首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
寇程  高欣  李立群  李扬  王中华  李学军 《作物学报》2015,41(11):1640-1647
位于6A染色体的Ta GW2是控制小麦籽粒大小的关键基因,已发现其第8外显子有一个T碱基插入等位变异,其启动子区存在Hap-6A?A及Hap-6A?G等位变异。利用高分辨率熔解曲线分析技术(high resolution melting curve analysis,HRM)和Hap-6A-P1/P2分子标记检测了316份小麦品种(系)的Ta GW2-6A基因在上述2个位点的等位变异,分析了其不同等位变异与粒长、粒宽和千粒重的相关性,并以大面积推广的大粒品种周麦22为例,解析Ta GW2-6A基因优异等位变异在系谱选育中的遗传传递。共检测到61份T碱基插入等位变异(命名为977T基因型)和255份无T碱基插入的等位变异(977?基因型)材料;在977T基因型中,Hap-6A?A(TA)和Hap-6A?G(TG)单倍型材料分别为29份和32份,在977?基因型中,Hap-6A?A(?A)和Hap-6A?G(?G)单倍型材料分别为160份和95份。关联分析表明,977T基因型与977?基因型的粒长(P0.05)、粒宽(P0.001)和千粒重(P0.001)均有显著差异,Hap-6A?A单倍型与Hap-6A?G单倍型的粒长(P0.05)、粒宽(P0.05)和千粒重(P0.001)也有显著差异。Ta GW2-6A基因编码区和启动子区等位变异之间存在相互作用,共同调控小麦籽粒的大小,其中TA单倍型比TG、?A、?G单倍型更能增加小麦的粒宽和粒重,是优异的等位变异组合。周麦22为TA单倍型,系谱分析表明,该等位变异并非来源于亲本周8425B,而是来源于亲本辉县红,且TA单倍型能够稳定遗传,但是在常规育种选择过程中可能会丢失。本研究筛选出的Ta GW2-6A优异等位变异TA单倍型材料及高通量分子检测方法为分子标记辅助育种提供材料和方法依据。  相似文献   

2.
利用矮秆基因Rht-B1、Rht-D1和千粒重功能基因TaCwi-A1、TaGW2-6A、TaSus2-2B的KASP标记,对云南省育成的42份小麦品种(系)进行单倍型检测,旨在筛选出含有目标基因的优异小麦种质,为云南省小麦产量相关性状的遗传改良提供材料和方法。结果表明,供试材料的株高基因组成分为5种类型,分别为Rht-B1a/Rht-D1a(40.48%)、Rht-B1a/Rht-D1b(23.81%)、Rht-B1a+197bp/Rht-D1a(4.76%)、Rht-B1b/Rht-D1a(28.57%)、Rht-B1b/Rht-D1b(2.38%)。供试材料中TaCwi-A1基因TaCwi-A1a高粒重单倍型的分布频率为42.86%,TaGW2-6A基因Hap-6A-A高粒重单倍型的分布频率为38.10%,TaSus2-2B基因Hap-H高粒重单倍型的分布频率为71.43%。5份品种(系)为3个千粒重基因的TaCwi-A1a/Hap-6A-A/Hap-H高粒重单倍型组合,频率为11.90%。研究表明,云南小麦品种(系)产量相关性状具有较好的遗传改良潜力。  相似文献   

3.
Improvement of rice grain yield (YD) is an important goal in rice breeding. YD is determined by its related traits such as spikelet fertility (SF), 1,000-grain weight (TGW), and the number of spikelets per panicle (SPP). We previously mapped quantitative trait loci (QTLs) for SPP and TGW using the recombinant inbred lines (RILs) derived from the crosses between Minghui 63 and Teqing. In this study, four QTLs for SF and four QTLs for YD were detected in the RILs. Comparison of the locations of QTLs for these three yield-related traits identified one QTL cluster in the interval between RM3400 and RM3646 on chromosome 3. The QTL cluster contained three QTLs, SPP3a, SF3 and TGW3a, but no YD QTL was located there. To validate the QTL cluster, a BC4F2 population was obtained, in which SPP3a, SF3 and TGW3a were simultaneously mapped to the same region. SPP3a, SF3 and TGW3a explained 36.3, 29.5 and 59.0 % of phenotype variance with additive effect of 16.4 spikelets, 6 % SF and 1.8 g grain weight, respectively. In the BC4F2 population, though the region has opposite effects on TGW and SPP/SF, a YD QTL YD3 identified in this cluster region can increase 4.6 g grains per plant, which suggests this QTL cluster is a yield-enhancing QTL cluster and can be targeted to improve rice yield by marker aided selection.  相似文献   

4.
Quantitative trait locus (QTL) for grain size traits that include grain length (GL), grain width (GW), grain thickness (GT) as well as thousand grain weight (TGW) were identified using F2 population derived from a cross between a japonica cultivar Nongken58 and its large grain-sized mutant, ‘Dali’, which was selected in SP2 generation of plants from Nongken58 seeds exposed to cosmic radiation upon space-flight, and then advanced it over eight successive generations by bagging the panicles to ensure self pollination. ‘Dali’ had similar GW and GT but 4.8 mm longer in GL, and 18.1 g heavier in TGW than those of Nongken58. Seven main-effect QTLs (M-QTLs) were identified for the grain size and weight traits. Among them, three M-QTLs, QGs3a and QGs3b for both GL and TGW, and QGs5 for GW, GT and TGW, which had strong additive effects on grain shape and grain weight, were validated in the two F2 plant-derived F3 populations. The three M-QTLs were found to be non-allelic to the cloned genes GS3, GL3.1, qSW5 and QGs5 by comparative mapping. However, there was only one pair of digenic epistasis involving QGs3b for TGW detected in this population. Interestingly, homozygous ‘Dali’ alleles at the QGs3a, QGs3b and QGs5 showed significant increase in the grain size and weight, suggesting these novel alleles of ‘Dali’ at the above three loci may be a very useful for marker-assisted improvement of grain quality for japonica cultivars.  相似文献   

5.
Thorough understanding of the genetic mechanisms governing drought adaptive traits can facilitate drought resistance improvement. This study was conducted to identify chromosome regions harbouring QTLs contributing for water stress resistance in wheat. A RIL mapping population derived from a cross between W7984 (Synthetic) and Opata 85 was phenotyped for root length and root dry weight under water stress and non-stress growing conditions. ANOVA showed highly significant (p ≤ 0.01) variation among the RILs for both traits. Root length and root dry weight showed positive and significant (p ≤ 0.01) phenotypic correlation. Broad sense heritability was 86% for root length under stress and 65% for root dry weight under non-stress conditions. A total of eight root length and five root dry weight QTLs were identified under both water conditions. Root length QTLs Qrln.uwa.1BL, Qrln.uwa.2DS, Qrln.uwa.5AL and Qrln.uwa.6AL combined explained 43% of phenotypic variation under non-stress condition. Opata was the source of favourable alleles for root length QTLs under non-stress condition except for Qrln.uwa.6AL. Four stress specific root length QTLs, Qrls.uwa.1AS, Qrls.uwa.3AL, Qrls.uwa.7BL.1 and Qrls.uwa.7BL.2 jointly explained 47% of phenotypic variation. Synthetic wheat contributed favourable alleles for Qrls.uwa.1AS and Qrls.uwa.3AL. Two stable root dry weight QTLs on chromosomes 4AL and 5AL were consistently found in both water conditions. Three validation populations were developed by crossing cultivars Lang, Yitpi, and Chara with Synthetic W7984 to transfer two of the QTLs identified under stress condition. The F2.3 and F3.4 validation lines were phenotyped under the same level of water stress as RILs to examine the effect of these QTLs. There were 13.5 and 14.5% increases in average root length due to the inheritance of Qrls.uwa.1AS and Qrls.uwa.3AL, respectively. The result indicated that closely linked SSR markers Xbarc148 (Qrls.uwa.1AS) and Xgwm391 (Qrls.uwa.3AL) can be incorporated into MAS for water stress improvement in wheat.  相似文献   

6.
A study on marker-assisted selection (MAS) for the rf1 gene, which controls pollen sterility in the sorghum A1 cytoplasm, was conducted on the offspring population of two crosses between a maintainer line, BTx-622, and two sweet sorghum lines, BJ-299 and Lunen-2, to test the effectiveness of the MAS method and develop maintainer lines with sweet and juicy stalks and corresponding cytoplasmic-nuclear male sterility (CMS) lines. The simple sequence repeat marker Xtxp18 exhibited a high accuracy (95.098 %) for selecting recessive homozygotes for the rf1 gene. The segregation ratio matched the expected ratio calculated according to the reported genetic distance in the F2 population of the two crosses used. Finally, four excellent maintainer lines/CMS line pairs (F5/BC3) with high stalk juice and stalk juice sugar contents were developed. The MAS method based on Xtxp18 for the sorghum rf1 gene could be used for hybrid breeding programs at a low cost in the future.  相似文献   

7.
Sorghum shoot fly, Atherigona soccata is an important pest of sorghum during the seedling stage, which influences both fodder and grain yield. To understand the nature of inheritance of shoot fly resistance in sorghum, we performed generation mean analysis using two crosses IS 18551 × Swarna and M 35-1 × ICSV 700 during the 2013–2014 cropping seasons. The F1, F2, BC1 and BC2 progenies, along with the parental lines were evaluated for agronomic and morphological traits associated with resistance/susceptibility to sorghum shoot fly, A. soccata. The cross IS 18551 × Swarna exhibited significant differences between the parents for shoot fly deadhearts (%) in the postrainy season. The progenies of this cross exhibited lower shoot fly damage, suggesting that at least one of the parents should have genes for resistance to develop shoot fly-resistant hybrids. Leaf glossiness, leafsheath pigmentation and plant vigor score during the seedling stage exhibited non-allelic gene interactions with dominant gene action, whereas 100 seed weight showed both additive and dominant gene interactions. Presence of awns showed recessive nature of the awned gene. Generation mean analysis suggested that both additive and dominance gene effects were important for most of the traits evaluated in this study, but dominance had a more pronounced effect.  相似文献   

8.
Grain shape is an important trait for improving rice yield. A number of quantitative trait loci (QTLs) for this trait have been identified by using primary F2 mapping populations and recombinant inbred lines, in which QTLs with a small effect are harder to detect than they would be in advanced generations. In this study, we developed two advanced mapping populations (chromosome segment substitution lines [CSSLs] and BC4F2 lines consisting of more than 2000 individuals) in the genetic backgrounds of two improved cultivars: a japonica cultivar (Koshihikari) with short, round grains, and an indica cultivar (IR64) with long, slender grains. We compared the ability of these materials to reveal QTLs for grain shape with that of an F2 population. Only 8 QTLs for grain length or grain width were detected in the F2 population, versus 47 in the CSSL population and 65 in the BC4F2 population. These results strongly suggest that advanced mapping populations can reveal QTLs for agronomic traits under complicated genetic control, and that DNA markers linked with the QTLs are useful for choosing superior allelic combinations to enhance grain shape in the Koshihikari and IR64 genetic backgrounds.  相似文献   

9.
To better understand the underlying mechanisms of agronomic traits related to drought resistance and discover candidate genes or chromosome segments for drought-tolerant rice breeding, a fundamental introgression population, BC3, derived from the backcross of local upland rice cv. Haogelao (donor parent) and super yield lowland rice cv. Shennong265 (recurrent parent) had been constructed before 2006. Previous quantitative trait locus (QTL) mapping results using 180 and 94 BC3F6,7 rice introgression lines (ILs) with 187 and 130 simple sequence repeat (SSR) markers for agronomy and physiology traits under drought in the field have been reported in 2009 and 2012, respectively. In this report, we conducted further QTL mapping for grain yield component traits under water-stressed (WS) and well-watered (WW) field conditions during 3 years (2012, 2013 and 2014). We used 62 SSR markers, 41 of which were newly screened, and 492 BC4F2,4 core lines derived from the fourth backcross between D123, an elite drought-tolerant IL (BC3F7), and Shennong265. Under WS conditions, a total of 19 QTLs were detected, all of which were associated with the new SSRs. Each QTL was only identified in 1 year and one site except for qPL-12-1 and qPL-5, which additively increased panicle length under drought stress. qPL-12-1 was detected in 2013 between new marker RM1337 and old marker RM3455 (34.39 cM) and was a major QTL with high reliability and 15.36% phenotypic variance. qPL-5 was a minor QTL detected in 2013 and 2014 between new marker RM5693 and old marker RM3476. Two QTLs for plant height (qPHL-3-1 and qPHP-12) were detected under both WS and WW conditions in 1 year and one site. qPHL-3-1, a major QTL from Shennong265 for decreasing plant height of leaf located on chromosome 3 between two new markers, explained 22.57% of phenotypic variation with high reliability under WS conditions. On the contrary, qPHP-12 was a minor QTL for increasing plant height of panicle from Haogelao on chromosome 12. Except for these two QTLs, all other 17 QTLs mapped under WS conditions were not mapped under WW conditions; thus, they were all related to drought tolerance. Thirteen QTLs mapped from Haogelao under WS conditions showed improved drought tolerance. However, a major QTL for delayed heading date from Shennong265, qDHD-12, enhanced drought tolerance, was located on chromosome 12 between new marker RM1337 and old marker RM3455 (11.11 cM), explained 21.84% of phenotypic variance and showed a negative additive effect (shortening delay days under WS compared with WW). Importantly, chromosome 12 was enriched with seven QTLs, five of which, including major qDHD-12, congregated near new marker RM1337. In addition, four of the seven QTLs improved drought resistance and were located between RM1337 and RM3455, including three minor QTLs from Haogelao for thousand kernel weight, tiller number and panicle length, respectively, and the major QTL qDHD-12 from Shennong265. These results strongly suggested that the newly screened RM1337 marker may be used for marker-assisted selection (MAS) in drought-tolerant rice breeding and that there is a pleiotropic gene or cluster of genes linked to drought tolerance. Another major QTL (qTKW-1-2) for increasing thousand kernel weight from Haogelao was also identified under WW conditions. These results are helpful for MAS in rice breeding and drought-resistant gene cloning.  相似文献   

10.
Rice tungro disease (RTD) is one of the destructive and prevalent diseases in the tropical region. RTD is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Cultivation of japonica rice (Oryza sativa L. ssp japonica) in tropical Asia has often been restricted because most japonica cultivars are sensitive to short photoperiod, which is characteristic of tropical conditions. Japonica1, a rice variety bred for tropical conditions, is photoperiod-insensitive, has a high yield potential, but is susceptible to RTD and has poor grain quality. To transfer RTD resistance into Japonica1, we made two backcrosses (BC) and 8 three-way crosses (3-WC) among Japonica1 and RTSV-resistant cultivars. Among 8,876 BC1F2 and 3-WCF2 plants, 342 were selected for photoperiod-insensitivity and good grain quality. Photoperiod-insensitive progenies were evaluated for RTSV resistance by a bioassay and marker-assisted selection (MAS), and 22 BC1F7 and 3-WCF7 lines were selected based on the results of an observational yield trial. The results demonstrated that conventional selection for photoperiod-insensitivity and MAS for RTSV resistance can greatly facilitate the development of japonica rice that is suitable for cultivation in tropical Asia.  相似文献   

11.
Grain size is one of the three productivity related traits in rice and hence a major target for genetic improvement. Since understanding genetic variation in grain size between Basmati and indica genotypes is important for rice improvement, a recombinant inbred population was developed from a traditional aromatic cultivar ‘Basmati 370’ and a non-aromatic indica genotype ‘IRBB60’. This population was phenotyped in two locations for grain length (GL), grain breadth (GB), GL/GB ratio (LBR) and grain weight (GW). Though the RIL population reported in the current study exhibited segregation distortion (SD) for 54 % of the markers, they were utilized in analysis using an appropriate statistical package, PROC QTL in the SAS environment. Interval mapping revealed a total of 15 QTLs for GL, seven for GB, 15 for LBR and two for GW. Among them 13 were not reported earlier and thus novel. For a known major QTL identified in the study, GW8 for GB, a PCR based functional marker was designed and validated. This is the first report wherein a very high proportion of markers (>50 %) exhibiting SD have been successfully used for QTL mapping.  相似文献   

12.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:1,自引:0,他引:1  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

13.
Gossypium barbadense L is an important genetic resource to improve fiber quality of Gossypium hirsutum L., but breeders have generally encountered difficulties in introgression following whole genome crosses primarily due to genomic incompatibility, complex genetic basis and low efficiency of phenotypic evaluation and selection on fiber quality. Chromosome segment substitution lines (CSILs) are a powerful tool to dissect and introgress alien alleles while minimizing negative effects from alleles on other chromosome segments of the donor parent. In the present study, using a CSIL+F2 mapping strategy, three QTLs each for fiber length (FL), fiber strength (FS) and micronaire value (MIC) were identified on chromosome 11 and 1, explaining 6.23–10.73 % of the phenotypic variation in the F2:3 population. In addition, through marker-assisted backcrossing, the G. barbadense alleles of these QTLs were incorporated into two elite commerical Upland cotton cultivars, Lumianyan28 (L28) and Shannongmian6 (SNM6). Field evaluation indicated that 80 % of the BC2F3 lines containing the qFL-c11-1 and qFS-c11-1 from Hai7124 had significantly higher FL and FS, while only 14.5 % BC2F3 lines containing the qMIC-c1-1 in SNM6 genetic background showed significant decrease in MIC. Some BC2F3 lines with improved target fiber quality traits and without remarkable deviations in non-target lint yield components were obtained.  相似文献   

14.
Future maize (Zea mays L.) genetic gains are dependent on the incorporation of unique and useful genetic diversity to breeding programs actively improving germplasm and developing cultivars. Our ultimate goal is to increase the genetic diversity currently available in early maturing maize hybrids by developing novel lines that can be utilized competitively in the northern US Corn Belt. A long-term breeding project (EarlyGEM) was initiated to move US Germplasm Enhancement Maize (GEM) germplasm northward and westward. Nine out of 152 breeding crosses were adapted and data from one breeding cross is presented. Five hundred BC1:S1 lines derived from (AR16026:S17-66-1-B × ND2000) × ND2000 were advanced, selected, and crossed to several commercial testers for early and late generation hybrid testing. Experiments were arranged in various partially balanced lattice designs and grown across 23 North Dakota (ND) environments. Data showed experimental GEM-derived hybrids had better grain yield (10.4 vs. 9.2 t ha?1), test weight (72.5 vs. 70.1 kg h L?1), extractable starch (67.8 vs. 64.2%) and fermentable starch, grain oil (4.3 vs. 3.5%), and grain protein (10.5 vs. 9.4%) when compared to popular hybrids at similar grain moisture at harvest. This is the first research incorporating GEM-derived tropical and late-temperate genetic materials for inbred line development representing a relative maturity (RM) below 90 days. As a consequence of these breeding efforts GEM materials were adapted to the northern US Corn Belt and are not only sources of useful and unique novel genetic diversity but also competitive products for industry use as requests for experimental EarlyGEM lines have been extensive. This research has practical implications with regards to new ways of conducting maize breeding for high latitudes.  相似文献   

15.
Ogura cytoplasmic male sterility (Ogu-CMS) is widely used in the production of commercial hybrids of Brassica oleracea. However, the widespread application of the Ogu-CMS system in B. oleracea has hindered the germplasm innovation of Ogu-CMS resources due to the lack of a natural restorer line. Previously, the Ogu-CMS fertility-restored interspecific hybrids between rapeseed 15Y403 (2n = 38, AACC) and Chinese kale JL1 (2n = 18, CC) have been successfully produced. However, these progenies, which still contained a large proportion of rapeseed genomic components, showed poor fertility and a low seed setting rate under natural pollination. To improve fertility and seed setting, a successive backcross with JL1 was performed to produce BC2 progenies. Screening with the Rfo-specific marker, five individuals harboring the Rfo gene were identified among 98 BC2 progenies. These five individuals underwent background marker screening and an evaluation of agronomic traits and fertility. One individual (code: 15Q23) was identified with higher pollen viability, better seed setting under natural pollination, and a closer genetic background to the parent Chinese kale JL1. Many morphological traits showed no significant differences (P < 0.05) between 15Q23 and the backcross parent JL1. However, the average seed setting of 15Q23 under natural pollination was 0.72 seeds per pod, which was 50 times higher than that of BC1 progenies, and the average pollen viability was 87.07%, which was significantly better than that of the F1 and BC1 plants (P < 0.01). The genetic background of 15Q23 was more closer to the parent JL1 than that of BC1 plants and another BC2 fertility-restored individual, with 82% of the polymorphic alleles being the same as those of the parent Chinese kale JL1. Thus, the individual 15Q23 could be used as a donor plant for further backcrosses. This study lays the foundation for the development of Ogu-CMS restorer material in B. oleracea.  相似文献   

16.
GW2, a grain weight quantitative trait locus (QTL) in rice encodes a ring type E-3 ubiquitin ligase. A single nucleotide deletion at the 346th nucleotide position in the ligase domain of GW2 was earlier reported to result in higher grain weight in rice. The present study aimed at validating the known functional polymorphism and identifying additional natural genetic variation if any, in the region that included the functional domain of GW2 in a set of indica and aromatic genotypes for which ninety three rice genotypes were phenotyped for grain length, grain width and 100 grain weight. A wide range of variation was observed for these traits. PCR amplification and sequencing of GW2 target region revealed absence of insertion/deletion (InDel) at the 346th position which suggested that the genetic variation in grain weight in Basmati and non-Basmati indica genotypes was not explained by this InDel. However, four new single nucleotide polymorphisms (SNPs) were discovered at nucleotide positions 406, 461, 466 and 501 in the fifth exon and one InDel each in second and fourth introns. Only two of these SNPs, at positions 461 and 501 led to amino acid substitutions. A total of 10 haplotypes were constructed based on these four SNPs which could be regrouped into four categories based on their amino acid substitutions. Association genetic analysis of these haplotypes with different grain traits revealed a moderate association with grain width (R2 = 0.18 at P < 0.05). Thirteen haplotypes constructed using both intronic and exonic polymorphisms did not have any association with grain traits.  相似文献   

17.
基于高密度遗传图谱的玉米籽粒性状QTL定位   总被引:4,自引:1,他引:4  
籽粒大小及百粒重是决定玉米产量的重要因素。为解析籽粒性状遗传基础,本研究以玉米自交系黄早四(HZS)和Mo17为亲本,构建包含130个重组自交系(recombination inbred line,RIL)的RIL群体。基于GBS(genotypingby-sequencing)技术获得的高密度多态性SNP(single nucleotide polymorphism)位点,构建了包含1262个Bin标记的高密度遗传图谱。采用完备区间作图法,对5个环境条件下的粒长、粒宽、百粒重、粒长/粒宽4个性状分别进行QTL(quantitative trait locus)定位,共检测到30个QTL。利用5个环境性状均值,共检测到11个QTL。其中粒长主效QTL qklen1、粒长/粒宽主效QTL qklw1在3个单环境条件下均被检测到,且定位在第1染色体相邻区域,物理位置分别为210~212 Mb、207~208 Mb,表型贡献率分别为22.60%和26.79%,被认为是控制玉米籽粒形状的主效位点。针对第1染色体207~212 Mb区间,采用成组法t检验,对黄早四(受体)和Mo17(供体)构建的BC3F1回交群体进行单标记分析。结果表明,在BC3F1群体中qklen1和qklw1同样具有显著的遗传效应。本研究结果不仅为分子标记辅助选择籽粒性状提供了实用标记,而且为主效基因的进一步精细定位和候选基因挖掘奠定了基础。  相似文献   

18.
Improving grain-quality is an important goal in rice breeding programs. One vital step is to find major quantitative trait loci (QTLs) for quality related traits and then investigate the relationships among them. We crossed ‘N22’, an indica variety with good appearance but low grain weight, to a japonica variety, ‘Nanjing35’, with superior grain yield but poor appearance. This enabled us to construct an F2 population and a set of backcross inbred lines (BILs) for QTL-mapping for the traits related grain appearance. In all, 37 QTLs were identified for grain length (GL), grain width (GW), grain thickness (GT), thousand-grain weight (TGW), and the percentage of grains with chalkiness (PGWC). Of these, 17 QTLs detected from 184 plants in the F2 population explained 4.97–27.26 % of the phenotypic variance, another 20 QTLs were identified using BILs from 2009 to 2010. Quantitative trait loci for major effects were detected in different populations and across years. A new QTL hot spot (marker interval RM504–RM520) was found on Chromosome 3, which harbored QTLs for GL, GW, GT, and TGW. Among our five examined traits, grain shape was significantly correlated with TGW and PGWC. The PGWC values of two heavier grains BILs, L93, and L145 are much lower than Nanjiing35, the analysis of genotype showed that this greater weight may due to the locus for GL occurring within RM504–RM520 on Chromosome 3. Therefore, those two lines will allow us to develop a long-grain high-yield rice variety with less chalkiness.  相似文献   

19.
R. Uptmoor    W. Wenzel    K. Ayisi    G. Donaldson    A. Gehringer    W. Friedt    F. Ordon 《Plant Breeding》2006,125(5):532-534
In order to define the variation of the genomic proportion of the recurrent parent [G(RP)] and its relation to yield, G(RP) of individual BC1 plants of two sorghum populations composed of a high‐yielding cultivar as recurrent parent (RP) and a donor with superior drought resistance or grain quality, respectively, was estimated using AFLPs and SSRs. G(RP) in BC1 ranged from 0.53 to 0.95 and averaged to 0.76 in the population (NP4453 × ‘SV‐2’) × ‘SV‐2’. G(RP) varied between 0.60 and 0.86 and averaged to 0.74 in the BC1 of (ICV‐219 × ‘SV‐2’) × ‘SV‐2’. Results show that plants with a G(RP) equivalent to BC2 (0.875) or BC3 (0.938), respectively, can be selected from BC1. Yield performance of BC1S1 families was tested in field trials carried out in South Africa. The correlation between yield and G(RP) in BC1 was low. Selection according to G(RP) did not result in an effective preselection for yield.  相似文献   

20.
Environmental stresses such as chilling temperatures can decrease germination, emergence, flower and fruit development, marketable yield, and postharvest fruit storage longevity in cucumber (Cucumis sativus L.). While response to chilling injury in cucumber is controlled by simple plastidic (maternal) and nuclear (paternal) factors, no chilling tolerant U.S. processing varieties are commercially available. Furthermore, even though three single nucleotide polymorphic sites have been identified as plastid components associated with chilling tolerance in cucumber, it is not known how these factors interact with nuclear factors controlling economically important traits. Therefore, an experiment was designed to evaluate the rate of recovery of the chilling susceptible (cytoplasm) genotype during introgression backcrossing (IB), where it was used as a recurrent parent after the initial mating to a line possessing chilling tolerant cytoplasm (donor parent). Phenotypic yield and quality trait data were collected on processing type backcross progeny (BC1–5 and BC2S3) derived from an initial ‘Chipper’ (tolerant) × line M 29 (susceptible) mating, and rate of progression to the recurrent parent was determined by simple sequence repeat marker and morphological trait analyses. Substantial degrees of the recurrent parent phenotype and nuclear genome were recovered by the BC2 generation (P = 0.001), with nearly complete recovery of recurrent parental traits and its nuclear genome occurring by the BC3. General combining ability (GCA) of derived BC2S3 lines was significant for yield, yield/plant, length (L), diameter (D), and L:D ratios. The BC2S3 line GCA and rate of progression towards the recurrent parent for economically important traits suggests that elite chilling tolerant cucumber germplasm can be developed rapidly through IB and marker genotyping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号