首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Cereal Chemistry》2017,94(4):693-698
The high cost of kafirin and zein restricts their use for bioplastic and food applications. Effective, simple, and rapid kafirin/zein isolation processes are required. Here a percolation‐type aqueous ethanol solvent extraction process from coarse meals (grits) and coarse sorghum distillers dried grains and solubles (DDGS) for kafirin and zein isolation employing a low ratio of extractant to meal (2.5:1) was investigated, which is potentially applicable in the grain bioethanol industry. Postextraction filtration times were more than twice as fast using coarse meals compared with fine flours. Washing the meals prior to extraction to remove starch improved protein preparation purity to 73–85% compared with 68–72% for unwashed meals. Hence, no subsequent filtration or centrifugation step is required to clean up the kafirin/zein solution prior to solvent evaporation. With a single extraction step, kafirin/zein yields were 48% (protein basis) for DDGS and 53–70% for washed sorghum/maize meals. Cast films were used as a model bioplastic system to evaluate extracted kafirin/zein functional properties. DDGS kafirin films had rough surfaces but had the lowest water uptake and in vitro digestibility, owing to heat‐induced disulfide crosslinking during DDGS processing. Extraction by percolation using coarse meal/DDGS has potential to improve kafirin/zein viability.  相似文献   

3.
To improve the functional properties of cast kafirin films, dry kafirin, extracted with an aqueous ethanol‐based solvent at 70°C, was microwave‐heated. No effect on film tensile properties was found. Two strategies were employed to improve the effect of microwaving: extraction of kafirin using an aqueous tert‐butanol‐based solvent at ambient temperature to minimize temperature‐induced denaturation and wetting the kafirin to increase its dielectric properties. Microwave heating this kafirin to 90 or 96°C and holding for 1–2 min more than doubled maximum tensile strength and Young's modulus, and decreased strain by about one‐third compared with films made from nonmicrowaved kafirin. Film water vapor permeability was reduced by at least one‐third. Digestibility of microwaved kafirin and films was also substantially decreased, and film biodegradability was slowed slightly. Microwave heating gave a film microstructure with fewer and smaller size pores. SDS‐PAGE showed microwave‐induced intermolecular cross‐linking of the kafirin monomers, which was possibly responsible for the modification of film properties. Microwave heating of kafirin can be used to modify kafirin film properties, but the kafirin must be microwaved wet and be as close as possible to its native state.  相似文献   

4.
The poor barrier and mechanical properties of biopolymer‐based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch‐clay nanocomposites were synthesized by a melt extrusion method. Natural (MMT) and organically modified (I30E) montmorillonite clays were chosen for the nanocomposite preparation. The structures of the hybrids were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Films were made through casting using granulate produced by a twin‐screw extruder. Starch/MMT composite films showed higher tensile strength and better water vapor barrier properties than films from starch/I30E composites, as well as pristine starch, due to formation of intercalated nanostructure. To find the best combinations of raw materials, the effects of clay content (0–21 wt% MMT), starch sources (corn, wheat, and potato), and amylose content (≈0, 28, 55, 70, 100%) on barrier and mechanical properties of the nanocomposite films were investigated. With increase in clay content, significantly higher (15–92%) tensile strength (TS), and lower (22–67%) water vapor permeability (WVP) were obtained. The barrier and mechanical properties of nanocomposite films did not vary significantly with different starch sources. Nanocomposite films from regular corn starch had better barrier and mechanical properties than either high amylopectin or high‐amylose‐based nanocomposite films. WVP, TS, and elongation at break (%E) of the films did not change significantly as amylose content increased beyond 50%.  相似文献   

5.
Molecular markers for the red grain color (R) loci controlling seed color and the polyphenol oxidase (Ppo‐A1) locus controlling polyphenol oxidase (PPO) activity in seed have recently been developed. These markers provided the opportunity to convert the hard red spring wheat cultivars Choteau and Hank to white‐seeded versions with high and low PPO levels, respectively. These sets of near‐isogenic lines provided material to test the effects of seed color and PPO activity on a range of end‐use quality traits. We tested recurrent parents Choteau and Hank, along with near‐isogenic derivatives with white seed, in two replicated trials in Bozeman, Montana, for end‐use quality parameters. The white‐seeded lines consisted of both high‐ and low‐PPO near‐isogenic lines. The primary impact of white seed was the production of whole wheat bread with a perceived sweeter taste relative to the red‐seeded lines. Noodle color was not consistently impacted by the level of PPO variation despite relatively large reductions in PPO level. The alleles for white seed color did not appear to impact agronomic traits. These results suggested that hard white low‐PPO hard spring wheat would be advantageous in terms of conferring brighter color to Asian noodles and a sweeter taste to whole wheat bread.  相似文献   

6.
为开发天然的可降解、可食性包装材料,以高粱醇溶蛋白为原料,采用溶液共混的方法制备可食性丁香酚/高粱醇溶蛋白复合膜,分析不同浓度丁香酚对可食性高粱醇溶蛋白膜物理性能及微观结构的影响并探讨其变化机理。结果表明,添加4%丁香酚可优化蛋白膜的机械性能,提升膜的拉伸强度(TS)和断裂伸长率(EAB);添加丁香酚不影响蛋白膜的水蒸气透过系数(WVP),但略微提高了蛋白膜的溶解度;添加4%丁香酚可增加蛋白膜对紫外光和可见光的吸光度值,即增强膜的光阻隔性能。DSC测量显示,添加丁香酚后降低了高粱醇溶蛋白的玻璃态转变温度(Tg),表明丁香酚提高了丁香酚/高粱醇溶蛋白复合膜的延展性;FTIR分析结果表明,添加丁香酚后使得高粱醇溶蛋白二级结构中的α-螺旋、无规则卷曲转变为β-折叠、β-转角,表明丁香酚有助于提高丁香酚/高粱醇溶蛋白复合膜的机械性能;SEM结果显示,4%丁香酚与高粱醇溶蛋白的相容性良好,制备的复合膜截面光滑紧致。本研究结果为可降解、可食性膜新材料的研究及应用推广提供了理论参考。  相似文献   

7.
Glycerol-plasticized soy protein films were cast from alkaline aqueous film-forming solutions of laboratory-prepared 7S, 11S, and soy isolate (LSI) fractions and from commercial soy isolate (CSI). Tensile strength (TS), elongation at break (E), water vapor permeability (WVP), total soluble matter (TSM), protein solubility (PS), and Hunter L, a, and b color values of these films were determined. The 11S films had greater TS than 7S films (P < 0.05), while LSI films had greater TS than CSI films (P < 0.05). No significant differences were detected among mean E values and among mean WVP values of all films (P > 0.05). The 7S films had higher TSM and PS values than 11S films (P < 0.05). CSI films were significantly darker (lower L value) and more yellow (greater positive b value) than LSI films (P < 0.05).  相似文献   

8.
深松与压实对红壤坡耕地土壤物理性质的影响   总被引:3,自引:1,他引:3  
《土壤通报》2017,(6):1347-1353
以红壤坡耕地为研究对象,研究了深松和机械压实对土壤物理性质的影响。结果表明:深松改善了除土壤最小持水量和毛管孔隙度外的土壤物理性质,并对表层土壤的改善效果较好,进而提高了红薯产量;机械压实则对除土壤紧实度和最小持水量外的土壤物理性质产生了负面影响,影响深度达30 cm左右,造成红薯产量降低。0~20 cm土层土壤容重、土壤孔隙度及土壤持水量之间呈显著或极显著相关;20~40 cm土层土壤容重、毛管孔隙度与土壤紧实度分别呈极显著和显著相关性,土壤持水量与土壤非毛管孔隙度、总孔隙度呈显著或极显著正相关。可见,避免机械压实并对深松耕作管理模式进行优化,是缓解红壤坡耕地农业生产与生态破坏的突破口之一。  相似文献   

9.
Seed protein and starch composition determine the efficiency of the fermentation process in the production of grain‐based ethanol. Sorghum, a highly water‐ and nutrient‐efficient plant, provides an alternative to fuel crops with greater irrigation and fertilizer requirements, such as maize. However, sorghum grain is generally less digestible because of extensive disulfide cross‐linking among sulfur‐rich storage proteins in the protein– starch matrix. Thus, the fine structure and composition of the seed endosperm directly impact grain end use, including fermentation performance. To test the hypothesis that kafirin (prolamin) seed storage proteins specifically influence the efficiency of ethanol production from sorghum, 10 diverse genetic lines with allelic variation in the β‐, γ‐, and (δ‐kafirins, including three β‐kafirin null mutants, were tested for ethanol yield and fermentation efficiency. Our selected lines showed wide variation in grain biochemical features, including total protein (9.96–16.47%), starch (65.52–74.29%), and free amino nitrogen (FAN) (32.84–73.51 mg/L). Total ethanol yield (ranging from 384 to 426 L/metric ton), was positively correlated to starch content (R2 = 0.74), and there was a slight positive correlation between protein digestibility and ethanol yield (R2 = 0.52). Increases in FAN content enhanced fermentation efficiency (R2 = 0.65). The highest ethanol producer was elite staygreen breeding line B923296, and the line with the highest fermentation efficiency at the 72 h time point was inbred BT×623. A large‐seeded genotype, KS115, carrying a novel γ‐kafirin allele, was rich in FAN and exhibited excellent short‐term fermentation efficiency at 85.68% at the 20 h time point. However, the overall ethanol yield from this line was comparatively low at 384 L/metric ton, because of insufficient starch, low digestibility, and high crude protein. Multivariate analysis indicated an association between the β‐kafirin allele and variation in grain digestibility (P = 0.042) and FAN (P = 0.036), with subsequent effects on ethanol yield. Reversed‐phase HPLC profiling of the alcohol‐soluble kafirin protein fraction revealed diversity in protein content and composition across the lines, with similarities in peak distribution profiles among β‐kafirin null mutants compared with normal lines.  相似文献   

10.
Free‐standing films were prepared from zein formulations containing 30, 40, 50, 60, 70, and 80% oleic acid (OA). Zein/OA formulations were also used as coating films for rodent diet bars. Water vapor permeability (WVP) of films and moisture loss rate (MLR) of coated rodent diet bars were measured at 4 and 25°C. Temperature affected the water barrier properties of films and coatings. At 4°C, WVP of films decreased with OA concentration while it increased at 25°C. WVP behavior was attributed to oleic acid phase changes due to temperature. At 4°C, OA is a crystalline solid that limits water diffusion through the films. At 25°C, liquid OA increased the system free volume and allowed for water diffusion. The effect was more pronounced the higher the OA concentration in films. Differential scanning calorimetry (DSC) of zein/OA films showed endothermic peaks at 12–18°C, confirming the melting of OA in that temperature range. MLR of coated rodent diet bars was also affected by temperature and OA concentration in coating formulations. In this case, formulations containing 40, 50, and 60% OA were better moisture barriers than coatings with higher OA content at both 4 and 25°C. Moisture losses were reduced at 4°C due to OA solidification.  相似文献   

11.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

12.
A new class of zein additives was investigated, thiocyanate salts. Ammonium, potassium, guanidine (GTC), and magnesium thiocyanate salts were added to solutions of zein in with various amounts of tri(ethylene glycol) (TEG), cast as films, and then tested to determine the impact that each salt had on properties. The presence of these salts affected solution rheology and intrinsic viscosity, demonstrating that the salts interacted with the protein. It was found that these salts acted as plasticizers, as they lowered the glass transition temperature of zein when evaluated with differential scanning calorimetry. In zein films in which TEG was present, these salts increased elongation and reduced tensile strength. However, unlike traditional plasticizers (such as TEG), when the salts were used as the only additive, elongation was not increased and tensile strength was not decreased. Of the salts tested, GTC in combination with TEG was found to increase elongation the most. The impact of salts on elongation was greatly affected by the relative humidity in which the samples were stored.  相似文献   

13.
Water sorption, water vapor permeability, and tensile properties were evaluated for zein films plasticized with oleic acid. The effect of relative humidity on water vapor permeability and tensile properties of films was investigated. Samples were produced by two different methods: casting from a zein solution and stretching from a zein-fatty acid resin. Films were also coated with linseed oil. Results indicated that preparation method affected water sorption and permeability of zein films. Resin films showed lower water sorption than cast films, especially at high Aw values. Water vapor permeability was also lower for resin films. Coating with linseed oil further improved water vapor barrier ability of resin films. Permeability was affected by environmental relative humidity; higher relative humidity resulted in increased permeability. Environmental relative humidity also affected tensile properties of resin films. Toughness and elongation were improved when relative humidity increased from 50 to 85% rh. Tensile strength showed a maximum at 75% rh. Coating improved elongation and toughness of films. Maximum elongation and toughness were observed for coated samples at 85% rh. Zein resin films showed good tensile and water barrier properties that were maintained through environmental humidity levels from 50 to 98% rh.  相似文献   

14.
15.
Effects of glycerol and moisture redistribution on mechanical properties of bread were investigated. Firmness increased in all bread crumb over storage time but firming rate was dependent on the initial moisture content, storage method (stored with and without crust), and the presence of glycerol. Faster firming was observed when bread crumb had low initial moisture content and high glycerol level, and was stored with crust. The effect of glycerol was more pronounced when stored with crust, suggesting a critical role of water loss. Firmness showed a good correlation (r2 = 0.95) with the scale factor (C1) from a mathematical model. Recoverable work rapidly decreased in first three days of storage and then remained relatively unchanged thereafter. Hardening of aged bread (but not fresh bread) by glycerol may be explained by local dehydration of bread polymer due to osmotic dehydration or competition for water, which in turn promote more rapid amorphous network formation but less amylopectin recrystallization.  相似文献   

16.
Forty‐nine accessions used in the Germplasm Enhancement of Maize (GEM) project, two commercial hybrids (Pioneer Brand Hybrids 3394 and 3489), and two Corn Belt inbreds (B73 and Mo17) were evaluated for compositional, physical, and wet‐milling properties. GEM accessions had lower starch contents (65.9–69.1% vs. a mean of 72.2% for the commercial hybrids) and greater protein contents (12.0–14.4% vs. a mean of 8.2% for the commercial hybrids) than did the improved Corn Belt material. Absolute densities were consistently higher for the GEM accessions compared with the commercial hybrids (1.320 vs. 1.265 g/cm3, respectively). The wet‐milling characteristics of the GEM accessions were not nearly as good as for the commercial hybrids. Mean starch yields were only 54.3% for the GEM accessions versus 64.8% for the commercial hybrids. Residual protein levels in the starches recovered from the GEM accessions were much greater (0.45–2.03%) than for commercial corn hybrids (<0.3%).  相似文献   

17.
Soluble salt in soil has a significant influence on the physical and mechanical properties of the soil. We performed desalination experiments on Lanzhou loess, a typical sulfate saline soil, to study the effects of salt on the physical and mechanical properties of the loess and compare variations in the soil properties after desalination. The Atterberg limits of the soil increased after desalination as a result of changes in the soil particle composition and grain refinement. The shear and uniaxial compressive strength of the soil increased as a result of decreased calcitic cementation and other changes to the soil structure. Scanning electron microstructure (SEM) and mercury intrusion porosimetry (MIP) procedures revealed changes to the microstructure and pore-size distribution of the Lanzhou loess after desalination.  相似文献   

18.
Corn fiber contains an oil with high levels of three potential cholesterol‐lowering phytosterol compounds. Little information is available about the levels and types of phytosterols in sorghum. In this study, phytosterols were evaluated in grain sorhgum and its wet‐milled fractions and were compared with the phytosterols in corn. The study showed that sorghum kernels can provide a significant source of two phytosterol classes, free phytosterols (St) and fatty acyl phytosterol esters (St:E). Most of these phytosterols are concentrated in the wet‐milled fiber fraction followed by the germ fraction. In addition to phytosterols, other lipid classes such as wax esters and an aldehyde (50% C28 and 50% C30) are also present in the sorghum oil. Comparison of sorghum and corn kernels show that corn has 72–93% more phytosterols than sorghum.  相似文献   

19.
红壤地区地形位置和利用方式对土壤物理性质的影响   总被引:15,自引:2,他引:15  
对不同地形部位和不同利用方式下的低丘红壤进行了采样和分析,结果表明地形变化和利用方式对土壤的理化性质和水分特性有明显的影响。对受人为扰动较小的林地和茶园而言,随地形位置的降低,土壤粘粒含量降低,有机质含量、土壤水稳性团聚体数量、土壤通气性均明显增加,而对受人为耕作影响较大的旱地和桔园,其养分含量、土壤结构性质变化没有明显规律。红壤的持水和供水性质也受到影响,坡顶的持水量比坡中和坡底要大,同时由于毛管孔隙数量比例小,土壤难以保证连续快速的水分供应是红壤作物易旱的重要原因。  相似文献   

20.
红壤的水分状况及其与物理性质的关系   总被引:1,自引:0,他引:1  
该文对发育于第四纪红色粘土上不同利用方式的红壤水分状况与物理性质作了初步研究。结果表明,无论是自然土壤还是开垦之后的旱地、林地,都存在一个阻碍水分下渗的障碍土层,使土壤在雨季的蓄水能力明显减弱,而且每种利用方式的土壤中毛管孔隙的量都很少,毛管孔隙与无效孔隙的比例不到1:1,又致使红壤在旱季供水能力极差。针对上述情况,提出了一些合理的抗旱措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号