首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flour qualities of polished wheat flours of three fractions, C‐1 (100–90%), C‐5 (60–50%), and C‐8 (30–0%), obtained from hard‐type wheat grain were used for the evaluation of four kinds of baking methods: optimized straight (OSM), long fermentation (LFM), sponge‐dough (SDM) and no‐time (NTM) methods. The dough stability of C‐5 in farinograph mixing was excellent and the maturity of polished flour doughs during storage in extensigraph was more improved than those of the commercial wheat flour (CW). There were no significant differences in the viscoelastic properties of CW dough after mixing, regardless of the baking method, while those of polished flour doughs were changed by the baking method; this tendency became clear after fermentation. The polished flours could make a better gluten structure in the dough samples after mixing or fermentation using LFM and SDM, as compared with other baking methods. Baking qualities such as specific volume and storage properties of breads from all polished flours made with SDM increased more than with other methods. In addition, viscoelastic properties of C‐5 and C‐8 doughs fermented by SDM were similar to those of CW, and the C‐5 breadcrumb showed softness similar to that of the CW. Also, SDM could make C‐5 bread with significantly higher elasticity and cohesiveness after storage for five days when compared with CW bread. Therefore, SDM with long fermentation, as compared with other baking methods, was considered suitable for use with polished flours to give better effects on dough properties during fermentation, resulting in more favorable bread qualities.  相似文献   

2.
The aim of this work was to study the influence of process parameters and the starter culture on the characteristics of wheat sourdough by using response surface methodology. Influence of fermentation temperature (16–32°C), ash content of flour (0.6–1.8%), and fermentation time (6–20 hr) were considered as independent factors and their effects were studied in sourdough fermented with Lactobacillus plantarum, L. brevis, Saccharomyces cerevisiae, or with a combination of yeast and lactic acid bacteria. Formation of acidity, free amino acids, and volatile compounds were considered the main responses. A possibility to enhance formation of potential flavor compounds and precursors without excessive acidity formation in wheat sourdoughs was established. The total amount of amino acids increased by 25–50%, depending on the strain and fermentation conditions. The total amount of volatile compounds increased seven‐ to 100‐fold, depending on the strain and fermentation conditions. Sourdough started with S. cerevisiae was an effective way to optimize the amount of volatile compounds without excessive acidity formation in appropriate processing conditions. Ash content of flour and fermentation time were the most significant factors to modify metabolic activity of wheat sourdoughs. Frequent interactions between the studied factors were observed on the formation of acidity, amino acids, and volatile compounds with most of the strains studied. Possibility to improve current industrial fermentation processes and control flavor attributes of breads by using optimized sourdough was established.  相似文献   

3.
Bakeries use sourdoughs to improve bread properties such as flavor and shelf life. The degradation of gluten proteins during fermentation may, however, crucially alter the gluten network formation. We observed changes that occurred in the HMW glutenins during wheat sourdough fermentations. As fermentation starters, we used either rye sourdough or pure cultures of lactobacilli and yeast. In addition, we incubated wheat flour (WF) in the presence of antibiotics under different pH conditions. The proteolytic activities of cereal and sourdough‐derived proteinases were studied with edestin and casein. During sourdough fermentations, most of the highly polymerized HMW glutenins degraded. A new area of alcohol‐soluble proteins (≈30.000 MW) appeared as a result of the proteolytic breakdown of gluten proteins. Very similar changes were observable as WF was incubated in the presence of antibiotics at pH 3.7. Cereal and sourdough‐derived proteinases hydrolyzed edestin at pH 3.5 but showed no activity at pH 5.5. An aspartic proteinase inhibitor (pepstatin A) arrested 88–100% of the activities of sourdough enzymes. According to these results, the most active proteinases in wheat sourdoughs were the cereal aspartic proteinases. Acidic conditions present in sourdoughs create an ideal environment for cereal aspartic proteinases to be active against gluten proteins.  相似文献   

4.
Whole sorghum flour was fermented (a five‐day natural lactic acid fermentation) and dried under forced draught at 60°C, and evaluated for its effect on sorghum and wheat composite bread quality. In comparison with unfermented sorghum flour, fermentation decreased the flour pH from 6.2 to 3.4, decreased total starch and water‐soluble proteins, and increased enzyme‐susceptible starch, total protein, and the in vitro protein digestibility (IVPD). Fermentation and drying did not decrease the pasting temperature of sorghum flour, but slightly increased its peak and final viscosity. In comparison with composite bread dough containing unfermented sorghum flour, fermented and dried sorghum flour decreased the pH of the dough from 5.8 to 4.9, increased bread volume by ≈4%, improved crumb structure, and slightly decreased crumb firmness. IVPD of the composite bread was also improved. Mixing wet fermented sorghum flour directly with wheat flour (sourdough‐type process) further increased loaf volume and weight and reduced crumb firmness, and simplified the breadmaking process. It appears that the low pH of fermented sorghum flour inactivated amylases and increased the viscosity of sorghum flour, thus improving the gas‐holding capacity of sorghum and wheat composite dough. Fermentation of sorghum flour, particularly in a sourdough breadmaking process, appears to have considerable potential for increasing sorghum utilization in bread.  相似文献   

5.
The effect of various sourdoughs and additives on bread firmness and staling was studied. Compared to the bread produced with Saccharomyces cerevisiae 141, the chemical acidification of dough fermented by S. cerevisiae 141 or the use of sourdoughs increased the volume of the breads. Only sourdough fermentation was effective in delaying starch retrogradation. The effect depended on the level of acidification and on the lactic acid bacteria strain. The effect of sourdough made of S. cerevisiae 141-Lactobacillus sanfranciscensis 57-Lactobacillus plantarum 13 was improved when fungal alpha-amylase or amylolytic strains such as L. amylovorus CNBL1008 or engineered L. sanfranciscensis CB1 Amy were added. When pentosans or pentosans, endoxylanase enzyme, and L. hilgardii S32 were added to the same sourdough, a greater delay of the bread firmness and staling was found. When pentosans were in part hydrolyzed by the endoxylanase enzyme, the bread also had the highest titratable acidity, due to the fermentation of pentoses by L. hilgardii S32. The addition of the bacterial protease to the sourdough increased the bread firmness and staling.  相似文献   

6.
Refined wheat flours commercially produced by five different U.S. and Mexican wheat blends intended for tortilla production were tested for quality and then processed into tortillas through the hot‐press forming procedure. Tortilla‐making qualities of the flour samples were evaluated during dough handling, hot pressing, baking, and the first five days on the shelf at room temperature. The predominant variables that affected the flour tortilla performance were wet gluten content, alveograph W (220–303) and P/L (0.70–0.94) parameters, farinograph water absorption (57%) and stability (10.8–18.7 min), starch damage (5.43–6.71%), and size distribution curves (uniform particle distribution). Flours produced from a blend of Dark Northern Spring (80%) and Mexican Rayon (20%) wheat had the highest water absorption, and tortillas obtained from this blend showed the highest diameter and lowest thickness. The whitest and best textured tortillas were obtained from the flour milled from three hard types of Mexican wheat blend. A Mixolab profile was generated from the best tortilla flours, those produced by mills 3 and 4. The Mixolab profile showed that a good flour for hot‐press tortillas had a relatively lower absorption and short dough mix time compared with a bread flour and should have a significantly higher gluten compared with an all‐purpose flour. Compared with bread flour, the tortilla flour had higher retrogradation and viscosity values. The Mixolab profile proved to be a good preliminary test to evaluate flours for hot‐press tortillas.  相似文献   

7.
Application of the aroma extract dilution analysis on a flavor distillate prepared from freshly ground rye flour (type 1150) revealed 1-octen-3-one (mushroom-like), methional (cooked potato), and (E)-2-nonenal (fatty, green) with the highest flavor dilution (FD) factors among the 26 odor-active volatiles identified. Quantitative measurements performed by stable isotope dilution assays and a comparison to the odor thresholds of selected odorants in starch suggested methional, (E)-2-nonenal, and hexanal as contributors to the flour aroma, because their concentrations exceeded their odor thresholds by factors >100. Application of the same approach on a rye sourdough prepared from the same batch of flour revealed 3-methylbutanal, vanillin, 3-methylbutanoic acid, methional, (E,E)-2,4-decadienal, 2,3-butanedione, and acetic acid as important odorants; their concentrations exceeded their odor thresholds in water and starch by factors >100. A comparison of the concentrations of 20 odorants in rye flour and the sourdough made therefrom indicated that flour, besides the fermentation process, is an important source of aroma compounds in dough. However, 3-methylbutanol, acetic acid, and 2,3-butanedione were much increased during fermentation, whereas (E,E)-2,4-decadienal and 2-methylbutanal were decreased. Similar results were obtained for five different flours and sourdoughs, respectively, although the amounts of some odorants in the flour and the sourdough differed significantly within batches.  相似文献   

8.
《Cereal Chemistry》2017,94(5):866-872
Pulses are good sources of vitamins and minerals as well as antioxidants. Current literature supports a role for antioxidants in reducing oxidative damage associated with many health disorders, including cardiovascular disease and cancer. The effects of substitution of 10% (w/w) yellow whole or split pea flour (various particle sizes) in white wheat flour (Canadian Wheat Red Spring) on the phenolic and antioxidant activity of the leavened bread were examined. Antioxidant activity was evaluated with four assays, which included 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical scavenging, ferric reducing antioxidant power (FRAP), metal chelation (MC), and superoxide (SO) radical scavenging assays. The bread samples had reduced DPPH (5–11% scavenging activity) and MC (5–10% scavenging activity) values compared with their respective raw flours. Decreased activity in both the DPPH and MC assays can be attributed to a reduction in the antioxidant capacity in the bread samples owing to dilution with white wheat flour. The MC values for bread samples showed little variability between the yellow whole and split pea flours (8–10% scavenging activity for yellow whole and 9% for split pea flours), which suggests that the antioxidant activity of bread samples is not dramatically affected by the seed coats. Most pea fractions increased the FRAP scavenging activity and decreased the SO scavenging activity values for the bread samples compared with their respective raw flours. We conclude that thermal processing enhanced the antioxidant activity of the bread samples, limiting the dilution effect associated with flour addition during dough make‐up.  相似文献   

9.
The dough properties and baking qualities of a novel high‐amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than those in HAWF and CSF suspensions. Amylograph data showed that the WWF starch gelatinized faster and had a higher viscosity than that in CSF. The loaves made from WWF and CSF were significantly larger than the loaves made from HAWF. However, the appearance of bread baked with WWF and HAWF was inferior to the appearance of bread baked with CSF. Bread made with WWF became softer than the bread made with CSF after storage, and reheating was more effective in refreshing WWF bread than CSF bread. Moreover, clear differences in dough and bread samples were revealed by scanning electron microscopy. These differences might have some effect on dough and baking qualities.  相似文献   

10.
The effects of cooking, roasting, and fermentation on the composition and protein properties of grain legumes and the characteristics of dough and bread incorporated with legume flours were determined to identify an appropriate pretreatment. Oligosaccharide content of legumes was reduced by 76.2–96.9% by fermentation, 44.0–64.0% by roasting, and 28.4–70.1% by cooking. Cooking and roasting decreased protein solubility but improved in vitro protein digestibility. Mixograph absorption of wheat and legume flour blends increased from 50–52% for raw legumes to 68–76, 62–64, and 74–80% for cooked, roasted, and fermented ones, respectively. Bread dough with cooked or roasted legume flour was less sticky than that with raw or fermented legume flour. Loaf volume of bread baked from wheat and raw or roasted legume flour blends with or without gluten addition was consistently highest for chickpeas, less for peas and lentils, and lowest for soybeans. Roasted legume flour exhibited more appealing aroma and greater loaf volume of bread than cooked legume flour, and it appears to be the most appropriate preprocessing method for incorporation into bread.  相似文献   

11.
Hydrothermal treatments, which are routine in oat processing, have profound effects on oat flour dough rheological properties. The influence of roasting and steam treatments of oat grain on dough mixing and breadbaking properties was investigated when hydrothermally treated oat flour was blended with wheat flour. Roasting of oat grain (105°C, 2 hr) resulted in oat flours that were highly detrimental to wheat flour dough mixing properties and breadbaking quality. Steaming (105°C, 20 min) or a combination of roasting and steaming of oat grain significantly improved the breadbaking potential of the oat flours. The addition of oat flours increased water absorption and mixing requirements of the wheat flour dough and also decreased bread loaf volume. However, at the 10% substitution level, steamed oat flours exhibited only a gluten dilution effect on bread loaf volume when wheat starch was used as a reference. Oat flour in the breadbaking system decreased the retrogradation rate of bread crumb starch. The results indicate that adequate hydrothermal treatments of oat grain are necessary for oat flour breadbaking applications. Steamed oat flours used at a 10% level retarded bread staling without adversely affecting the loaf volume.  相似文献   

12.
Whole wheat bread is an important source of minerals but also contains considerable amounts of phytic acid, which is known to impair their absorption. An in vitro trial was performed to assess the effect of a moderate drop of the dough pH (around 5.5) by way of sourdough fermentation or by exogenous organic acid addition on phytate hydrolysis. It was shown that a slight acidification of the dough (pH 5.5) with either sourdough or lactic acid addition allowed a significant phytate breakdown (70% of the initial flour content compared to 40% without any leavening agent or acidification). This result highlights the predominance of wheat phytase activity over sourdough microflora phytase activity during moderate sourdough fermentation and shows that a slight drop of the pH (pH value around 5.5) is sufficient to reduce significantly the phytate content of a wholemeal flour. Mg "bioaccessibility"of whole wheat dough was improved by direct solubilization of the cation and by phytate hydrolysis.  相似文献   

13.
The exopolysaccharide (EPS) produced from sucrose by Lactobacillus sanfranciscensis LTH2590 is predominantly composed of fructose. EPS production during sourdough fermentation has the potential to affect rheological properties of the dough as well as the volume, texture, and keepability of bread. Its in situ production by L. sanfranciscensis LTH2590 was demonstrated during sourdough fermentation after the hydrolysis of water soluble polysaccharides. In wheat and rye doughs with sucrose addition the concentration of fructose in the hydrolysate of polysaccharides was significantly higher than that in the hydrolysate of control doughs or doughs without sucrose addition. EPS production by L. sanfranciscensis in wheat doughs was confirmed by the determination of delta (13)C values of water soluble polysaccharides after the addition of naturally labeled sucrose, originating from C(3)- and C(4)-plants. In rye doughs, evidence for EPS production with the isotope technique could be demonstrated only by the determination of delta (13)C values of fructose from water soluble polysaccharides. In addition to EPS formation from sucrose, sucrose hydrolysis by L. sanfranciscensis in wheat and rye sourdoughs resulted in an increase of mannitol and acetate concentrations and in accumulation of glucose. It was furthermore observed that flour arabinoxylans were solublized during the fermentation.  相似文献   

14.
This study investigated the antifreeze activity (AF) of γ‐polyglutamic acid (γ‐PGA), freezing resistance of yeast cells and sweet dough, and the mechanism influenced by γ‐PGA. Properties studied included AF of γ‐PGA, water‐holding capacity of flour, survival ratio and oxidation resistance capability of yeast cells, ice melting enthalpy (ΔH), and fermentation and breadmaking properties of sweet dough. The AF of γ‐PGA was 8.03 g of unfrozen water/g of sample, indicating good AF. γ‐PGA was tested on yeast cells and sweet dough stored frozen for 0, 1, 2, 4, and 8 weeks at four levels (0, 0.5, 1, and 3%). Survival ratio of yeast cells with γ‐PGA was significantly higher than the corresponding control. A possible mechanism might be related to the modulation of oxidation resistance capability of yeast cells by γ‐PGA. A decrease in glutathione release from frozen yeast cells and an increase in water‐holding capacity of wheat dough were observed with the addition of γ‐PGA. In the presence of γ‐PGA, ΔH, ice melting temperature, and proofing time of frozen sweet dough decreased significantly, and fermentation parameters improved, compared with the corresponding control sample. Specific volume of bread made from frozen sweet dough with 0.5, 1, and 3% γ‐PGA increased by 6.3, 8.9, and 3.3%, respectively, after 8 weeks of frozen storage. γ‐PGA enhanced the freezing resistance of yeast cells and sweet dough effectively, and the effect on specific volume of bread was not linear, with 1% showing better results.  相似文献   

15.
This article aimed at investigating the synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and gamma-aminobutyric acid (GABA) during sourdough fermentation of white wheat, wholemeal wheat, and rye flours. Sourdough lactic acid bacteria, selected previously for proteinase and peptidase activities toward wheat proteins or for the capacity of synthesizing GABA, were used. The highest ACE-inhibitory activity was found by fermenting flour under semiliquid conditions (dough yield 330) and, especially, by using wholemeal wheat flour. Fourteen peptides, not previously reported as ACE-inhibitory, were identified from the water/salt-soluble extract of wholemeal wheat sourdough (IC 50 0.19-0.54 mg/mL). The major part of the identified peptides contained the well-known antihypertensive epitope VAP. The synthesis of GABA increased when the dough yield was decreased to 160. The highest synthesis of GABA (258.71 mg/kg) was found in wholemeal wheat sourdough.  相似文献   

16.
The effect of baking method on folates of rye and wheat breads, as well as the effect of sourdough fermentation of rye, were examined. Sourdough fermentations were performed both with and without added yeast, and samples were taken throughout the baking process. Samples were analyzed microbiologically for their total folate content after trienzyme extraction. Individual folate vitamers were determined by HPLC after affinity chromatographic purification. The lowest folate contents for both rye and wheat breads were found from breads baked without added yeast. Total folate content increased considerably during sourdough fermentation due to increased amounts of 10‐HCO‐H2folate, 5‐CH3‐H4folate, and 5‐HCO‐H4folate. Baker's yeast contributed markedly to the final folate content of bread by synthesizing folates during fermentation. Proofing did not influence total folate content but changes in vitamer distribution were observed. Folate losses in baking were ≈25%. The variety of sourdoughs and baking processes obviously lead to great variation in folate content of rye breads. The possibilities to enhance natural folate content of rye bread by improving folate retention in technological processes and by screening and combining suitable yeasts and lactic acid bacteria should be further investigated.  相似文献   

17.
We prepared bread dough A (a mixture of wheat flour, sugar, salt, and water), bread dough B (a mixture of bread dough A and yeast), and bread dough C (first‐proofed, molded, and second‐proofed bread dough B) and froze them at –20°C for six days. They were thawed at 4°C for 16 hr and subjected to their breadmaking processes. The results indicated that breadmaking properties (bread height [mm] and specific volume [cm3/g]) after bread dough A and B processes were the same as those of control bread dough (unfrozen dough). However, in the case of bread dough C, the resulting bread showed depression of the properties. The amount of centrifuged liquid from thawed bread dough C increased. Sugar was added to thawed bread dough C (bread dough C‐1), and then yeast was further added to bread dough C‐1 (bread dough C‐2), and they were subjected to the breadmaking process. The results showed that the breadmaking properties of bread dough C‐2 were the same as those of the control. It was further found that when the first proof step in the bread dough C‐2 process was omitted, the breadmaking properties were depressed. Frozen and thawed bread dough C was packed into a plastic tube, and extension of the dough was compared with that of control dough under reduced pressure. Bread dough C extended to 50 mm, compared with 70 mm for control dough. First proof, mold, and second proof steps of dough C‐2 caused it to extend to the same height as control dough. It was concluded that the increased amount of the separated liquid in thawed dough C caused depression of breadmaking properties resulting from lack of water in the appropriate places to provide the expected properties, but these properties could be restored to the levels of control bread dough by the addition of sugar and yeast following the first proof, mold, and second proof steps.  相似文献   

18.
This study was conducted to improve the quality and theoretical understanding of gluten-free sorghum bread. The addition of 2% hydroxypropyl methylcellulose improved bread based on 105% water, 70% sorghum flour, and 30% potato starch. Nevertheless, a flat top and tendency toward a hole in the crumb remained. Sourdough fermentation of the total sorghum flour eliminated these problems. Size-exclusion high-performance liquid chromatography demonstrated that during sourdough fermentation, proteins from the dough liquid were degraded to peptides smaller than kafirin monomers (<19 kDa). Laser scanning confocal microscopy showed aggregated protein in bread crumb without sourdough fermentation, whereas with sourdough fermentation, only small isolated patches of protein bodies embedded in matrix protein remained. In oscillatory temperature sweeps, sourdough fermentation caused a significantly higher resistance to deformation (|G*|) after gelatinization of the above batter relative to batters without sourdough. Results suggest that a strong starch gel, without interference of aggregated protein, is desirable for this type of bread.  相似文献   

19.
《Cereal Chemistry》2017,94(6):922-927
The degradation of inositol hexakisphosphate (IP6) was evaluated in whole meal wheat dough fermented with baker's yeast without phytase activity, different strains of Saccharomyces cerevisiae (L1.12 or L6.06), or Pichia kudriavzevii with extracellular phytase activity to see if the degradation of IP6 in whole meal dough and the corresponding bread could be increased by fermentation with phytase‐active yeasts. The IP6 degradation was measured after the dough was mixed for 19 min, after the completion of fermentation, and in bread after baking. Around 60–70% of the initial value of IP6 in the flour (10.02 mg/g) was reduced in the dough already after mixing, and additionally 10–20% was reduced after fermentation. The highest degradation of IP6 was seen in dough fermented with the phytase‐active yeast strains S. cerevisiae L1.12 and P. kudriavzevii L3.04. Activity of wheat phytase in whole meal wheat dough seems to be the primary source of phytate degradation, and the degradation is considerably higher in this study with a mixing time of 19 min compared with earlier studies. The additional degradation of IP6 by phytase‐active yeasts was not related to their extracellular phytase activities, suggesting that phytases from the yeasts are inhibited differently. Therefore, the highest degradation of IP6 and expected highest mineral bioavailability in whole meal wheat bread can be achieved by use of a phytase‐active yeast strain with less inhibition. The strain S. cerevisiae L1.12 is suitable for this because it was the most effective yeast strain in reducing the amount of IP6 in dough during a short fermentation time.  相似文献   

20.
Breads baked from wheat flours (protein contents 14.1–16.5% at 14.0% mb) that were pretreated with 2–3 mL of gaseous acetic acid per kg of wheat flour, showed maximum bread height and specific volume (cm3/g). Flour-water suspension and the crumb pH values were gradually decreased with increased amounts of acetic acid. Gas generation and dough expansion tests with bread dough showed that the addition of the same amount of acetic acid, which achieved maximum specific volume, also showed the highest rate of gas generation and dough expansion. However, increasing acetic acid decreased these values. Scanning electron microscope (Cryo-SEM) observation showed that the bread dough made from the same acetic acid-treated flour indicated continuum and no cracks in the dough matrix. Evaluation of mixograms showed the decrease of mixing stability with increased acetic acid levels. Viscosity and water binding capacity of flour-water suspensions were sharply increased by the addition of acetic acid at pH 5.0–3.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号