterns in the ChiaNan Irrigation Association, the CROPWAT model simulated results indicate that the annual crop water demands are 507 and 1019 mm, respectively, and the monthly water requirements peaked in October at 126 mm and in January at 192 mm, respectively.  相似文献   

10.
Based on future climate change projections offered by IPCC, the responses of yields and water use efficiencies of wheat and maize to climate change scenarios are explored over the North China Plain. The climate change projections of 21st century under A2A, B2A and A1B are from HadCM3 global climate model.A climate generator (CLIGEN) is applied to generate daily weather data of selected stations and then the data is used to drive CERES-Wheat and Maize models. The impacts of increased temperature and CO2 on wheat and maize yields are inconsistent. Under the same scenario, wheat yield ascended due to climatic warming, but the maize yield descended. As a more probable scenario, climate change under B2A is moderate relative to A2A and A1B. Under B2A in 2090s, average wheat yield and maize yield will respectively increase 9.8% and 3.2% without CO2 fertilization in this region. High temperature not only affects crop yields, but also has positive effect on water use efficiencies, mainly ascribing to the evapotranspiration intensification. There is a positive effect of CO2 enrichment on yield and water use efficiency. If atmospheric CO2 concentration reaches nearly 600 ppm, wheat and maize yields will increase 38% and 12% and water use efficiencies will improve 40% and 25% respectively, in comparison to those without CO2 fertilization. However, the uncertainty of crop yield is considerable under future climate change scenarios and whether the CO2 fertilization may be realized is still needed further research.  相似文献   

11.
Due to the increasing demand for food and fiber by its ever-increasing population, the pressure on fresh water resources of Pakistan is increasing. Optimum utilization of surface and groundwater resources has become extremely important to fill the gap between water demand and supply. At Lahore, Pakistan 18 lysimeters, each 3.05 m × 3.05 m × 6.1 m deep were constructed to investigate the effect of shallow water tables on crop water requirements. The lysimeters were connected to bottles with Marriotte siphons to maintain the water tables at the desired levels and tensiometers were installed to measure soil water potential. The crops studied included wheat, sugarcane, maize, sorghum, berseem and sunflower. The results of these studies showed that the contribution of groundwater in meeting the crop water requirements varied with the water-table depth. With the water table at 0.5 m depth, wheat met its entire water requirement from the groundwater and sunflower absorbed more than 80% of its required water from groundwater. Maize and sorghum were found to be waterlogging sensitive crops whose yields were reduced with higher water table. However, maximum sugarcane yield was obtained with the water table at or below 2.0 m depth. Generally, the water-table depth of 1.5–2.0 m was found to be optimum for all the crops studied. In areas where the water table is shallow, the present system of irrigation supplies and water allowance needs adjustments to avoid over irrigation and in-efficient use of water.  相似文献   

12.
The constraints on the effectiveness of twenty one deep tubewell schemes in Tangail, Mymensingh and Jamalpur Districts were studied. Major problems were the difficulty of constructing small earthworks (aqueducts), inconsistencies in credit provision, and the non-availability of HYV rice varieties with appropriate characteristics to exploit the irrigation. Research on farmer's cropping choice is reported, and conclusions aer drawn on issues of equity and project identification.Abbreviations DTW deep tubewell - BADC Bangladesh Agricultural Development Corporation - IRDP Integrated Rural Development Project - XEN Executive Engineer  相似文献   

13.
本文通过建立灌水模数,结合当地实际情况,介绍了灌溉用水进行计算和科学分析方法,为类似灌溉制度的建立提供借鉴.  相似文献   

14.
Deep percolation and nitrate leaching are important considerations in the design of sprinkler systems. Field experiments were therefore conducted to investigate the influence of nonuniformity of sprinkler irrigation on deep percolation and spatial distributions of nitrogen and crop yield during the growing season of winter wheat at an experiment station in Beijing, China. Three experimental plots of a sandy clay loam soil in the 0–40 cm depth interval and a loamy clay soil below 40 cm were irrigated with a sprinkler irrigation system that had a seasonal averaged Christiansen irrigation uniformity coefficient (CU) varying from 72 to 84%. Except for the fertilizer applied before planting, fertilizer was applied with the sprinkler irrigation system. The corresponding seasonal averaged CU for fertigation varied from 71 to 85%. Daily observation of matrix water potentials in the root zone showed that little deep percolation occurred. Consequently, the effect of sprinkler uniformity on deep percolation was minor during the irrigation season for the soil tested. Intensive gravimetric soil core samplings were conducted several times during the irrigation season in a grid of 5 m × 5 m for each plot to determine the spatial and temporal variation of NH4-N and NO3-N contents. Soil NH4-N and NO3-N exhibited high spatial variability in depth and time during the irrigation season with CU values ranging from 23 to 97% and the coefficient of variation ranging from 0.04 to 1.06. A higher uniformity of sprinkler fertigation produced a more uniform distribution of NH4-N, but the distribution of NO3-N was not related to fertigation. Rather it was related to the spatial variability of NO3-N before fertigation began. At harvest, the distribution of dry matter above ground, nitrogen uptake, and yield were measured and the results indicated that sprinkler fertigation uniformity had insignificant effects on the parameters mentioned above. Field experimental results obtained from this study suggest that sprinkler irrigation if properly managed can be used as an efficient and environment-friendly method of applying water and fertilizers.  相似文献   

15.
The spatial and temporal pattern of root water uptake in partially wetted soil was studied in the root zone of a 6-year-old microsprinkler-irrigated almond tree. The water balance of about one quarter of the root zone’s wetted soil volume (2.0×2.0×0.9 m3) was determined by catch cans, neutron probe and tensiometer measurements. Twenty-five neutron probe access tubes with catch cans were distributed in a square grid of 50 cm spacing. Eight pairs of tensiometers were installed at depths of 82.5 and 97.5 cm in a regular pattern between the access tubes. Neutron probe readings at 15 cm depth increments and tensiometer readings were taken at time intervals of 4–24 h. The rate of soil water depletion was calculated and used to estimate the spatial and temporal distributions of root water uptake. Soil water dynamics was studied in two stages: (1) during a week of conventional irrigation management with three irrigation events; and (2) during a period of 16 days without irrigation, after the monitored soil volume was thoroughly moistened so that soil water was easily available everywhere, initially. The zones of maximum root water uptake were the same for both stages in periods of high local rates of water application. After water applications, root water uptake occurred initially near the tree trunk and then progressed towards the root system periphery, thereby changing locations of maximum root water uptake and shifting to root zone regions with minimum soil water stress.
Kouman S. KoumanovEmail: Phone: +359-32-692349Fax: +359-32-670808
  相似文献   

16.
17.
The experiment discussed below was carried out on an onion crop cultivated under controlled deficit irrigation (CDI) conditions in a semi-arid climate. Eight treatments were used in which different water doses were applied according to the water requirements at each stage of the crop cycle. The effect of water deficit was studied at three vegetative stages (development, bulbification and ripening).Although, the dry matter yield was not affected by the total volume of water intake (with volumes ranging from 603.1 to 772.0 mm), the statistical analyses made have shown that there is some interaction between the volumes of water received by the crop at the bulbification and ripening stages, which means that inducing a shortage in both stages at the same time does lead to significant differences in the yield obtained.As to bulb sizes, the treatments which received the greatest volumes of water during the development and ripening stages yielded harvests with higher percentages of large-size bulbs, whereas the water shortages induced during the growth and bulbification stages led to higher percentages of small-size bulbs.  相似文献   

18.
Irrigation plays an important role in increasing food production in China. The impact of irrigation on crop yield (Y), crop water productivity (CWP), and production has not been quantified systematically across regions covering the whole country. In this study, a GIS-based EPIC model (GEPIC) was applied to simulate Y and CWP for winter wheat (Triticum aestivum L.) in China at a grid resolution of 5 arc-minutes and to analyze the impacts of reducing irrigation water on wheat production. The findings show that irrigation is especially important in improving CWP of winter wheat in the North China Plain (NCP), the “bread basket” of China. On average, the provincial aggregate CWP was 56% higher under the irrigated than that under the rainfed conditions. The intensification of water stress and the associated increase in environmental problems in much of the NCP require critical thoughts about reducing water allocation for irrigated winter wheat. Two scenarios for irrigation reduction in the NCP provinces are presented: reducing irrigation depth (S1), and replacing irrigated winter wheat by rainfed winter wheat (S2). The simulation results show that S1 and S2 have similar effects on wheat production when the reduction in irrigation water supply is below 20% of the current level. Above this percentage, S2 appears to be a better scenario since it leads to less reduction in wheat production with the same amount of water saving.  相似文献   

19.
Summary There is an increasing demand from farmers for irrigation scheduling advice. Where rainfall and evapotranspiration vary little from year to year, advice on a fixed irrigation schedule based on mean climatic data can be given. However where significant year to year variability in weather occurs a more flexible approach using actual weather data to predict the current level of soil water and mean climatic data to forecast the future rate of depletion and hence irrigation date may be needed. A technique for deciding the most appropriate scheduling approach was tested by using a simple model of crop growth combined with a soil water balance model to simulate year to year variability in scheduling advice. This technique was applied to irrigated wheat using a set of climatic data from 1968 to 1978 for Griffith in the Murrumbidgee Irrigation Area of New South Wales, Australia. A typical sowing date in early June was used and simulated irrigations were scheduled at an allowable soil water depletion (ASWD) of 62 mm for maximum yield and 93 mm for 80% of maximum. The analysis predicted that weather variability between years would cause the number of irrigations to vary from 2 to 7 for ASWD=62 mm and 1 to 4 for ASWD=93 mm. The interval between irrigations varied from 12 to 30 days, for ASWD=62 mm and from 16 to 28 days, for ASWD=93 mm. The first irrigation occurred between 76 and 131 days from sowing for ASWD=62 mm and from 100 to 140 days from sowing for ASWD=93 mm. The date of the last irrigation was similarly variable. This high degree of variability in the times and frequency of irrigations indicated that in south-eastern Australia accurate irrigation scheduling advice can only be given by using a flexible model using both actual and mean climatic data. A fixed schedule based on mean climatic data would lead to an inefficient use of water caused by the mistiming of irrigations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号