首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Zhu  K. Khan 《Cereal Chemistry》2001,78(2):125-130
Six genotypes of hard red spring (HRS) wheat were grown at seven environments in North Dakota during 1998. Effects of genotype and environment on glutenin polymeric proteins and dough mixing and baking properties were examined. Genotype, environment, and genotype‐by‐environment interaction all significantly affected protein and dough mixing properties. However, different protein and quality measurements showed differences for relative influences of genotype and environment. Total flour protein content and SDS‐soluble glutenin content were influenced more by environmental than genetic factors, while SDS‐insoluble glutenin content was controlled more by genetic than environmental factors. Significant genotypic and environmental effects were found for the size distribution of SDS‐soluble glutenins and between SDS‐soluble and SDS‐insoluble glutenins as well as % SDS‐insoluble glutenins. With increased flour protein content, the proportions of monomeric proteins and SDS‐insoluble glutenin polymers appeared to increase, but SDS‐soluble glutenins decreased. Flour protein content and the size distribution between SDS‐soluble and SDS‐insoluble glutenin polymers were significantly correlated with dough mixing properties. Environment affected not only total flour protein content but also the content of different protein fractions and size distributions of glutenin polymers, which, in turn, influenced properties of dough mixing. Flour protein content, % SDS‐insoluble glutenin polymers in flour, and ratio of SDS‐soluble to SDS‐insoluble glutenins all were highly associated with dough mixing properties and loaf volume.  相似文献   

2.
Starch was extracted from 14 sweetpotato genotypes from the Philippines. The Rapid Visco-Analyzer (RVA) viscoamylographs of the starches showed Type A pasting curves, characterized by a high pasting peak followed by a high degree of shear-thinning. The major difference among genotypes was in the sharpness of the peak, with some showing a very sharp peak while others showed a broad peak. This difference was related to time from onset of pasting to peak viscosity, and to stability ratio (holding viscosity/peak viscosity), which were also highly correlated (r = 0.84, P < 0.01) to each other. Stability ratio was also correlated to noodle firmness (r = 0.95, P < 0.01), rehydration (cooked weight) (r = -0.89, P < 0.01), and swelling volume of the starch (r = -0.62, P < 0.05). The amylose content was correlated significantly only to peak viscosity (r = -0.84, P < 0.01). Significant differences in texture and cooking quality of the starch noodles produced from the different genotypes was found. It was shown that the RVA viscoamylographs could be used to detect differences in pasting characteristics of sweetpotato starch which are related to quality of noodle produced.  相似文献   

3.
Effects of genotype and environment on (1→3), (1→4)‐β‐d ‐glucan (β‐glucan) extractability, flour slurry viscosity, and β‐glucan polymer fine structure in oats were tested. One environment had a severe negative effect on slurry viscosity as evaluated with a rotational viscometer. Environment also had a strong effect on β‐glucan extractability, whereas genotype had no significant effect. Fine structure of β‐glucan was evaluated from the frequencies of oligosaccharides from lichenase hydrolysis of the β‐glucan polymer. Significant differences in degree of polymerization (DP) fragment frequencies were found associated with both genotype and growth environment. The high‐β‐glucan cultivar HiFi had lower DP3 fragment frequency and higher frequencies of DP4 and DP6 fragments than other cultivars with moderate β‐glucan concentration. Drier environments tended to yield lower DP3 fragment frequencies as well. Drier environments and genotypes with more β‐glucan synthetic potential may have provided cellular environments with more competition for substrate for β‐glucan synthesis, which appeared associated with lower DP3 fragment frequency. In a separate experiment, we found that extractable β‐glucan had higher frequencies of DP3 fragments and lower frequency of DP4 fragments. The observed variations deserve consideration for influence on functional properties, such as viscosity or health benefit potential.  相似文献   

4.
The effects of growing conditions on properties of starch from wheat grain were examined. Growing conditions affected starch and amylose content, granule size distribution, protein associated with starch granules, and starch swelling power in grains from five commercial Australian milling wheat varieties grown at multiple locations in two years in crop production systems. Soil nitrogen and meteorological conditions were major contributors to variability in grain yield and grain protein and starch contents. The volume proportion of B‐granules was positively affected by warmer temperatures before flowering but negatively correlated with high temperatures during grain filling. Genotype was the main source of variability in the proportion of B‐granules and granule dimensions, starch‐granule proteins, and starch swelling power, although there were also significant contributions to variability from the growing conditions. Seasonal effects and interactions between genotype and season and location were significant sources of variability in amylose content, proportion of short chains of amylopectin, and flour swelling power. The positive relationships between starch content and the number of clear days and atmospheric temperatures before flowering indicate that conditions that enhance accumulation of assimilates before anthesis influence the deposition of reserves in developing grain.  相似文献   

5.
In this study, 3% aqueous high‐amylose maize starch (Hylon VII) dispersions were heated to temperatures of 140–165°C. The onset and rate of gel formation was observed using a small‐strain oscillation rheometer as a function of temperature from 90 to 25°C. The gel formation clearly began earlier in high‐amylose starch paste preheated at lower temperatures, but the rate of gelation was slower and the resulting gel was weaker in comparison with starch pastes preheated at higher temperatures. In addition, the structure of the final gels was studied using large deformation compression measurements. The most rigid gel structure on the basis of small and large deformation tests was obtained for high‐amylose starch gel preheated to 150–152°C, depending on the type of measurement. The rate of gelation was also fastest in that temperature range. High‐amylose gels heated to higher temperatures lost their rigidity. The molecular weight distribution of starch molecules was measured by size‐exclusion chromatography. Heating caused extensive degradation of amylopectin, which had a great effect on amylose gel formation and the final gel properties of high‐amylose maize starch. Micrographs of Hylon VII gels showed that phase separation of starch components visible in light microscopy occurred on heating to higher temperatures.  相似文献   

6.
Canada Western Amber Durum wheat cultivars (4), Canada Western Red Spring (1), and Canada Western Hard White Spring (1) wheat were grown at three sites in 2007 to evaluate the effect of genotype (G) and environment (E) on the quality of yellow alkaline noodles (YAN). YAN were evaluated for color, appearance, and cooked texture. Brightness (L*) and yellowness (b*) of YAN made from durum cultivars were significantly higher than common wheat. Durum flour yellow pigment content was approximately fourfold greater than common wheat while noodle speckiness was approximately half of CWRS at 2 hr with environment accounting for >75% of the variance for each parameter. Resistance to compression (RTC) and recovery (REC) of cooked durum alkaline noodles were equivalent or superior to common wheat noodles even when lower grade durum wheat flour was used. In conclusion, cooked durum noodle texture parameters were all significantly influenced by genotype and environment, with environment accounting for 66–71% of their variance.  相似文献   

7.
Resistant starches (RS) were prepared by phosphorylation of wheat, waxy wheat, corn, waxy corn, high‐amylose corn, oat, rice, tapioca, mung bean, banana, and potato starches in aqueous slurry (≈33% starch solids, w/w) with 1–19% (starch basis) of a 99:1 (w/w) mixture of sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP) at pH 10.5–12.3 and 25–70°C for 0.5–24 hr with sodium sulfate or sodium chloride at 0–20% (starch basis). The RS4 products contain ≤100% dietary fiber when assayed with the total dietary fiber method of the Association of Official Analytical Chemists (AOAC). In vitro digestion of four RS4 wheat starches showed they contained 13–22% slowly digestible starch (SDS) and 36–66% RS. However after gelatinization, RS levels fell by 7–25% of ungelatinized levels, while SDS levels remained nearly the same. The cross‐linked RS4 starches were distinguished from native starches by elevated phosphorus levels, low swelling powers (≈3g/g) at 95°C, insolubilities (<1%) in 1M potassium hydroxide or 95% dimethyl sulfoxide, and increased temperatures and decreased enthalpies of gelatinization measured by differential scanning calorimetry.  相似文献   

8.
Understanding the relationship between basic and applied rheological parameters and the contribution of wheat flour protein content and composition in defining these parameters requires information on the roles of individual flour protein components. The high molecular weight glutenin subunit (HMW‐GS) proteins are major contributors to dough strength and stability. This study focused on eight homozygous wheat lines derived from the bread wheat cvs. Olympic and Gabo with systematic deletions at each of three HMW‐GS encoding gene loci, Glu‐A1, Glu‐B1, and Glu‐D1. Flour protein levels were adjusted to a constant 9% by adding starch. Functionality of the flours was characterized by small‐scale methods (2‐g mixograph, microextension tester). End‐use quality was evaluated by 2‐g microbaking and 10‐g noodle‐making procedures. In this sample set, the Glu‐D1 HMW‐GS (5+10) made a significantly larger contribution to dough properties than HMW‐GS coded by Glu‐B1 (17+18), while subunit 1 coded by Glu‐A1 made the smallest contribution to functionality. These differences remained after removing variations in glutenin‐to‐gliadin ratio. Correlations showed that both basic rheological characteristics and protein size distributions of these flours were good predictors of several applied rheological and end‐use quality tests.  相似文献   

9.
Resistant starch (RS) ingredients are an attractive option to increase dietary fiber in baked products. This study determined the effect of two forms of cross‐linked and pregelatinized cross‐linked RS, Fibersym‐RW (Fsym) or FiberRite‐RW (FRite), respectively, from wheat on dough and tortilla quality and acceptability. Refined wheat tortillas with 0% (control) to 15% RS (flour basis) were made using a standard baking process. Tortillas with 100% whole white wheat were also made. Physical and rheological properties of dough and tortillas, and sensory profile of tortillas were evaluated. Dough with whole wheat and 15% FRite were significantly harder and less extensible than the control dough; this was related to high water absorption of these doughs. Tortillas with whole wheat and 10–15% FRite were less puffed and denser than the control; however these levels of FRite significantly increased tortilla weight (by up to 6.2%). Dough and tortillas with Fsym were comparable to the control. Dietary fiber (g/100 g, db) increased from 2.8 ± 0.3 in control to 14.3 ± 0.5 and 13.6 ± 0.5 in 15% Fsym and 15% FRite tortillas, respectively. Tortillas with whole wheat were less acceptable than the control in appearance, flavor, and texture, while tortillas with 15% Fsym had higher overall acceptability than the control. Incorporation of 15% cross‐linked wheat RS to increase tortilla dietary fiber is feasible without negatively affecting dough handling and tortilla quality.  相似文献   

10.
Advances in understanding the biochemistry and genetics underlying wheat end-use quality require that cereal chemistry research utilize lines grown in the same environments. It also requires that effects of linkage disequilibrium and small ranges in trait variation be avoided. Our objectives were to: 1) ascertain the effects of genotype and environment and their interactions on hard and soft wheat end-use quality traits, and 2) examine relationships between traits and heritability, using recombinant inbred lines derived from a soft by hard wheat cross. All traits showed transgressive segregation. Kernel texture (KT) was not genetically correlated with mixograph traits, indicating the feasibility of producing soft-textured genotypes with stronger mixing properties. KT was highly genetically correlated with alkaline water retention capacity (AWRC) and moderately genetically correlated with flour yield (FY). Protein content (PRO) was not genetically correlated with dough mixing time across lines, but was with dough mixing strength. KT, FY, and mixograph traits demonstrated higher heritabilities than did AWRC and PRO. Genotype and environment and their interactions affected all traits. Year caused the greatest environment effects, affecting primarily AWRC and PRO. Genotype affected mainly KT, FY, and peak time. The effect of environment on those traits supports the need to develop screening methods using genotype rather than phenotype.  相似文献   

11.
End‐use quality in soft wheat (Triticum aestivum L.) can be assessed by a wide array of measurements, generally categorized into grain, milling, and baking characteristics. Samples were obtained from four U.S. regional nurseries. Selected parameters included test weight, kernel hardness, kernel size, kernel diameter, wheat protein, polyphenol oxidase activity, flour yield, break flour yield, flour ash content, milling score, flour protein content, flour SDS sedimentation volume, flour swelling volume, Rapid Visco Analyzer peak paste viscosity, solvent retention capacity (SRC) parameters, total and water‐extractable arabinoxylan (TAX and WEAX, respectively), and cookie diameter. The objectives were to model cookie diameter and lactic acid SRC as well as to compare exceptionally performing varieties for each quality parameter. Cookie diameter and lactic acid SRC were modeled by using multiple regression analyses and all of the aforementioned quality parameters. Cookie diameter was positively associated with peak paste viscosity and was negatively associated with or modeled by kernel hardness, flour protein content, sodium carbonate SRC, lactic acid SRC, and water SRC. Lactic acid SRC was positively modeled by break flour yield, milling score, flour SDS sedimentation volume, and sucrose SRC and was negatively modeled by flour protein content. Exceptionally high‐ and low‐performing varieties were selected on the basis of their responses to the aforementioned characteristics in each nursery. High‐ and low‐performing varieties exhibited notably wide variation in kernel hardness, break flour yield, milling score, sodium carbonate SRC, sucrose SRC, water SRC, TAX content, and cookie diameter. This high level of variation in variety performance can facilitate selection for improved quality based on exceptional performance in one or more of these traits. The models described allow a more focused approach toward predicting soft wheat quality.  相似文献   

12.
Dough extensibility affects processing ease, gas retention, and loaf volume of finished products. The Kieffer dough extensibility test was developed to assess extensibility of small dough samples and is therefore adapted for use in breeding programs. Information is lacking on relationships between wheat growing environments and dough properties measured by the Kieffer dough extensibility test. This study documents the variability of dough extensibility (Ext), maximum resistance to extension (Rmax), and area under the extensibility curve (Area) in relation to breadmaking quality, and the effect of wheat growing environments. Mixograph, Kieffer dough extensibility, and bake tests were performed on flour milled from 19 hard red spring wheat (Triticum aestivum L.) genotypes grown during three growing seasons (2007‐2009) at six South Dakota locations. Although both genotype and environment had significant effects on Kieffer dough extensibility variables, environment represented the largest source of variation. Among genotype means, Area was most correlated (r = 0.63) with loaf volume, suggesting that by selecting lines with increased Area, loaf volume should improve. Rmax was positively correlated (r = 0.58) with loaf volume among genotype means but negatively correlated (r = –0.80) among environmental means. Ext was positively correlated (r = 0.90) with loaf volume among environmental means. Weather variables were correlated with Rmax, Ext and loaf volume and therefore could help predict end‐use quality.  相似文献   

13.
14.
Extruded pellets were prepared from normal corn starch using a corotating twin‐screw extruder (25:1 L/D ratio, 31 mm diameter screw), and then expanded by heating in a conventional microwave oven for 70 sec. The effects of gelatinization level and moisture content of the extruded pellets on the morphology and physical properties of the microwave‐expanded products such as puffing efficiency, expansion bulk volume, and bulk density were investigated. The expanded shape and air cell structure differed according to the degree of gelatinization of the pellets. Maximum puffing efficiency and expansion volume with the pellets containing 11% moisture were achieved at 52% gelatinization. For this level of gelatinization, starch was extruded at 90°C barrel temperature. In addition, the moisture content of the pellets critically affected the expansion behavior. The maximum puffing efficiency and expansion volume were achieved in a moisture range of 10~13%. For optimum product shape and uniform air cell distribution, the pellets should undergo sudden release of the superheated vapor during the microwave‐heating. The expansion by microwave‐heating was optimized at ≈50% gelatinization.  相似文献   

15.
High‐amylose (80%) corn starch was modified by hydroxypropylation with different molar substitution (MS). The unique microstructure of high‐amylose starch keeps its granules intact after hydroxypropylation. However, the microstructures and thermal properties strongly depend on the MS of hydroxypropylation. With increasing MS, the granule size was increased, which is partly due to disrupted granule structure, particularly in the amorphous region. Unlike normal starch, the modified high‐amylose corn starch showed a narrow gelatinization range measured by differential scanning calorimetry (DSC), which can be explained by destruction of amylose‐lipid complex. Internal microstructures and morphologies of hydroxypropylated starch were investigated using confocal laser scanning microscopy and to further explore the mechanism of chemical reaction and phase transitions.  相似文献   

16.
Grain texture (hardness) in wheat (Triticum aestivum L.) is a major determinant of end‐usage. Variation in grain texture can be conceptually assigned to the two major hardness classes that result from the action of one major gene (Hardness) or to as‐yet undetermined factors contributing to residual variation within hardness classes. Identifying the physicochemical basis of both sources of texture variation could provide a means of better controlling or manipulating this quality trait. Pursuant to this objective, the role of pentosans was examined. Pentosan fractions (membrane‐associated, total, and soluble) were isolated from 13 hard and 13 soft wheat samples and their flours. Among the hard wheat samples, pentosans had a minimal role in modifying grain hardness. However, among the soft wheat samples, pentosans appeared to have a significant hardness‐modifying effect that carried over into end‐use quality. Among the soft wheat samples, pentosan fractions, along with wheat protein, accounted for 53–76% of the variation in grain texture, depending on the method used to quantify texture. Membrane‐associated pentosans were the most influential single parameter in modeling grain texture for the soft wheat samples. Membrane‐associated pentosans were most influential in accounting for variation (69%) in alkaline water retention capacity. Total pentosans, together with flour protein, accounted for 87% of the variation in cookie diameter for soft wheat samples, with the total pentosan fraction being the more influential.  相似文献   

17.
Many applications have been developed for aqueous dispersions of jet‐cooked starch‐oil composites prepared by excess steam jet cooking. Previous formulations have typically contained 20–50% oil by weight based on the weight of starch. To expand the range of potential applications, new preparation methods were investigated to increase the oil content to as high as four times the weight of starch. High‐amylose corn starch was cooked in an excess‐steam jet cooker in the presence of oleic acid, and soybean oil was added to form the starch‐oil composites. Amylose is removed from solution by forming helical inclusion complexes with the oleic acid and, if the materials are cooled sufficiently quickly, the helical inclusion complexes only form small aggregates and shells around the oil droplets. Depending on the composition and preparation method, a wide range of stable, high‐oil materials from low‐viscosity liquids to smooth pastes can be formed. The flow, textural, and structural properties of these materials are shown. The materials can be used in a wide range of applications, including spray lubricants, lotions, and for fat delivery in cake mixes.  相似文献   

18.
The effects of amylose content on thermal properties of starches, dough rheology, and bread staling were investigated using starch of waxy and regular wheat genotypes. As the amylose content of starch blends decreased from 24 to 0%, the gelatinization enthalpy increased from 10.5 to 15.3 J/g and retrogradation enthalpy after 96 hr of storage at 4°C decreased from 2.2 to 0 J/g. Mixograph water absorption of starch and gluten blends increased as the amylose content decreased. Generally, lower rheofermentometer dough height, higher gas production, and a lower gas retention coefficient were observed in starch and gluten blends with 12 or 18% amylose content compared with the regular starch and gluten blend. Bread baked from starch and gluten blends exhibited a more porous crumb structure with increased loaf volume as amylose content in the starch decreased. Bread from starch and gluten blends with amylose content of 19.2–21.6% exhibited similar crumb structure to that of bread with regular wheat starch which contained 24% amylose. Crumb moisture content was similar at 5 hr after baking but higher in bread with waxy starch than in bread without waxy starch after seven days of storage at 4°C. Bread with 10% waxy wheat starch exhibited lower crumb hardness values compared with bread without waxy wheat starch. Higher retrogradation enthalpy values were observed in breads containing waxy wheat starch (4.56 J/g at 18% amylose and 5.43 J/g at 12% amylose) compared with breads containing regular wheat starch (3.82 J/g at 24% amylose).  相似文献   

19.
The effects of various buckwheat materials (buckwheat flour [BF], dietary fiber extract [DE], flavonoids extract [FE], and rutin‐enhanced flavonoids extract [REFE]) on starch digestibility and noodle‐making properties were evaluated. When FE and REFE were incorporated into noodles, the amount of rapidly digestible starch and the predicted glycemic index (pGI) were reduced. However, BF and DE did not significantly decrease the pGI value of noodles. When assessing noodle properties, hardness was increased with increasing content of buckwheat materials, whereas other texture parameters were not significantly affected by buckwheat addition. All noodles were similar in regard to water absorption and swelling index, but cooking loss was slightly increased in FE and REFE noodles. FE and REFE demonstrated higher flavonoid stability during noodle making and, additionally, were more effective at reducing starch digestibility than BF and DE. REFE, specifically, does not generate quercetin (the cause of a bitter taste), and, therefore, REFE was effective in suppressing the hydrolysis of starch in the noodles, lowering the pGI.  相似文献   

20.
The effects of maturity on grain quality and wet‐milling properties were investigated for two hybrids of corn. Significant differences for hybrid and maturity were observed for all grain quality parameters. Test weight, absolute density, and thousand‐grain weight all increased as the corn matured. Kernel hardness increased and breakage susceptibility varied with increased maturity. Water uptake parameters decreased with maturity of the grain. The starch yield results from wet milling showed that the starch yield increased significantly within each cultivar in the early stages of grain maturity, but there were no significant differences between hybrids. Mathematical models using selected grain quality parameters accurately predicted trends in starch yield for the immature and mature corn samples in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号