首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
An experiment was conducted to evaluate the effect of residual sodium carbonates (RSC) of irrigation water on the growth and yield of sugarcane grown on sierozem light textured alkaline soil with sodic ground water and to study the performance of some promising sugarcane genotypes under these conditions. Treatments consisted of five levels of irrigations water viz RSC 2.8, 6.5, 12 me l−1 and RSC 6.5 and 12.0 me l−1 fully amended with gypsum. Plant and ratoon crops of eight genotypes of sugarcane were harvested. Cane yield and yield attributing characters like cane height, number of internodes per cane and number of millable canes were recorded. Juice quality viz percent juice extraction, percent sucrose, and commercial cane sugar (CCS%) in juice were determined at the harvest of crop. For both plant and ratoon crops, the average cane yield of all the genotypes of sugarcane and cane yield attributing characters decreased significantly with the increase in RSC of irrigation water to 6.5 and 12.0 me l−1 (35% and 51% decline in the average cane yield for plant crop). For ratoon crop, the corresponding decrease in the average cane yield was less than the plant crop (only 14% and 21%). Amending RSC with gypsum increased the yield in all genotypes. The cane yield of various genotypes obtained under amended RSC with gypsum treatments were almost equal to the yield obtained under RSC 2.8 me l−1 treatment (89% to 92% average cane yield for plant crop and 93% to 96% for ratoon crop). The effect of RSC of irrigation was variable for different genotypes (for example, for the plant crop of CoH 97, 65% and 76% and for CoH 108, 9% and 20% decline in the cane yield was observed with the application of high RSC irrigation water). As compared to plant crop, the ratoon crop of all genotypes recorded higher average cane yield and lesser decline in the cane yield with the application of high RSC irrigation water. Average juice extraction % decreased from 40.5% to 35.8%, and sugar yield decreased significantly (5.61 to 2.91 t ha−1 for plant crop and 6.18 to 5.38 t ha−1 for ratoon crop) with the increase in RSC of irrigation water, and amending RSC with gypsum increased the juice extraction % and sugar yield per unit area.  相似文献   

2.
When subsurface irrigation sources are lacking in humid and subhumid regions, high yearly precipitation may allow for storage of surface water in farm ponds and lakes for irrigation. Irrigation at selected growth stages may avoid critical stress for crops with some drought tolerance, such as grain sorghum [Sorghum bicolor (L.) Moench]. Because grain sorghum is responsive to N, injecting fertilizer N through the irrigation system also may improve production. The objective of this study was to determine the effect of timing of limited-amount irrigation and N fertigation on grain sorghum yield; yield components; grain N content; and N uptake at the 9-leaf, boot, and soft dough stages. The experiment was conducted from 1984 to 1986 on a Parsons silt loam (fine, mixed, thermic, Mollic Albaqualf). The experiment was designed as a 6 × 2 factorial plus two reference treatments. Six timings for irrigation were targeted at the 9-leaf (9L), boot (B), soft dough (SD), 9L-B, 9L-SD, and B-SD growth stages. N application systems were either 112 kg N ha–1 surface-banded preplant or 56 kg N ha-1 preplant and 56 kg N ha–1 injected through the irrigation at a rate of 28 kg N ha–1 per 2.5 cm of irrigation. Two reference treatments included were one receiving N but no irrigation and one receiving neither N nor irrigation. In 1984, irrigation generally increased grain sorghum yield by nearly 1 Mg ha–1. However, yield was not affected by selection of irrigation timing, N application method, or the interaction of the two factors. This was partly because early irrigations increased kernels/head, whereas later irrigations increased kernel weight. Above average rainfall during the growing season, especially just prior to the 9-leaf, boot, and soft dough growth stages, resulted in no irrigations in 1985. In 1986, yield was increased by early (9-leaf) irrigations as compared to soft dough irrigations. Early irrigations resulted in higher kernels/head; however, rainfall after the soft dough irrigation may have masked any treatment effect on kernel weight. As in 1984, N application method did not affect grain sorghum yields, even though yield was reduced to less than 3 Mg ha–1 with no N nor irrigation. In both 1984 and 1986, N uptake at succeeding growth stages appeared to respond to irrigations made at previous growth stages. Injecting half of the fertilizer N through the irrigation system did not affect N uptake compared to applying all N preplant. The lack of response to fertigation may be related to the low leaching potential of the soil used in this study.Contribution No. 92-606-J, Kansas Agricultural Experiment Station  相似文献   

3.
Summary A field trial was conducted to determine the response of rapeseed (Brassica napus cv. Marnoo) to two irrigation treatments and six nitrogen fertilizer treatments. Response to nitrogen was greater with than without irrigation. Oil content was increased with irrigation but decreased under increasing nitrogen application, and was inversely related to seed nitrogen concentration. Oil yields averaged 1,168 kg ha–1 under irrigated treatments compared with 835 kg ha–1 under rainfed treatments. Maximum oil yield (approx. 1,557 kg ha–1) was obtained from the irrigated treatment fertilized with 100 kg N ha–1 applied at sowing.  相似文献   

4.
Summary Four irrigation treatments: no irrigation; early irrigation (150 mm); late irrigation (150 mm); and early+late irrigation (275 mm), with 363 mm of rain; and four basic applications of nitrogen (0, 60, 120, 180 kg ha–1), with and without an additional nitrogen top dressing of 60 kg ha–1, were applied to autumn-sown wheat.For any given total nitrogen rate, there was no difference between the single and the split application.Grain yields ranged from 3040 kg ha–1 for the unirrigated, zero-nitrogen treatment to 6340 kg ha–1 for the two irrigations, 180 kg ha –1 N treatment. There was a strong interaction of irrigation and nitrogen on grain yields which was due mainly to the late irrigation: in the absence of the late irrigation the optimal nitrogen rate was 120 kg hat, followed by a marked decline in yield with additional nitrogen, whereas the application of the late irrigation shifted the optimum nitrogen rate to 180 kg ha–1. In the absence of the late irrigation, increasing the nitrogen rate from 0 to 240 kg ha –1 reduced kernel weight from 42 to 32 mg, whereas late irrigation largely prevented this decrease (42 to 39 mg). The reduction in kernel weight was evident even at the first nitrogen increments, in the range where grain yield was still increasing. Lack of nitrogen reduced soil moisture extraction during the grain filling stage, particularly from soil layers deeper than 60 cm.Stomatal aperture in the irrigated treatments was markedly larger in nitrogen-supplied than in nitrogen-deficient wheat, although the leaf hydration was similar; in the unirrigated treatment, the nitrogen-supplied plants had a lower hydration and smaller stomatal aperture than nitrogen-deficient plants.Contribution from the Agricultural Research Organization, Bet Dagan, Israel, No: 282-E, 1977 series  相似文献   

5.
The reported study aimed at developing an integrated management strategy for irrigation water and fertilizers in case of wheat crop in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop (cultivar Sonalika) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment included four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments considered were I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments considered in the experiments were F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1, F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. In this study CERES-wheat crop growth model of the DSSAT v4.0 was used to simulate the growth, development and yield of wheat crop using soil, daily weather and management inputs, to aid farmers and decision makers in developing strategies for effective management of inputs. The results of the investigation revealed that magnitudes of grain yield, straw yield and maximum LAI of wheat crop were higher in low volume high frequency irrigation (I1) than the high volume low frequency irrigation (I3). The grain yield, straw yield and maximum LAI increased with increase in fertilization rate for the wheat crop. The results also revealed that increase in level of fertilization increased water use efficiency (WUE) considerably. However, WUE of the I2 irrigation schedule was comparatively higher than the I1 and I3 irrigation schedules due to higher grain yield per unit use of water. Therefore, irrigation schedule with 40% maximum allowable depletion of available soil water (I2) could safely be maintained during the non-critical stages to save water without sacrificing the crop yield. Increase in level of fertilization increases the WUE but it will cause environmental problem beyond certain limit. The calibrated CERES-wheat model could predict the grain yield, straw yield and maximum LAI of wheat crop with considerable accuracy and therefore can be recommended for decision-making in similar regions.  相似文献   

6.
The use of N fertilizers in agriculture is crucial, and agricultural techniques need to be implemented that improve significantly N fertilizer management by reducing downward movements of solutes through the soil. To achieve this, it is essential to develop and test models against experimental conditions in order to improve them and to make sure that they can be applied to a broad range of soil and climatic conditions. A field experiment was carried out in the French department of Gard. The soil was a clay loam (26.7% clay, 44.7% fine and coarse silt, and 28.6% fine and coarse sand). Salad vegetables (Cichorium endivia, Lactuca sativa) were cultivated during two consecutive periods (spring and summer crops). The crops were planted on punched and permeable plastic mulching bands. The field was irrigated with a sprinkler watering system. Local measurements were made combining a neutron probe, tensiometers, and ceramic porous cups to estimate NO3-N concentrations. The model is one-dimensional and is based on Richards' equation for describing saturated-unsaturated water flow in soil. At the soil surface, the model is designed to handle flux-type or imposed-pressure boundary conditions. In addition, provision is made in the model, for example, to account for a mulch plastic sheet that limits evaporation. The model accounts for heat transport by diffusion and by convection, while the modeling of the displacement of nitrate and ammonium in the soil is based on the convection-dispersion equation. Nitrate uptake by the crop is modeled assuming Michaelis-Menten kinetics. Nitrogen cycle modeling accounts for the following major transformations: mineralization of organic matter, nitrification of ammonium, and denitrification. The results showed that the overall trend of the water potential in the soil profile was correctly described during the crop seasons. Mineralization was high for the spring crop (4.7 kg NO3-N day–1 ha–1), whereas the other sink components, such as root uptake, drainage, and denitrification, were smaller (1.9, 1.4, and 0.2 kg NO3-N day–1 ha–1, respectively). For the summer crop, intensive denitrification was found in the soil layer at 0.15–0.90 m (5.7 kg NO3-N day–1 ha–1), while the mineralization was always an important component (9.2 kg NO3-N day–1 ha–1) and the sink terms were 1.7 and 1.7 kg NO3-N day–1 ha–1 for root uptake and drainage, respectively. Similar high denitrification rates were found in the literature under intensive irrigated field conditions. Received: 25 October 1995  相似文献   

7.
Sugarcane (Saccharum spp.) in south Florida is often subjected to flooding due to interacting effects of soil subsidence, pumping restrictions, and tropical storms. While there has been considerable research on the response of sugarcane cultivars to high water tables and periodic flooding, there is a lack of information on commercial cultivar yield response to long-term flooding. An experiment was established in Belle Glade, FL to examine the effect of a 3-month summer flood (July-September) on the growth and yield of cultivars CP 80-1743 and CP 72-2086 during the plant cane (2003) and second ratoon (2005) crop. Harvest samples were taken early-, mid-, and late-season. Flooding sugarcane in the summer caused sequentially greater yield reductions throughout the harvest season in plant cane. Sucrose yields for flooded cane, compared with the non-flooded control, were 9.6 t sucrose ha−1 versus 11.7 t sucrose ha−1 early, 9.2 t sucrose ha−1 versus 12.8 t sucrose ha−1 mid-season and 7.8 t sucrose ha−1 versus 12.3 t sucrose ha−1 at late harvest. In the second ratoon crop, flooding reduced sugarcane tonnage and sucrose yield by 54-64% across sampling dates, and preliminary results indicated that flooding reduced leaf nutrient content by 10-78%. Yield reductions due to flooding in both crops were attributed more to reduced tonnage rather than sucrose content. CP 72-2086 yielded 18-28% greater sucrose than CP 80-1743 when harvested late. However the flood × cultivar interaction was not significant as both cultivars recorded similar yield reductions under flooded conditions. Our results identified severe yield losses caused by a 3-month summer flood in these cultivars, particularly in ratoon crops. Strategies to increase summer on-farm water storage in Florida should focus on short-duration periodic flooding rather than long-term flooding.  相似文献   

8.
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO3-N in soil and nitrate (NO3) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs (804-1622 kg N ha−1) greater than exported N (463-597 kg N ha−1). Hence, throughout the irrigation period, high NO3 concentrations (up to 388 mg L−1 at T200) and DOC (up to 142 mg L−1 at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN.  相似文献   

9.
Summary Crops grown with flood irrigation on slowly draining clay soils are subject to periods of waterlogging during and after each irrigation. The aim of this experiment was to quantify crop responses to these short-term waterlogging events and to assess the modifying effect of different agronomic practices. Maize was grown in undisturbed (U) and repacked (R) profiles of clay loam soil encased in steel cylinders (0.75 m diameter × 1.4 m deep). Two levels of N (high (HN) 300 kg N ha–1, and low (LN) 150 kg N ha–1) were applied as a split dressing. Three periods of flooding (F) of 72, 72 and 48 h were imposed on half the treatments beginning on days 40, 54 and 68 respectively after sowing. The other irrigation regime (C) kept the profile well watered but avoided surface inundation.  相似文献   

10.
Summary Empirical functions to predict the nitrogen uptake, increase in LAI and minimum leaf water potential (LWP) of cotton were incorporated into a water balance model for the Namoi Valley, N.S.W. A function was then developed to describe the lint yield of irrigated cotton as a function of water stress days at 4 stages of development, total nitrogen uptake and days of waterlogging. A water stress day was defined as predicted minimum leaf water potential less than -1.8 MPa up to 90 days after sowing and -2.4 MPa there-after; stress reduced yield by up to 40 kg lint ha–1 d–1 with greatest sensitivity at 81–140 days after sowing and when N uptake was highest. Nitrogen uptake was reduced by 0.98 kg per ha and yield reduced by 33.2 kg lint ha–1 for each day of waterlogging. The model was used to evaluate various irrigation strategies by simulating production of cotton from historical rainfall data. With a water supply from off farm storage, net returns ($ M1–1) were maximized by allocating 7 Ml ha–1 of crop. The optimum practice was not to irrigate until 60 days from sowing and until the deficit in the root zone reached 50%. When the supply of water was less than 7 Ml ha–1 there was no advantage in either delaying the start of irrigation or irrigating at a greater deficit; it was economically more rational to reduce the area shown or, if already sown, to irrigate part with 6 Ml ha–1 and leave the rest as a raingrown crop. Irrigation decisions are compromises between reducing the risk of water stress and increasing the risk of waterlogging. The simulation showed that there is no single set of practices that is always best in every season; in a number of seasons practices other than those which on average are best, give better results.  相似文献   

11.
In this study, a regional irrigation schedule optimization method was proposed and applied in Fengqiu County in the North China Plain, which often suffers serious soil water drainage and nitrogen (N) leaching problems caused by excessive irrigation. The irrigation scheduling method was established by integrating the ‘checkbook irrigation method’ into a GIS-coupled soil water and nitrogen management model (WNMM) as an extension. The soil water and crop information required by the checkbook method, and previously collected from field observations, was estimated by the WNMM. By replacing manually observed data with simulated data from WNMM, the application range of the checkbook method could be extended from field scale to regional scale. The WNMM and the checkbook irrigation method were both validated by field experiments in the study region. The irrigation experiment in fluvo–aquic soil showed that the checkbook method had excellent performance; soil water drainage and N leaching were reduced by 83.1 and 85.6%, respectively, when compared with local farmers’ flood irrigation. Using the validated WNMM, the performance of checkbook irrigation in an entire winter wheat and summer maize rotation was also validated: the average soil water drainage and N leaching in four types of soils decreased from 331 to 75 mm year−1 and 47.7 to 9.3 kg ha−1 year−1, respectively; and average irrigation water use efficiency increased from 26.5 to 57.2 kg ha−1 mm−1. The regional irrigation schedule optimization method based on WNMM was applied in Fengqiu County. The results showed a good effect on saving irrigation water, decreasing soil water drainage and then saving agricultural inputs. In a typical meteorological year, it could save >110 mm of irrigation water on average, translating to >7.26 × 107 m3 of agricultural water saved each year within the county. Annual soil water drainage was reduced to <143 mm and N leaching to <27 kg ha−1 in most soils, all of which were significantly lower than local farmers’ flood irrigation. In the mean time, crop yield also had an average increase of 2,890 kg ha−1 when checkbook irrigation was applied.  相似文献   

12.
Leaching is disadvantageous, both for economical and environmental reasons since it may decrease the ecosystem productivity and may also contribute to the contamination of surface and ground water. The objective of this paper was to quantify the loss of nitrogen and sulfur by leaching, at the depth of 0.9 m, in an Ultisol in São Paulo State (Brazil) with high permeability, cultivated with sugarcane during the agricultural cycle of crop plant. The following ions were evaluated: nitrite, nitrate, ammonium, and sulfate. Calcium, magnesium, potassium, and phosphate were also evaluated at the same depth. The sugarcane was planted and fertilized in the furrows with 120 kg ha−1 of N-urea. In order to find out the fate of N-fertilizer, four microplots with 15N-enriched fertilizer were installed. Input and output of the considered ions at the depth of 0.9 m were quantified from the flux density of water and the concentration of the elements in the soil solution at this soil depth: tensiometers, soil water retention curve and soil solution extractors were used for this quantification. The internal drainage was 205 mm of water, with a total loss of 18 kg ha−1 of N and 10 kg ha−1 of S. The percentage of N in the soil solution derived from the fertilizer (%NSSDF) was 1.34, resulting in only 25 g ha−1 of N fertilizer loss by leaching during all agricultural cycle. Under the experimental conditions of this crop plant, that is, high demand of nutrients and high incorporation of crop residues, the leached N represented 15% of applied N and S leaching were not considerable; the higher amount of leached N was native nitrogen and a minor quantity from N fertilizer; and the leached amount of Ca, Mg, K and P did not exceed the applications performed in the crop by lime and fertilization.  相似文献   

13.
Wastewaters from a milking shed serving 320 cows were sprinkler irrigated onto drained permanent pasture. Estimates of the amounts of nitrogen (N) and phosphorus (P) applied to the pasture and leaving in subsurface drainage water have been prepared and compared to soil N and P data obtained after 3 years of field operation.The pasture disposal site received between 960–1280 kg N ha?1 year?1 130–180 kg P ha?1 year?1. Approximately 90% of the P applied could be accounted for in the top 5 cm of the pasture soil. In contrast, only 15% of the N-applied could be accounted for and there was no evidence that the pasture soil was able to serve as a storage medium for nitrogen. We consider that it is likely that large amounts of N were lost from the soil—plant system involving gaseous mechanisms, e.g. denitrification.  相似文献   

14.
Yield and nitrogen use efficiency (NUE) of wheat was investigated under field conditions using two types of irrigation waters with and without nitrogen on a sandy-loam to loamy-sand soil during 1992–1993 and 1993–1994. Depending upon different nitrogen treatments, the mean crop yield ranges in 1992–1993 were: grain yield 6.19–6.87 Mg ha and biomass 15.41–16.34 Mg ha−1 receiving treated effluent. The mean crop yield ranges in 1993–1994 were: grain yield 0.46–3.23 Mg ha−1 (well water) and 5.20–6.54 Mg ha−1 (treated effluent); and biomass 1.84–10.80 Mg ha−1 (well water), and 16.00–19.29 Mg ha−1 (treated effluent). The NUE for grain yield in 1992–1993 was between 16.70–50.23 kg kg−1 N (well water) and 20.65–91.56 kg kg−1 N (treated effluent). Whereas the NUE in 1993-94, varied between 10.49–32.13 kg grain kg−1 N (well water) and 21.30–72.93 kg grain kg−1 N (treated effluent). The NUE for total biomass in 1992–1993 varied between 46.54–130.32 kg kg−1 N (well water) and 53.66–158.77 kg kg−1 N (treated effluent). Similarly, the NUE in 1993–1994 varied between 35.99–102.1 kg biomass kg−1 N (well water) and 59.27–161.89 kg biomass kg−1 N (treated effluent). A significant decrease in NUE was observed with increasing nitrogen application both for grain and biomass production. In conclusion, a higher grain yield and NUE of wheat crop can be achieved with low application rates of nitrogen if the crop is irrigated with treated effluent containing nitrogen in the range of 20 mg L−1 and above.  相似文献   

15.
Summary The energy requirements for manufacturing irrigation equipment were evaluated from a survey of a number of factories and workshops in Israel.Based on the results obtained and the life span of the components, the annual amortization of energy by high-pressure (overhead sprinklers), medium-pressure (undertree sprinklers and sprayers) and low-pressure (drip lines) irrigation systems was calculated for citrus orchards and cotton crops as irrigated in Israel. For citrus orchards a low-pressure sprayer system amortized 1.5 GJ ha–1 y–1 more energy than a medium-pressure undertree sprinkler system, and 2.7 GJ ha–1 y–1 more than a high-pressure, overhead sprinkler system. For irrigating a cotton crop, the low-pressure drip system used 6.8 GJ ha–1 y–1 more embodied energy than the movable, high-pressure overhead sprinkler system.The annual energy invested in irrigation water conveyance through the National Water Carrier, at the current hydraulic pressure of 500 kPa at the farm gate, varies for a cotton crop from 20 to 45 GJ ha–1 y–1 in the northern region and from 70 to 215 GJ ha–1 y–1 in the southern region of Israel, when irrigated with 4,050 m3 ha–1. For a citrus orchard this energy input varies from 60 to 75 GJ ha–1 y–1 in the central region and from 120 to 375 GJ ha–1 y–1 in the southern regions, when irrigated with 7,200 m3 ha–1. For obtaining the same yield in the south as in the north, the energy input for water conveyance has to be increased by 12% in the case of a cotton crop and by 7% in the case of a citrus orchard. Thus, in the north the annual energy amortization of a dripline irrigation system amounts to one third of that expended on water conveyance but in the south amounts to one-eighteenth or less, indicating the large regional dependency of energy inputs for irrigation.Calculations show that the reduction in energy requirement for water conveyance needed by irrigation systems operating at lower pressures compensates for their higher energy losses in system amortization. For example, in citrus irrigation the substitution of medium-pressure undertree sprinkler systems for high-pressure overhead sprinkler systems was calculated to save 8% of the total energy expenditure for water conveyance to the farm gate. This would amount to a saving of 7 GJ ha–1 y–1 for citrus in the central region and of 8 GJ ha–1 y–1 in the south. For cotton the substitution of low pressure dripline systems for high-pressure overhead sprinkler systems could save 16% of the total energy expenditure for pressurized water conveyance. This would amount to a saving of 8 GJ ha–1 y–1 in the northern region increasing to 10 GJ ha–1 y–1 in the south, taking into account a higher irrigation water requirement.Contribution from the Agricultural Research Organization, Bet Dagan, Israel. No. 1589-E, 1985 series  相似文献   

16.
The effect of watering up to approximately 100% of volumetric available soil water on total biomass, nitrogen (N) balance, and market yield of broccoli crops (Brassica oleracea L. convar. botrytis var. italica Plenck, cv. Emperor) was studied. The experiment was carried out in a microplot field installation on two soil types (alluvial loam and loessal loam) under spring and autumn cultivation and consisted of three soil water regimes: plants received 21 mm of water by irrigation until the soil moisture reached 75% of the available soil water (ASW), treatment 1; 42 mm after the soil moisture reached 55% ASW, treatment 2; and 63 mm after the soil moisture reached 35% ASW, treatment 3. The ASW of the three treatments was measured at a depth of 0.15 m. The total plant mass was significantly affected by the irrigation strategy on the loessal loam in spring and on the alluvial loam in autumn. The total mass and head mass were lowest when water was applied at 75% ASW in spring and autumn. Calculations of N-balances showed that N losses were large, i.e. more than 70 kg·ha–1 in spring and 130 kg·ha–1 in autumn on the alluvial loam in treatment 1, and were only slightly affected by the irrigation strategy on the loessal loam.Communicated by R. Evans  相似文献   

17.
Rainfed crop production in northern China is constrained by low and variable rainfall, and by improper management practices. This study explored both the impact of long-term rainfall variability and the long-term effects of various combinations of maize stover, cattle manure and mineral fertiliser (NP) applications on maize (Zea mays L.) yields and water use efficiency (WUE) under reduced tillage practices, at Shouyang Dryland Farming Experimental Station in northern China from 1993 onwards. The experiment was set up according to an incomplete, optimal design, with 3 factors at five levels and 12 treatments including a control with two replications. Grain yields were greatly influenced by the amount of rain during the growing season, and by soil water at sowing. Annual mean grain yields ranged from 3 to 10 t ha−1 and treatment mean yields from 4.2 to 7.2 t ha−1. The WUE ranged from 40 in treatments with balanced nutrient inputs in dry (weather/or soil) years to 6.5 kg ha−1 mm−1 for the control treatments in wet years. The WUE averaged over the 15-year period ranged from 11 to 19 kg ha−1 mm−1. Balanced combination of stover (3000-6000 kg), manure (1500-6000 kg) and N fertiliser (105 kg) gave the highest yield and hence WUE. It is suggested that 100 kg N per ha should be a best choice, to be adapted according to availability of stover and manure. Possible management options under variable rainfall conditions to alleviate occurring moisture stress for crops must be tailored to the rainfall pattern. The potentials of split applications, targeted to the need of the growing crop (response nutrient management), should be explored to further improve grain yield and WUE.  相似文献   

18.
Summary Dry-seeded rice (Oryza sativa L., cv. Calrose) was subjected to 4 irrigation treatments — continuous flood (CF) and sprinkler irrigation at frequencies of one (S1 W), two (S2W) and three (S3W) applications per week — commencing 37 d after 50% emergence (DAE). The amount of water applied was calculated to replace water lost by pan evaporation. Urea (120 kg N ha–1) was applied in a 1:1 split 36 and 84 DAE, and there were also unfertilized controls for each irrigation treatment. Amounts of nitrate (NO 3 ) in the soil were very low throughout the growing season in all treatments, despite regular periods of draining which lasted for up to 7 d in SlW. In all irrigation treatments, the majority of the fertilizer nitrogen (N) was located in the top 20 mm of soil. After each application of fertilizer, levels of mineral N in CF declined rapidly, while levels in S3W and S1W remained high for 1–2 weeks longer. The poor growth of sprinkler-irrigated rice was not due to lower amounts of mineral N in the soil. The greater persistence of fertilizer N in the sprinkler-irrigated treatments was probably due to reduced root activity near the soil surface because of frequent periods of soil drying in between irrigations. Net mineralization of soil N in the unfertilized sprinkler-irrigated treatments was reduced by about half compared with CF.On average, the quantity of water applied (1.2–1.4 × EP) to the sprinkler-irrigated treatments appeared to be sufficient to meet the evapotranspiration demands of the crop, except possibly around flowering time. However, the plants may have suffered from moisture stress in between irrigations. Soil matric potential data at 100 mm suggested little water stress in the sprinkler-irrigated treatments during the vegetative stage, consistent with the similar tiller and panicle densities in all irrigation treatments. However, the crop was stunted and yellow and leaf rolling was observed in the sprinkler-irrigated treatments during this period. Soil matric potential data at 100 mm indicated considerable water stress in S1W beyond the commencement of anthesis, and in S2W during grain filling, consistent with the reduced floret fertility and grain weight in those treatments.  相似文献   

19.
Summary An irrigation experiment with water of different salinities (2.8, 7.6 and 12.7 mol Cl m–3) was carried out from 1982 to 1988 in a mature Shamouti orange grove in the coastal plain of Israel. Seasonal accumulation of salts in the soil solution of the root zone (EC of more than 4.0 dS m–1 at the end of the irrigation season) was almost totally leached during the winter. The average annual rainfall of 550 mm reduced EC values below 1.0 dS m–1. Tree growth, as measured by the increase in cross sectional area of main branches, was retarded by saline irrigation water (123, 107 and 99 cm2 growth per tree during six years for the 2.8, 7.6 and 12.7 mol Cl m–3 treatments, respectively). Potassium fertilization (360 kg K2O ha–1) increased yield at all salinity levels during the last three years of the experiment, mainly by increasing fruit size. Saline irrigation water slightly increased sucrose and C1 concentrations in the fruit juice. Salinity decreased transpiration, increased soil water potential before irrigation and decreased leaf water potential. However, the changes in leaf water potential were small. Leaf Cl and Na concentrations increased gradually during the experimental period, but did not reach toxic levels up to the end of the experiment (4.4 g Cl kg–1 dry matter in the high salt treatment vs. 1.7 in the control). Relatively more leaf shedding occurred in the salinized trees as compared to the control. The sour orange root-stock apparently provided an effective barrier to NaCl uptake; therefore, the main effect of salinity was probably osmotic in nature. No interactions were found between N or K fertilization and salinity. Additional N fertilization (160 kg N ha–1 over and above the 200 kg in the control) did not reduce Cl absorption nor did it affect yield or fruit quality. Additional K had no effect on Na absorption but yield and fruit size were increased at all salinity levels. No significant differences were obtained between partial and complete soil surface wetting (30% and 90% of the total soil area resp.) with the same amounts of irrigation water. The effect of salinity on yield over the six years of the experiment was relatively small and occurred only after some years. But, in the last three years salinity significantly reduced average yields to 74.6, 67.1, and 64.2 Mg ha–1 for the three levels of salinity, respectively.These results suggest that saline waters of up to 13 mol Cl m–3 primarily influence the tree water uptake and growth response of Shamouti orange trees, whereas yield was only slightly reduced during six years.  相似文献   

20.
During 3 consecutive years (1991–1993) a field experiment was conducted in an intensively irrigated agricultural soil in SW Spain. The main objective of this study was to determine the water flow and nitrate (N03) leaching, below the root zone, under an irrigated maize crop and after the growing season (bare soil and rainy period). The experiment was carried out on a furrow-irrigated maize crop at two different nitrogen (N)-fertilization rates, one the highest traditionally used by farmers in the region (about 500 kg N ha−1 per year) and the other one-third of the former (170 kg N ha−1 per year). The aim was to obtain data that could be used to propose modifications in N-fertilization to maintain crop yield and to prevent the degradation of the environment. The terms for water balance (crop evapotranspiration, drainage and soil water storage) and nitrate leaching were determined by intensive field monitoring of the soil water content, soil water potential and extraction of the soil solution by a combination of neutron probe, tensiometers and ceramic suction cups. Nitrogen uptake by the plant and N03-N produced by mineralization were also determined.The results showed that, in terms of water balance, crop evapotranspiration was similar at both N-fertilization rates used. During the irrigation period, drainage below the root zone was limited. Only in 1992 did the occurrence of rainfall during the early growing period, when the soil was wet from previous irrigation, cause considerable drainage. Nitrate leaching during the whole experimental period amounted to 150 and 43 kg ha−1 in the treatments with high and low N-fertilization, respectively. This occurred mainly during the bare soil and rainy periods, except in 1992 when considerable nitrate leaching was observed during the crop season due to the high drainage. Nitrate leaching was not so high during the bare soil period as might have been expected because of the brought during the experimental period. A reduction of N-fertilization thus strongly decreased nitrate leaching without decreasing yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号