首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starch is a crucial component determining the processing quality of wheat‐based products such as Chinese steamed bread (CSB) and raw white noodles (RWN). Flour from wheat cultivar Zhongmai 175 was used for fractionation into starch, gluten, and water solubles by hand washing. The starch fraction was successfully separated into large (>10 μm diameter) and small starch granules (<10 μm diameter) by repeated sedimentation. Flour fractions were reconstituted to original levels in the flour by using constant gluten and water solubles and varying the weight ratio of large and small starch granules. As the proportion of small granules increased in the reconstituted flours, farinograph water absorption increased, and amylose content, pasting peak viscosity, trough, and final viscosity decreased. Starch granule size distribution significantly affected processing quality of CSB and RWN. Superior crumb structure score (12.0) was observed in CSB made from reconstituted flour with 35% small starch granules. CSB made from reconstituted flours with 30 and 35% small starch granules exhibited the highest total scores, with values of 85.4 and 83.3, respectively. Significant improvements in color, viscoelasticity, and smoothness of RWN were obtained with an increase in small starch granule content, and reconstituted flours with 30–40% small starch granules produced RWN with moderate firmness.  相似文献   

2.
One nonwaxy (covered) and two waxy (hull-less) barleys, whole grain and commercially abraded, were milled to break flour, reduction flour, and the bran fraction with a roller mill under optimized conditions. The flour yield range was 55.3–61.8% in whole grain and increased by 9–11% by abrasion before milling. Break flours contained the highest starch content (≤85.8%) independent of type of barley and abrasion level. Reduction flours contained less starch, but more protein, ash, free lipids, and total β-glucans than break flours. The bran fraction contained the highest content of ash, free lipids, protein, and total β-glucans but the lowest content of starch. Break flours milled from whole grain contained 82–91% particles <106 μm, and reduction flours contained ≈80% particles <106 μm. Abrasion significantly increased the amount of particles <38 μm in break and reduction flours in both types of barley. Viscosity of hot paste prepared with barley flour or bran at 8% concentration was strongly affected by barley type and abrasion level. In cv. Waxbar, the viscosity in bran fractions increased from 428 to 1,770 BU, and in break flours viscosity increased from 408 to 725 BU due to abrasion. Sugar snap cookies made from nonwaxy barley had larger diameter than cookies prepared from waxy barley. Cookies made from break flours were larger than those made from reduction flours, independent of type of barley. Quick bread baked from nonwaxy barley had a loaf volume similar to that of wheat bread, whereas waxy barley bread had a smaller loaf volume. Replacement of 20% of wheat flour by both waxy and nonwaxy barley flour or bran did not significantly affect the loaf volume but did decrease the hardness of quick bread crumb.  相似文献   

3.
Twelve hard winter wheat flours with protein contents of 11.8–13.6% (14% mb) were selected to investigate starch properties associated with the crumb grain score of experimentally baked pup‐loaf bread. The 12 flours were classified in four groups depending on the crumb grain scores, which ranged from 1 (questionable‐unsatisfactory) to 4 (satisfactory). Flours in groups 1, 2, 3, and 4 produced breads with pup‐loaf volumes of 910–1,035, 1,000–1,005, 950–1,025, and 955–1,010 cm3, respectively. Starches were isolated by a dough handwashing method and purified by washing to give 75–79% combined yield (dry flour basis) of prime (62–71%) and tailing (7–16%) starches. The prime starch was fractionated further into large A‐granules and small B‐granules by repeated sedimentation in aqueous slurry. All starches were assayed for weight percentage of B‐granules, swelling power (92.5°C), amylose content, and granular size distribution by quantitative digital image analysis. A positive linear correlation was found between the crumb grain scores and the A‐granule sizes (r = 0.65, P < 0.05), and a polynomial relationship (R2 = 0.45, P < 0.05) occurred between the score and the weight percentage of B‐granule starch. The best crumb grain score was obtained when a flour had a weight percentage of B‐granules of 19.8–22.5%, shown by varietal effects.  相似文献   

4.
Stress relaxation in the wall of a gas bubble, as measured by the alveograph, was used to study surface tension at the gas-dough interface of doughs from flours producing differing bread crumb grains. The surface tensions in the various wheat flour doughs were not different. Dough rheological properties, as measured by both dynamic oscillatory rheometry and lubricated uniaxial compression, were not different for doughs made from wheat flours that gave breads with different crumb grains. However, when the effect of starch granule size on gas cell wall stability was tested, the presence of a greater proportion of large starch granules in wheat flour dough was sufficient to result in gas cell coalescence and open crumb grain in the final baked product. This suggests that starch granule size is at least one of the factors that affects the crumb grain of bread.  相似文献   

5.
We evaluated the effect and magnitude of flour particle size on sponge cake (SC) baking quality. Two different sets of wheat flours, including flours of reduced particle size obtained by regrinding and flour fractions of different particle size separated by sieving, were tested for batter properties and SC baking quality. The proportion of small particles (<55 μm) of flour was increased by 11.6–26.9% by regrinding. Despite the increased sodium carbonate solvent retention capacity, which was probably a result of the increased starch damage and particle size reduction, reground flour exhibited little change in density and viscosity of flour‐water batter and produced SC of improved volume by 0.8–15.0%. The volume of SC baked from flour fractions of small (<55 μm), intermediate (55–88 μm), and large (>88 μm) particles of soft and club wheat was in the range of 1,353–1,450, 1,040–1,195, and 955–1,130 mL, respectively. Even with comparable or higher protein content, flour fractions of intermediate particle size produced larger volume of SC than flour fractions of large particle size. The flour fractions of small particle size in soft white and club wheat exhibited lower flour‐water batter density (102.6–105.9 g/100 mL) than did those of large and intermediate particle fractions (105.2–108.2 g/100 mL). The viscosity of flour‐water batter was lowest in flour fractions of small particle size, higher in intermediate particles, and highest in large particles. Flour particle size exerted a considerable influence on batter density and viscosity and subsequently on SC volume and crumb structure. Fine particle size of flour overpowered the negative effects of elevated starch damage, water absorption, and protein content in SC baking.  相似文献   

6.
To alleviate the adverse effects (grittiness and high crumb firmness) caused by the inclusion of sorghum flour in composite breads, sorghum grain was malted with the aim of decreasing the gelatinization temperature and increasing the water‐holding capacity of sorghum flour. Four different heat treatments were investigated: drying the malt at high temperatures (50–150°C), stewing, steaming, and boiling before drying the malt at 80°C. Malting decreased the pasting temperature of sorghum to values approaching those of wheat flour, but the paste viscosity was very low. Increasing the malt drying temperature inactivated the amylases but gave malts of darker color and bitter taste. Stewing, steaming, and boiling the malt before drying almost completely inactivated the amylases and increased the enzyme‐susceptible starch content and the paste viscosity of malt flours. Bread made with boiled malt flour (30%) had an improved crumb structure, crumb softness, water‐holding capacity, and resistance to staling, as well as a fine malt flavor compared with the bread made with grain sorghum flour (30%). Consumers preferred the malted sorghum bread over the bread made with plain sorghum flour.  相似文献   

7.
The objective of this study was to determine the effects of flour type, baking absorption, variation in sheeting, and dough proofing time on the density, crumb grain (visual texture), and mechanical properties (physical texture) of bread crumb. All response variables were measured on the same bread crumb specimens. Bread loaves were prepared by a short‐time bread‐making process using four spring wheat flours of varying strength. After crumb density measurement, digital image analysis (DIA) was used to determine crumb grain properties including crumb brightness, cell size, cell wall thickness, and crumb uniformity. Tensile tests were performed on bone‐shaped specimens cut from the same bread slices used for DIA to obtain values for Young's modulus, fracture stress, fracture strain, and fracture energy. Proof time had the most profound influence on the bread with substantial effects on loaf volume, crumb density, crumb brightness, and grain, as well as crumb mechanical properties. Increasing proof time resulted in higher loaf volume, lower crumb density and brightness, coarser crumb with fewer and larger cells with thicker cell walls, and weaker crumb tensile properties. Varying flour type also led to significant differences in most of the measured crumb parameters that appeared to correspond to differences in gluten strength among the flour samples. With increasing flour strength, there was a clear trend to increasing loaf volume, finer and more uniform crumb grain, and stronger and more extensible bread crumb. Increasing baking absorption had virtually no effect on crumb structure but significantly weakened crumb strength and increased fracture strain. In contrast, varying the number of sheeting passes had a minor effect on crumb cellular structure but no effect on mechanical properties. The experimental data were consistent with a cause‐effect relationship between flour strength and the tensile strength of bread crumb arising as a result of stronger flours exhibiting greater resistance to gas cell coalescence, thereby having fewer crumb defects.  相似文献   

8.
《Cereal Chemistry》2017,94(5):897-902
A satisfactory chemically leavened gluten‐free sorghum bread method was developed by using a blend of 90% commercially milled sorghum flour and 10% rice, tapioca, or potato starch as the “flour.” The most effective starch/hydrocolloid combinations in the formula were potato starch with 4% xanthan, tapioca starch with 3% hydroxypropyl methylcellulose, and rice starch with 3% xanthan. Overall, there was not a significant difference in the quality of loaves made with each starch/hydrocolloid combination. Rapid visco analysis showed that batter viscosity did not have a significant impact on loaf volume index but did affect crumb grain properties. Batters with lower viscosity produced loaves with better crumb grain.  相似文献   

9.
Barley grain was divided into eight fractions from the surface layer to the center with a machine used to polish brewers' rice. Small‐, medium‐, and large‐granule starches were isolated from classified barley flour, and their physicochemical properties were investigated. The starch granules were oval to round with a median size of 2 μm for small, 10 μm for medium, and 12–19 μm for large granules. From the surface layer to the center, both the median sizes and the ratio of large granules decreased, and the ratio of medium‐ and small‐granules increased. The starches had A‐type X‐ray diffraction patterns typical of cereal starches. The moisture sorption showed a negative correlation to the granule size. The gelatinization temperatures of starch granules in each layer were approximately the same, but the enthalpies decreased in the order of large, medium, and small granules.  相似文献   

10.
Studies were conducted with two newly developed gluten‐free bread recipes. One was based on corn starch (relative amount 54), brown rice (25), soya (12.5), and buckwheat flour (8.5), while the other contained brown rice flour (50), skim milk powder (37.5), whole egg (30), potato (25), and corn starch (12.5), and soya flour (12.5). The hydrocolloids used were xanthan gum (1.25) and xanthan (0.9) plus konjac gum (1.5), respectively. Wheat bread and gluten‐free bread made from commercial flour mix were included for comparison. Baking tests showed that wheat and the bread made from the commercial flour mix yielded significantly higher loaf volumes (P < 0.01). All the gluten‐free breads were brittle after two days of storage, detectable by the occurrence of fracture, and the decrease in springiness (P < 0.01), cohesiveness (P < 0.01), and resilience (P < 0.01) derived from texture profile analysis. However, these changes were generally less pronounced for the dairy‐based gluten‐free bread, indicating a better keeping quality. Confocal laser‐scanning microscopy showed that the dairy‐based gluten‐free bread crumb contained network‐like structures resembling the gluten network in wheat bread crumb. It was concluded that the formation of a continuous protein phase is critical for an improved keeping quality of gluten‐free bread.  相似文献   

11.
Wheat genotypes of wild type, partial waxy, and waxy starch were used to determine the influence of starch amylose content on French bread making quality of wheat flour. Starch amylose content and protein content of flours were 25.0–25.4% and 14.3–16.9% for wild type; 21.2 and 14.9% for single null partial waxy; 15.4–17.1% and 13.2–17.6% for double null partial waxy; and 1.8 and 19.3% for waxy starch, respectively. Wheat flours of double null partial waxy starch produced smaller or comparable loaf volume of bread than wheat flours of wild type and single null partial waxy starch. Waxy wheat flour, despite its high protein content, generally produced smaller volume of bread with highly porous, glutinous, and weak crumb than wheat flours of wild type and partial waxy starch. French bread baked from a flour of double null partial waxy starch using the sponge-and-dough method maintained greater crumb moisture content for 24 hr and softer crumb texture for 48 hr of storage compared with bread baked from a flour of wild type starch. In French bread baked using the straight-dough method, double null partial waxy wheat flours with protein content >14.3% exhibited comparable or greater moisture content of bread crumb during 48 hr of storage than wheat flours of wild type starch. While the crumb firmness of bread stored for 48 hr was >11.4 N in wheat flours of wild type starch, it was <10.6 N in single or double null partial waxy flours. Wheat flours of reduced starch amylose content could be desirable for production of French bread with better retained crumb moisture and softness during storage.  相似文献   

12.
Pup‐loaf bread was made with 10, 30, and 50% substitution of flour with wheat starch phosphate, a cross‐linked resistant starch (XL‐RS4), while maintaining flour protein level at 11.0% (14% mb) by adding vital wheat gluten. Bread with 30% replacement of flour with laboratory‐prepared XL‐RS4 gave a specific volume of 5.9 cm3/g compared with 6.3 g/cm3 for negative control bread (no added wheat starch), and its crumb was 53% more firm than the control bread after 1 day at 25°C, but 13% more firm after 7 days. Total dietary fiber (TDF) in one‐day‐old bread made with commercial XL‐RS4 at 30% flour substitution increased 3–4% (db) in the control to 19.2% (db) in the test bread, while the sum of slowly digestible starch (SDS) plus resistant starch (RS), determined by a modified Englyst method, increased from 24.3 to 41.8% (db). The reference amount (50 g, as‐is) of that test bread would provide 5.5 g of dietary fiber with 10% fewer calories than control bread. Sugar‐snap cookies were made at 30 and 50% flour replacement with laboratory‐prepared XL‐RS4, potato starch, high‐amylose (70%) corn starch, and commercial heat‐moisture‐treated high‐amylose (70%) corn starch. The shape of cookies was affected by the added starches except for XL‐RS4. The reference amount (30 g, as‐is) of cookies made with commercial XL‐RS4 at 30% flour replacement contained 4.3 g (db) TDF and 3.4 g (db) RS, whereas the negative control contained 0.4 g TDF and 0.6 g RS. The retention of TDF in the baked foods containing added XL‐RS4 was calculated to be >80% for bread and 100% for cookies, while the retention of RS was 35–54% for bread and 106–113% for cookies.  相似文献   

13.
The cellular structure of bread crumb (crumb grain) is an important factor that contributes to the textural properties of fresh bread. The accuracy of a digital image analysis (DIA) system for crumb grain measurement was evaluated based on its capability to predict bread crumb density from directly computed structural parameters. Bread was prepared from representative flour samples of two different wheat classes, Canada Western Red Spring (CWRS) and Canada Prairie Spring (CPS). Dough mixing and proofing conditions were varied to manipulate loaf volume and crumb density. Sliced bread was subjected to DIA immediately after physical density measurement. Experiments were repeated for the same bread samples after drying to three different moisture contents. Five computed crumb grain parameters were assessed: crumb brightness, cell wall thickness (CWT), void fraction (VF), mean cell area, and crumb fineness (measured as number of cells/cm2). Crumb density ranged from 0.088 to 0.252 g/cm3 depending on proofing and mixing treatments, and was predominantly affected by the former. With increasing crumb density, bread crumb became brighter in appearance, mean cell size and CWT decreased, crumb fineness increased, and the VF decreased. Approximately 80% of the variation in fresh or dried crumb density could be predicted using a linear regression model with two variables, CWT and VF. Results indicated that DIA of directly computed crumb grain could accurately predict bread crumb density after images had been correctly classified into cells and background.  相似文献   

14.
The present investigation aims at understanding the role of chemically modified starch on the firmness of fresh or stale bread. Bread was prepared from wheat flour or substituted wheat flour that contained 18% chemically modified tapioca starch and 2% vital gluten. Hydroxypropylated tapioca starch (HTS), acetylated tapioca starch (ATS), phosphorylated cross‐linked tapioca starch (PTS), and native tapioca starch (NTS) were tested. Bread prepared from the substituted flour with PTS showed a firmer texture on the day of baking compared with bread prepared from NTS, HTS, and ATS. PTS retained its granular structure in the gluten network after baking and seemed to play the role of filler particles in the gluten matrix, thereby increasing firmness of fresh bread crumb. Bread prepared from the substituted flour with HTS or ATS firmed at a lower rate and showed a lower endothermic melting enthalpy of amylopectin after three days of storage compared with NTS or PTS. These findings suggest that the staling of bread containing chemically modified tapioca starch involves recrystallization of amylopectin.  相似文献   

15.
Flours from five spelt cultivars grown over three years were evaluated as to their breadbaking quality and isolated starch properties. The starch properties included amylose contents, gelatinization temperatures (differential scanning calorimetry), granule size distributions, and pasting properties. Milled flour showed highly variable protein content and was higher than hard winter wheat, with short dough‐mix times indicating weak gluten. High protein cultivars gave good crumb scores, some of which surpassed the HRW baking control. Loaf volume was correlated to protein and all spelt cultivars were at least 9–51% lower than the HRW control. Isolated starch properties revealed an increase in amylose in the spelt starches of 2–21% over the hard red winter wheat (HRW) control. Negative correlations were observed for the large A‐type granules to bread crumb score, amylose level, and final pasting viscosity for cultivars grown in year 1999 and to pasting temperature in 1998 samples. Positive correlations were found for the small B‐ and C‐type granules relative to crumb score, loaf volume, amylose, and RVA final pasting viscosity for cultivars grown in 1999, and to RVA pasting temperature for samples grown in 1998. The environmental impact on spelt properties seemed to have a greater effect than genetic control.  相似文献   

16.
Water-soluble nonstarch polysaccharides were extracted from commercial hard red winter wheat flour and separated into three fractions by graded ethanol precipitation. The three fractions, F15, F40, and F60, varied in polysaccharide composition. Fraction F15 was rich in watersoluble (1→3)(1→4)-β-d -glucans, and fractions F40 and F60 were rich in arabinoxylans. Addition of individual fractions to a bread formula did not affect bread loaf volume. Addition of fraction F15 to the formula improved bread crumb grain. Treatment of (1→3)(1→4)-β-D -glucan-rich fraction F15 with lichenase before its addition to the bread formula resulted in bread with poor crumb grain. Treatment of the F15 fraction with β-xylanase before its addition to the bread formula resulted in bread with slightly improved crumb grain. Presumably, the (1→3)(1→4)-β-D -glucans in fraction F15 improved crumb grain by stabilizing air cells in the bread dough and preventing coalescence of the cells. Addition of pentosan-rich fractions F40 and F60 to the bread formula did not improve crumb grain and interfered with the improving effect of (1→3)(1→4)-β-D -glucan-rich fraction F15. Hydrolysis of the arabinoxylans in flour by adding β-xylanase to the bread formula resulted in improved crumb grain.  相似文献   

17.
Thirteen different wheat cultivars were selected to represent GBSS mutations: three each of wildtype, axnull, and bxnull, and two each of 2xnull and waxy. Starch and A‐ and B‐granules were purified from wheat flour. Hearth bread loaves were produced from the flours using a small‐scale baking method. A‐granules purified from wildtype and partial waxy (axnull, bxnull, and 2xnull) starches have significantly higher gelatinization enthalpy and peak viscosity compared with B‐granules. A‐ and B‐granules from waxy starch do not differ in gelatinization, pasting, and gelation properties. A‐ and B‐granules from waxy starch have the highest enthalpy, peak temperature, peak viscosity, breakdown, and lowest pasting peak time and pasting temperature compared with A‐ and B‐granules from partial waxy and wildtype starch. Waxy wheat flour has much higher water absorption compared with partial waxy and wildtype flour. No significant difference in hearth bread baking performance was observed between wildype and partial waxy wheat flour. Waxy wheat flour produced hearth bread with significantly lower form ratio, weight, a more open pore structure, and a bad overall appearance. Baking with waxy, partial waxy, and wildtype wheat flour had no significant effect on loaf volume.  相似文献   

18.
Double‐null partial waxy wheat (Triticum aestivum L.) flours were used for isolation of starch and preparation of white salted noodles and pan bread. Starch characteristics, textural properties of cooked noodles, and staling properties of bread during storage were determined and compared with those of wheat flours with regular amylose content. Starches isolated from double‐null partial waxy wheat flours contained 15.4–18.9% amylose and exhibited higher peak viscosity than starches of single‐null partial waxy and regular wheat flours, which contained 22.7–25.8% amylose. Despite higher protein content, double‐null partial waxy wheat flours, produced softer, more cohesive and less adhesive noodles than soft white wheat flours. With incorporation of partial waxy prime starches, noodles produced from reconstituted soft white wheat flours became softer, less adhesive, and more cohesive, indicating that partial waxy starches of low amylose content are responsible for the improvement of cooked white salted noodle texture. Partial waxy wheat flours with >15.1% protein produced bread of larger loaf volume and softer bread crumb even after storage than did the hard red spring wheat flour of 15.3% protein. Regardless of whether malt was used, bread baked from double‐null partial waxy wheat flours exhibited a slower firming rate during storage than bread baked from HRS wheat flour.  相似文献   

19.
A standard quality flour for French breadmaking was fractionated by extraction of water‐soluble components (6% db) and by defatting (<1%db) to study the impact of soluble components and lipids on bread quality in terms of loaf specific volume (vs) and crumb structure. Addition of puroindolines (<0.2%) was also tested. Crumb cell structure was assessed by digital image analysis (DIA) according to erosion‐dilation and closing treatments. The fraction of cells area with size <1 mm (%d<1) was defined as an index of fineness of crumb structure. Both DIA procedures allowed differentiation of crumb structures obtained by various formulations and, in the range of composition modifications tested, variations by a factor of 2 of both criteria (vs and %d1) were obtained. Soluble fraction increased vs and decreased fineness. Defatting and adding puroindolines increased fineness with no effect on vs. The possible role of molecular components of each flour fraction was discussed in terms of rheological and foaming properties. DIA methods and flour recipes tested in this work offer a valuable tool for further studies on the processing‐structure‐properties relationships of French bread dough and crumb.  相似文献   

20.
The formulation of gluten‐free (GF) bread of high quality presents a formidable challenge as it is the gluten fraction of flour that is responsible for an extensible dough with good gas‐holding properties and baked bread with good crumb structure. As the use of wheat starch in GF formulations remains a controversial issue, naturally GF ingredients were utilized in this study. Response surface methodology was used to optimize a GF bread formulation primarily based on rice flour, potato starch, and skim milk powder. Hydroxypropylmethylcellulose (HPMC) and water were the predictor variables. Analyses of the treatments from the design were made 24 hr after baking. Specific volume and loaf height increased as water addition increased (P < 0.01). Crumb firmness decreased as water levels increased (P < 0.01). Significant interactions (P < 0.01) between HPMC and water were found for the number of cells/cm2. The number of large cells (>4 mm2) decreased with increasing levels of HPMC and water. Optimal ingredient levels were determined from the data obtained. The optimized formulation contained 2.2% HPMC and 79% water flour/starch base (fsb) and measured responses compared favorably to predicted values. Shelf‐life analysis of the optimized formulation over seven days revealed that, as crumb firmness increased, crust firmness and crumb moisture decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号