首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
On the summer solstice (June 21, 1996), six of 12 intact light horse mares randomly chosen from a larger herd were subcutaneously implanted with ALZET®a osmotic minipumps containing a melatonin solution (16 mg/ml) designed to release approximately 960 μg of melatonin/day. An additional two mares received implants containing only the saline-DMSO vehicle and four remained untreated. Blood samples were collected on days 5, 26, and 59 of treatment to monitor melatonin concentrations and to verify pump function. Prolactin concentrations were determined from blood samples collected via jugular cannulae every 12 min for 8 hours on days 25,46, and 89 after initial implantation. On day 89, samples were collected hourly for 16 hours following the initial 8-hour sampling period. Melatonin and prolactin concentrations were determined in the blood samples by radioimmunoassay. Mean circulating concentrations of melatonin in treated mares (n=6) were found to be significantly elevated when compared to controls (n=6); however, there was no significant difference in prolactin concentrations between the groups. These studies demonstrate that longterm treatment with melatonin is unaccompanied by a change in prolactin secretion.  相似文献   

2.
This study compares morphological changes, performed with real-time transrectal ultrasonography, of testis and accessory glands and seasonal endocrine changes in a wild (Mouflon) and a domesticated (Spanish Merino) breed of sheep. In Mouflons, the maximum plasma testosterone concentrations, testicular diameter and vesicular gland size occurred synchronously during autumn (P < 0.001). In Merino rams the highest circulating levels of testosterone (P < 0.05) and maximum testicular diameter (P < 0.001) occurred during summer, with no seasonal variations in vesicular and bulbourethral glands. The seasonal changes in plasma concentrations of prolactin were not correlated with annual variations in testicular and glandular size in neither wild nor domestic species. No differences were observed between both species for the seasonal pattern of prolactin secretion and mean amplitude of melatonin. Wide differences in reproductive patterns between wild and domestic types of rams do not appear to be attributed to seasonal changes in prolactin and melatonin secretion.  相似文献   

3.
A radioimmunoassay (RIA) based on anti-equine prolactin antiserum and radioiodinated canine prolactin was used to assess the dose response of plasma prolactin to thyrotropin releasing hormone (TRH) in mares in the nonbreeding season (winter) and in mares in estrus in the breeding season (summer). Mares were administered TRH intravenously and blood samples were collected via jugular catheters at −15, 0, 15, 30, 45, 60, 90, 120, 180 and 240 min relative to injection. Doses of TRH were 0, .08, .40, 2.0 and 10.0 mg per mare (n = 3 per dose within each season). The prolactin response was assessed by absolute hormonal concentrations before and after TRH injection and by net area under the curve. Prolactin concentrations in plasma before injection of TRH were higher (P < .01) in estrous mares in summer than in anestrous mares in winter (4.8 vs 1.3 ng/ml). Moreover, there was a greater (P < .01) response to TRH injection in estrous mares than in anestrous mares. Based on areas under the curve, there was an effect of season (P < .01) and of TRH dose (P < .01) as well as a season-dose interaction (P < .01). In general, there was little or no prolactin response to any dose of TRH in anestrous mares in winter when pre-TRH concentrations were low. In contrast, there was an increase in the prolactin response with increasing doses of TRH up to 2.0 mg in estrous mares in summer; 2.0 and 10.0 mg of TRH resulted in similar prolactin secretion. We conclude 1) that prolactin secretion in the horse is stimulated by TRH as has been reported for other species and 2) that prolactin concentrations and the TRH-induced secretion of prolactin are greater in estrous mares in summer than in anestrous mares in winter.  相似文献   

4.
Short-term patterns of growth hormone (GH) secretion and factors affecting it were studied in mares and stallions. In Exp. 1, hourly blood samples were collected from three mares and three stallions in summer and winter. Although GH concentrations varied in a pulsatile manner in all horses, there was no effect of sex or season (P greater than .1) on plasma GH concentrations and no indication of a diurnal pattern of GH secretion. In Exp. 2, 10-min blood samples were drawn for 8 h from 12 mares; after 6 h, porcine GH-releasing hormone (GHRH) was administered i.v. at 0, 45, 90, or 180 micrograms/mare (three mares per dose). Pulsatile secretion of GH occurred in all mares and averaged 2.4 +/- .3 peaks/6 h; amplitudes were variable and ranged from 2.6 to 74.4 ng/mL. Eight of nine mares responded within 20 min to GHRH injection, but there was no difference (P greater than .1) among the three doses tested. In Exp. 3, plasma GH concentrations in stallions increased (P less than .05) 8- to 10-fold after 5 min of acute physical exercise or exposure to an estrual mare. Restraint via a twitch (5 min) and epinephrine administration (3 mg i.v.) also increased (P less than .05) plasma GH concentrations by approximately fourfold. In Exp. 4 and 5, administration of either .4, 2, or 10 mg of thyrotropin-releasing hormone (TRH) or 100 or 500 mg of sulpiride (a dopamine receptor antagonist) increased (P less than .01) plasma prolactin concentrations but had no effect (P greater than .1) on GH concentrations during the same period of time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The aims of this study were to examine whether mouflons exposed to constant long and short day photoperiods are able to exhibit an annual cycle of hair growth and moult, and prolactin (PRL) secretion. Mouflon ewes were assigned to three groups of treatment. Ewes were maintained, either under natural photoperiod (control, n=9), or received a series of subcutaneous melatonin implants from December to April (n=8), or were exposed to a constant long day photoperiod (16-h light:8-h dark; 16L:8D) during 18 months (n=7). Blood was collected weekly to determine PRL concentrations, and hair samples were clipped weekly from the base of the neck to measure the length of predominant hair. Under constant long days and with melatonin implants, mouflons expressed an annual rhythm of PRL secretion, even though these treatments modified the times of rise or falling of PRL concentrations throughout the year. Hair growth initiation was almost coincident with the summer solstice in both control and melatonin-implanted mouflons but occurred two months earlier in long day hold mouflons (P<0.001). Long day hold mouflons had a lower hair growth rate than control and melatonin-implanted mouflons (P<0.001), and at the end of the experiment, a shorter hair length (3.4±0.24 cm; P<0.01) than control (4.3±0.17 cm), and melatonin-implanted mouflons (4.2±0.12 cm). Our data support the conclusion that in mouflon, an endogenous circannual rhythm of PRL secretion exists, and that the seasonal cycle of hair growth and moult appears to depend, at least in part, on circulating levels of PRL.  相似文献   

6.
Light horse mares, stallions, and geldings were used to 1) extend our observations on the thyrotropin releasing hormone (TRH) inhibition of GH secretion in response to physiologic stimuli and 2) test the hypothesis that stimulation of endogenous TRH would decrease the normal rate of GH secretion. In Exp. 1 and 2, pretreatment of mares with TRH (10 microg/kg BW) decreased (P < 0.001) the GH response to exercise and aspartate infusion. Time analysis in Exp. 3 indicated that the TRH inhibition lasted at least 60 min but was absent by 120 min. Administration of a single injection of TRH to stallions in Exp. 4 increased (P < 0.001) prolactin concentrations as expected but had no effect (P > 0.10) on GH concentrations. Similarly, 11 hourly injections of TRH administered to geldings in Exp. 5 did not alter (P > 0.10) GH concentrations either during the injections or for the next 14 h. In Exp. 5, it was noted that the prolactin and thyroid-stimulating hormone responses to TRH were great (P < 0.001) for the first injection, but subsequent injections had little to no stimulatory effect. Thus, Exp. 6 was designed to determine whether the inhibitory effect of TRH also waned after multiple injections. Geldings pretreated with five hourly injections of TRH had an exercise-induced GH response identical to that of control geldings, indicating that the inhibitory effect was absent after five TRH injections. Retrospective analysis of pooled, selected data from Exp. 4, 5, and 6 indicated that endogenous GH concentrations were in fact lower (P < 0.01) from 45 to 75 min after TRH injection but not thereafter. In Exp. 7, 6-n-propyl-2-thiouracil was fed to stallions to reduce thyroid activity and hence thyroid hormone feedback, potentially increasing endogenous TRH secretion. Treated stallions had decreased (P < 0.01) concentrations of thyroxine and elevated (P < 0.01) concentrations of thyroid-stimulating hormone by d 52 of feeding, but plasma concentrations of GH and prolactin were unaffected (P > 0.10). In contrast, the GH response to aspartate and the prolactin response to sulpiride were greater (P < 0.05) in treated stallions than in controls. In summary, TRH inhibited exercise- and aspartate-induced GH secretion. The duration of the inhibition was at least 1 h but less than 2 h, and it waned with multiple injections. There is likely a TRH inhibition of endogenous GH episodes as well. Reduced thyroid feedback on the hypothalamic-pituitary axis did not alter basal GH and prolactin secretion.  相似文献   

7.
In a variety of species, short-term feed restriction leads to rapid changes in the reproductive axis and reduces serum levels of leptin. Two experiments were performed to test the hypothesis that a single day of feed restriction in aged and young mares would cause a suppression of the gonadotropins and serum leptin concentrations. The estrous cycles of 12 aged (>eight years; Exp. 1) and eight young (相似文献   

8.
The effect of blue LED on melatonin secretion, feeding behaviour and growth was addressed in Holstein female dairy calves. In Exp.1, six animals (8 weeks old, 97 ± 4.1 kg BW) were exposed to yellow or blue LED for 2 hr before darkness over 7 days under a long‐day photoperiod (LDPP). In Exp. 2, six animals (8 weeks old, 88.5 ± 4.8 kg BW) were exposed to blue light from a white LED all daytime or a yellow LED for 2 hr before the darkness of LDPP (blue light cut) over 3 weeks. In Exp. 1, blue light mildly suppressed melatonin secretion during the 2‐hr treatment but did not affect the timing of the nightly melatonin rise. However, the rise in nighty melatonin levels was higher with yellow than blue LED. In Exp. 2, white LED completely suppressed melatonin secretion during the 2‐hr treatment, but plasma melatonin concentrations were similar during the darkness. Grass hay intake, rumination time, frequency of water intake and body weight gain were higher in animals exposed to the yellow rather than the white LED. Overall results indicate that exposure to blue light from white LEDs under an LDPP suppresses melatonin secretion and might negatively impact the development of female dairy calves.  相似文献   

9.
Studies were conducted to characterize circulating concentrations of prolactin, thyroxine (T4) and triiodothyronine (T3) relative to season and the estrous cycle, and to evaluate the ability of thyrotropin-releasing hormone (TRH) to induce prolactin secretion in the horse mare. The increase in serum prolactin following the iv injection of 0, 5, 50 and 500 micrograms TRH was dose-related, while all three doses of TRH induced a significant and comparable increase in serum T4. Seasonal variations in serum prolactin were directly correlated (P less than .001) with changes in photoperiod (r = .80) and temperature (r = .61). By comparison, concentrations of T3 were inversely related to temperature (r = -.49; P less than .001), while changes in T4 were less closely associated with photoperiod (r = -.29; P = .04). There were no significant fluctuations in prolactin, T3 or T4 at any stage of the estrous cycle. These results demonstrate that concentrations of prolactin in the mare are highest during the summer and lowest during the winter, but it is unknown whether this annual rhythm is controlled by photoperiod, temperature and(or) other environmental factors.  相似文献   

10.
The objective of this experiment was to develop a procedure for immunizing ewes against melatonin that would alter the effects of changing photoperiod on seasonal reproduction and prolactin secretion. Ewes were immunized against human serum albumin (HSA) as controls (n = 9) or a melatonin-human serum albumin conjugate (0.25 mg; n = 10) on December 14th (Day 0) and boosted 9 times. They were maintained on natural photoperiod and then transferred indoors and exposed to long days for 35 d, followed by short days for 146 d, long days for 93 d, and short days for a further 123 d. Antibody titers to melatonin (at a serum dilution of 1:1,250) were significantly higher in immunized ewes (27.3 ± 6.6%) than controls (0.7 ± 0.1%; P < 0.001). At the end of the experiment, antibody titers in immunized ewes (at dilution of 1:50) were higher in blood (43.7 ± 8.2%) than in cerebrospinal fluid (10.8 ± 3.9%; P < 0.05), and highly correlated (r2 = 0.746). Onset of the breeding season was advanced slightly after the second transfer from long to short days in immunized ewes (April 12 ± 3 d) compared with controls (April 25 ± 3 d; P < 0.05). Mean serum prolactin concentrations were lower (P < 0.05) in melatonin-immunized ewes compared with controls on natural photoperiod, after transfer from long to short days, during long days, and after the second transfer from long to short days. In conclusion, despite melatonin-immunization increasing antibody titers in blood and cerebrospinal fluid, and decreasing prolactin concentrations over much of the experiment, minimal effects on the timing of reproductive transitions in the ewes were evident. This discrepancy between the response of the prolactin and reproductive axes to melatonin immunization supports the hypothesis of a dual site of action of melatonin, with melatonin acting in the pituitary gland to mediate the effects of photoperiod on prolactin secretion and in the mediobasal hypothalamus to affect reproductive responses.  相似文献   

11.
Changes in day length and the related secretion of melatonin and prolactin are of particular significance in sheep, as they determine reproductive processes, the last stage of which is lactation. The aim of the present study was to examine the dependence of the lactation duration and efficiency on the season of lambing (January—Group I/June—Group II) in relation to the hormonal status of milking ewes (Polish Longwool). The possibility of artificial extension of the milking period in late-lambing ewes by application of prolonged day length, 16 h of light–8 h of darkness (16L:8D), was introduced additionally (Group III). Measurements of plasma levels of prolactin and melatonin were used as parameters of season-dependent hormonal regulation of milk production in this seasonally breeding species. Although during the first 28 days of lactation sheep of all groups produced similar amounts of milk (based on the weight gains of the lambs), our results clearly showed that during the period of machine milking (from weaning at 56 day to the dry period) the level of milk production in Group I was almost twice that noted in Group II. Thus, the highest milk yield was obtained from sheep during the period when the days became longer, i.e. from March to May, which was accompanied by an increase in prolactin secretion. In both groups, melatonin secretion was found to increase while milk performance parameters and prolactin secretion decreased during the shortening photoperiod. The sustained decreases in milk production and prolactin secretion were also observed during the autumn months in sheep from Group III, despite the low level of melatonin. The present study showed that time of lambing and related photoperiod length could significantly affect the milk production of sheep that have a clear season of sexual activity. Maintenance of June-lambing sheep under the 16L:8D regime failed to extend the high prolactin level and lactation considerably into the autumn months. The spontaneous decrease in prolactin secretion observed under the long artificial photoperiod indicated for a development of refractoriness, which could also limit the lactation period.  相似文献   

12.
To understand the regulatory mechanism of the secretory rhythm of GH and the involvement of melatonin (MEL) in GH regulation in cattle, daytime and nighttime profiles of GH secretion and the effect of a photic stimulation on nocturnal GH and MEL secretion were investigated in Holstein steers. Steers were kept under a constant lighting condition of 12 h of light (LIGHT; 500 lx, 0600 to 1800 h):12 h of dark (DARK; 10 lx, 1800 to 0600 h). In Exp. 1, blood was taken for 4 h at 15-min intervals during LIGHT (1100 to 1500 h) and DARK (2300 to 0300 h), respectively. The sampling was also performed from 0500 to 0900 h, with the usual light transition (light onset at 0600 h; morning sampling). In Exp. 2, steers were exposed to light (500 lx) for 1 h from 0000 to 0100 h. Plasma GH and MEL concentrations were determined by RIA and enzyme immunoassay, respectively. Both GH (P < 0.05) and MEL (P < 0.01) concentrations in plasma for 4 h during DARK were greater than those during LIGHT. On the other hand, although MEL concentrations were decreased after the light onset at 0600 during the morning, GH release was not altered. Increased GH secretion during DARK was suppressed (P < 0.01) by the 1 h of light exposure, as were MEL concentrations (P < 0.05). Pineal MEL, which was affected by the photic condition, may play an important role in the secretory rhythm of GH secretion in cattle.  相似文献   

13.
Five adult pasture-bred French Friesian cows were used to qualify the circadian profile and characterized pulsatility of plasma melatonin, and to estimate melatonin secretion rate, around the summer solstice. Plasma concentrations of melatonin were low (5 pg/ml) during the photophase, began to rise at sunset (light intensity less than 20 lx) and reached a maximum (about 90 pg/ml) in the middle of the scotophase. The mean amplitude of peaks was 48.67 +/- 23.01 pg/ml, their mean duration was 32.30 +/- 21.50 min and the frequency was 1.5 +/- 0.3 peak/hr during the secretory period (537 +/- 42.3 min). The plasma clearance (ClB) was 0.0247 +/- 0.0013 1/kg per min, the steady state volume of distribution (Vss) was 1.404 +/- 0.225 1/kg, the elimination half life (t1/2 beta) was 66.66 +/- 11.30 min, the mean residence time was 51.37 +/- 9.92 min and the mean production rate was 399.9 +/- 57.37 ng/kg per 24 hr. These results support the concept of linearity for melatonin kinetics in cattle and the plasma clearance value suggest a first-pass hepatic effect.  相似文献   

14.
Two experiments studied the effects of pretreatment with estradiol benzoate before treatment with a dopamine antagonist on prolactin secretion and reproductive traits in mares during (1) the seasonal anovulatory period and (2) the normal breeding season. Experiment 1 was performed in winter with 17 mares selected for low follicular activity. Nine mares received estradiol benzoate injections every other day for a total of 10 injections; 8 mares received similar injections of vehicle. Ten days after onset of injections, all mares were placed on daily injections of sulpiride (250 mg) for 35 days or until ovulation. Plasma prolactin concentrations were higher (P < .001) in mares receiving estradiol than in controls for all assessments from days 12 through 36. Plasma luteinizing hormone (LH) concentrations were also increased (P < .05) by estradiol treatment from days 14 to 23. Mean day of first ovulation was 73.6 for control mares and 29.0 for estradiol-treated mares (P = .016). Estradiol treatment greatly enhanced prolactin secretion in response to sulpiride and increased LH secretion in seasonally anovulatory mares, which together hastened the date of first ovulation by an average of 45 days. Experiment 2 was designed to assess the efficacy of a long-acting, single-injection microparticle preparation of another dopamine antagonist, domperidone, for increasing prolactin secretion in cyclic mares in the summer. The experimental design and procedures used in experiment 1 were repeated, except that a single 3-g domperidone-microparticle injection was administered on day 11 rather than 45 days of sulpiride injections. Day 0 was the first day of estrus for each mare. Prolactin concentrations were higher (P < .05) in mares receiving estradiol than in control mares from days 12 through 25 and after a thyrotropin-releasing hormone injection on d 21. Estrous cycle traits (time to ovulation and time of luteal regression) were not affected (P > .1) by treatment. Estradiol enhanced the prolactin response to a single injection of 3 g domperidone in cyclic mares in the summer in a manner similar to the estradiol enhancement of prolactin secretion in response to daily sulpiride injections in anovulatory mares in winter. Thus, the single injection of domperidone could possibly replace the daily sulpiride injections used in experiment 1 to induce ovulation in seasonally anovulatory mares; this needs to be tested in future experiments.  相似文献   

15.
Sexual stimulation induces rapid secretion of cortisol and prolactin (PRL) in stallions. Experiment 1 was designated to determine whether stallions associated location and(or) procedure with previous sexual stimulation in that location. After a control period on d 1, four stallions were exposed to an estrous mare for 5 min on d 2. On d 3, 4, 5, and 6, the same procedure was followed with no mare present. Concentrations of PRL and cortisol increased (P less than .05) after mare exposure on d 2 but did not vary (P greater than .05) on d 1, 3, 4, 5, or 6. In Exp. 2, six stallions were used to determine the short-term effects of 1) sexual stimulation, 2) acute physical exercise, 3) restraint via a twitch (twitching), 4) epinephrine administration, and 5) no stimulation on plasma concentrations of PRL and cortisol. Stallions received one treatment per day separated by 2 d of no treatment. Concentrations of cortisol increased (P less than .05) within 10 min after sexual stimulation, exercise, twitching, and epinephrine administration but not during control bleedings. Concentrations of PRL increased (P less than .05) immediately after sexual stimulation, exercise, and twitching but not after epinephrine administration or during control bleeding. In Exp. 3, the same five treatments were administered to six geldings. Concentrations of cortisol increased (P less than .05) after epinephrine administration, exercise, and twitching but not after sexual stimulation or during control bleedings. Concentrations of PRL increased (P less than .05) after exercise and sexual stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
济宁青山羊不同季节血浆内褪黑素分泌规律的研究   总被引:3,自引:0,他引:3  
为了探讨济宁青山羊季节性发情的内分泌机理,本试验分别用放射性免疫法和免疫组织化学方法研究了济宁青山羊在春分、夏至、秋分和冬至时血浆内褪黑素的变化规律以及松果体细胞内5-羟色胺(5-HT)的含量变化。结果显示,血浆内褪黑素含量在午夜达到最大值,而在白天日中附近降到最小值,在夜间显著高于白天(P〈0.01)。褪黑素含量也存在明显的季节性变化,夏至时夜间的平均含量极显著高于其它3个季节(P〈0.01),春分和秋分时差异不明显(P〉0.05),但它们显著高于冬至时的夜间平均水平(P〈0.05)。白天血浆褪黑素含量在各个季节差异不显著(P〉0.05)。夏季5-羟色胺阳性细胞面积和占总面积比值都显著小于其它3个季节,冬季最大,春季和秋季差异不显著(P〉0.05)。  相似文献   

17.
Circulating concentrations of leptin and IGF-I, leptin gene expression, and serum binding of [126I]ovine leptin in cattle during pubertal development, as well as leptin gene expression and circulating concentrations of leptin during the estrous cycle and different calendar seasons, were investigated. Multivariate regression analysis was utilized to evaluate temporal changes in BW, leptin mRNA, and serum concentrations of IGF-I and leptin normalized to the week of puberty (Exp. 1). Body weight accounted for most of the variation associated with the onset of puberty in the full regression model (R2 = 0.99; P < 0.01). However, serum leptin was closely related to changes in BW (r = 0.85; P < 0.02) and in the absence of BW was most predictive of pubertal onset (r2 = 0.73; P < 0.01). Mean concentrations of leptin increased (P < 0.0001) linearly from 16 wk before until the wk of pubertal ovulation in yearling heifers reaching sexual maturation from early spring to midsummer. Leptin mRNA transformed to a percent of the value at puberty increased (P < 0.02) as puberty approached, but serum leptin and leptin mRNA values were not well correlated. We found no evidence of leptin-binding proteins in serum of developing heifers. Combined mean serum concentrations of IGF-I (ng/mL) during periods III and IV (-9 wk to wk of puberty; 216.6 +/- 9) were 21% higher (P < 0.0001) than combined mean concentrations of IGF-I during periods I and II (-19 to wk of puberty; 193 +/- 10). In mature heifers and cows (Exp. 2), serum leptin tended to decrease (P = 0.10) during the late luteal/early follicular phase of the estrous cycle, which corresponded to a reduction (P < 0.03) in adipocyte leptin gene expression. In mature ovariectomized cows, serum concentrations of leptin increased (P < 0.001) by 34% from early winter to the summer solstice and remained unchanged throughout the remainder of the year (Exp. 3). Results from these studies indicate that marked increases in both circulating leptin and leptin gene expression occur in developing heifers during pubertal development and are associated with increases in serum IGF-I and BW. Seasonal effects on circulating leptin observed in mature cows from winter to summer could also plausibly account for a portion of the prepubertal rise in serum leptin observed in heifers.  相似文献   

18.
Eighteen crossbred boars, three siblings from each of six litters, were distributed randomly among three groups after weaning. The ‘Natural long-day’ group was housed in a standard room with windows, whereas the ‘Artificial long-day’ and ‘Artificial short-day’ groups were housed in light-sealed rooms and under an artificial light regimen (1400 lx). In spring (16–17 hr of light) plasma levels of melatonin and cortisol were measured in samples collected hourly for 24 hr. Two commercial melatonin radioimmunoassays with preassay diethyl ether extraction were compared. Only the assay from Bühlmann Laboratories AG showed low to undetectable melatonin levels during the light-phase and was used for further analysis. Dark-phase melatonin concentrations were higher than light-phase melatonin concentrations (P < 0.001). Dark-phase melatonin concentrations were higher in the ‘Natural long-day’ group than in the ‘Artificial long-day’ and the ‘Artificial short-day’ groups (P < 0.001). Sire had a significant effect on dark-phase melatonin concentrations (P < 0.01), but not on light-phase levels. Cortisol concentrations were higher during the light-phase than during the dark phase, and light-phase cortisol concentrations were higher in the ‘Natural long-day’ group than in the ‘Artificial long-day’ and the ‘Artificial short-day’ groups (P < 0.01). This study showed that peripubertal boars express a typical circadian melatonin rhythm under both artificial light regimens and in standard pig stable environment. Natural photoperiod and indoor lighting seem to interact in shaping the melatonin profile in standard stable environment. The great individual variation in the amplitude of the dark-phase melatonin levels could in this study be explained by the different sires.  相似文献   

19.
The present study examined the effects of different photoperiods and melatonin treatment on plasma prolactin concentrations in guanacos, a South American camelid, in captivity. Fourteen adult female guanacos, not gestating or lactating and isolated from males, were studied. The control group was exposed to natural daylight, during short days (N = 7, 10L:14D) and long days (N = 7, 16L:8D). The treatment group (N = 7, 10L:14D) received melatonin implants every 23 days for 6 weeks during long days. Blood samples were taken at intervals of 1 week for 3 weeks, starting the third week of treatment. Prolactin concentrations were measured using competitive ELISA. Plasma concentrations of prolactin in non-lactating female guanacos have seasonal changes, with a higher concentration (p < .001) in short days (3.50 ± 2.24 ng/ml) than long days (1.10 ± 0.91 ng/ml). Melatonin treatment significantly decreases (p < .05) plasma concentrations of prolactin on the 21st day after the treatment. These findings are the first report of an endogenous circannual rhythm of plasma prolactin concentration and the action of melatonin treatment on prolactin secretion in this wild camelid.  相似文献   

20.
Seasonal serum concentrations of melatonin in cycling and noncycling mares   总被引:1,自引:0,他引:1  
To determine whether secretory patterns of melatonin change throughout the seasons in mares, blood samples were drawn byvenipuncture from nine mares at noon and midnight for five successive days at monthly intervals from August through July at the University of Missouri in Columbia, MO. In addition, during September, December, March, and June, blood samples were drawn from indwelling catheters at 2-h intervals for 48 or 72 h. Mares were predominantly Quarter Horses weighing approximately 450 kg and ranged from 3 to 12 yr of age. Mares were housed in outdoor paddocks with three-sided run-in sheds for shelter. During the noon and midnight bleeding period, mares were placed in a larger open-sided barn with outside runs. Mares remained outdoors with the barn being used as a shelter in the event of inclement weather. All lights in the shed were converted to red light. Often, moonlight provided enough illumination to collect blood samples. Mares were returned to their normal paddock after each sampling period. For analysis of data, a mare was considered to be cycling if serum concentrations of progesterone were greater than 1 ng/ mL. For a mare to be classified as exhibiting a nocturnal rise of melatonin, serum concentrations of melatonin had to be at least two times greater at midnight than at noon. By month, a relationship did not exist (chi2; P > 0.05) among mares that were exhibiting estrous cycles and exhibiting nocturnal rises of melatonin. Likewise, examination of serum profiles of melatonin taken at 2-h intervals for 48 h revealed considerable variation among mares throughout the seasons. A nocturnal rise in serum melatonin was observed only in June (P < 0.02). In March and December, serum melatonin was greater in cycling mares than noncycling mares, but the elevation was not associated with light-dark periods (P < 0.01). Two of the mares exhibited estrous cycles throughout the seasons but melatonin secretion in these two mares were similar to that observed in the seven mares that demonstrated seasonal anestrous. From these results, it does not appear that changes in serum concentrations of melatonin are used as a cue to regulate cyclic activity in the mare throughout the seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号