首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rheological properties of wheat doughs prepared from different flour types, water contents, and mixing times for a total of 20 dough systems were studied. The results were compared with the results of standard baking tests with the same factors. Water and flour type had a significant effect on storage modulus (G′) or phase angle measured by an oscillatory test both in the linear viscoelastic region and as a function of stress, and on compressional force measured as a function of time. The correlation of maximum force of dough in compression and G′ of dough measured within the linear viscoelastic region was r = 0.80. Correlation between the compression and oscillation test improved when all measuring points of the G′ stress curve were included (r = 0.88). The baking performance of the different doughs varied greatly; loaf volumes ranged from 2.9 to 4.7 mL/g. Although the water content of the dough correlated with the rheological measurements, the correlation of G′measured in the linear viscoelastic region or maximum force from stress‐time curve during compression was poor for bread loaf volumes. Mixing time from 4.5 to 15.5 min did not affect the rheological measurements. No correlation was observed with the maximum force of compression or G′ of dough measured in the linear viscoelastic region and baking performance. Good correlation of rheological measurements of doughs and baking performance was obtained when all the data points from force‐time curve and whole stress sweep (G′ as a function of stress) were evaluated with multivariate partial least squares regression. Correlation of all data points with loaf volume was r = 0.81 and 0.72, respectively, in compression and shear oscillation.  相似文献   

2.
3.
4.
Knowing the quality of mill streams is very important for obtaining standardized flours with intended qualities for specific applications. The physicochemical and rheological quality of wheat flour mill streams obtained through industrial milling were analyzed. Rheological behavior was tested using alveograph, rheofermentograph, and mixolab equipment. The results obtained indicate that the starch damage, protein quality, and rheological properties vary with the mill streams. Three variants of breadmaking flours, obtained by blending different milling fractions without negatively affecting the extraction and final product quality, were characterized.  相似文献   

5.
Undeveloped wheat dough is essentially wheat flour that has become fully hydrated without being deformed. The rheological properties of this material were compared to dough (developed dough) made using the standard method involving a farinograph. Flow behavior of undeveloped and developed dough samples made from hard and soft wheat flours were tested using creep tests, frequency sweep oscillatory tests, and temperature sweep oscillatory tests. All experiments showed that the undeveloped dough requires less resistance for deformation than developed dough. The differences are due to the energy input received by the developed dough and the influence of this factor in forming the protein matrix associated with developed dough. To attain a comparable state as the dough made in the farinograph, an energy input must be applied to the undeveloped dough material. Understanding the differences between undeveloped and developed dough may lead to new products, equipment, and processes in the bakery industry.  相似文献   

6.
The effects of oxido-reductants on the rheological properties of wheat flour dough were evaluated by using a capillary rheometer and an oscillatory rheometer at three temperatures. The oxidants potassium iodate (KIO3) and l -ascorbic acid (l -AA) significantly increased the apparent viscosity and G′ and decreased loss tangent at low temperatures of 30 and 60°C due to enhanced formation of disulfide bonds. The reductant glutathione (GSH) had the opposite effect. Heating caused the gelatinization of starch, which diminished the effects of the oxido-reductants and produced doughs with similar rheological properties at 80°C. The correlation between dough rheology and characteristics of extruded noodles was also studied.  相似文献   

7.
Functionality of four leavening acids (sodium aluminum phosphate [SALP], sodium aluminum sulfate [SAS], monocalcium phosphate [MCP] and sodium acid pyrophosphate [SAPP‐28]) was evaluated during processing of wheat flour tortillas. Formulas were optimized to yield opaque, large‐diameter tortillas with pH 5.9–6.1. Each leavening acid and sodium bicarbonate was first evaluated at 38°C and then evaluated in combination with fumaric acid at 34 and 38°C. Ionic and pH interactions of leavening salts adversely affected dough properties and resting time. Opacity and pH of tortillas prepared with MCP was lower than for other treatments. Higher dough temperature required more leavening acid and base to compensate for some of the loss of CO2 incurred during dough mixing and resting at 38°C. The addition of fumaric acid decreased the amount of leavening acid, the dough‐resting time and tortilla pH, and improved storage stability. Combinations of MCP, SALP (or SAS), and fumaric acid produced dough and tortillas with good qualities. Tortillas prepared using SALP (or SAS) and fumaric acid tended to be of better quality.  相似文献   

8.
Fractionation and reconstitution studies of a flour from 1B/1R wheat showed that the factor causing sticky dough was water soluble. In addition, these studies showed that enzymes and lipids in the flour were not responsible for producing sticky dough. Dialysis experiments showed that the active component was nondialyzable. Gel-filtration chromatography of the retentate fraction showed that the substance causing sticky dough contained both a carbohydrate and a UV-absorbing material. Treatment of the active fraction with base caused the fraction to lose its ability to cause stickiness. The UV-absorbing material and the carbohydrate fraction had to be covalently linked for the compound to be active. Gas chromatography-mass spectrometry and HPLC analysis showed that the UV-absorbing moiety was predominantly trans-ferulic acid, and the carbohydrate part was a glucose polymer. The glucose polymer was not degraded by α-amylase but was degraded by lichenase, suggesting that the glucose polymer was a mixed-linkage β-glucan.  相似文献   

9.
The rheological properties of 17 pure European wheat cultivars were analyzed and evaluated in relation to the bread volume. Rheological testing included two empirical rheological methods, farinograph and alveograph, and more fundamental creep‐recovery experiments at shear stresses of 100 and 250 Pa. Principal component analysis on the farinograph and alveograph results showed that a wide range of rheological properties was present among the wheat cultivars. Correlation analysis pointed out that creep‐recovery parameters showed significant correlations with protein content, Zeleny sedimentation value, farinograph water absorption, alveograph extensibility, and bread volume. Among the rheological parameters, maximum recovery strain at a shear stress of 250 Pa showed the highest significant correlation with the bread volume (r = 0.790**). Variables were combined to predict the bread volume by multiple linear regression. A combination of protein content, farinograph water absorption, and alveograph P/L showed the best prediction (r2 = 0.80). When taking into account the creep‐recovery parameters, the best prediction of the bread volume (r2 = 0.74) was obtained for a combination of the maximum recovery strain at a shear stress of 250 Pa with one other quality parameter (Zeleny sedimentation value, farinograph water absorption, or alveograph W).  相似文献   

10.
Exposure of wheat flour to ethanol solutions followed by slow drying of the ethanol in situ alters the subsequent transformation of the flour into dough. Several types of wheat flour were exposed to small amounts of ethanol solutions so as to be “wetted” but without the appearance of a separate liquid phase. The wet sample was then dried in air. Dough was formed from the treated flour, and its rheological parameters were assessed, including time to peak strength (mixograph and farinograph) and gluten index (glutomatic). Untreated and treated flour and the dough prepared therefrom were assayed using 1D SDS‐PAGE (reducing and unreducing conditions), capillary zone electrophoresis (CZE) applied to 70% leachates with and without sonication, and differential scanning calorimetry. Both gluten index and time to peak increased as a result of the treatment, and the increase was greater for flour or enriched vital gluten with an initially low gluten index than for flour with a relatively high initial index. Endosperm fragmentation following milling of the treated flour was improved by the treatment. Thermal transitions were at lower temperatures following treatment, indicating less structural order and reduced thermal stability. No compositional differences were evident when studied with robust analytical methods. CZE of leached samples (no sonication) revealed lower amounts of accessible or detected proteins following treatment. Conformational changes and new secondary interactions, therefore, appear to cause the effect.  相似文献   

11.
Characterization of the rheological properties of wheat flour dough during mixing and baking without modifying its structure or mechanical properties is not easy. In this work, the effect of dough setting pre‐orientation and strain orientation during characterization are assessed for differently structured wheat flour doughs (various water contents and addition of glucose oxydase). Rheological properties were measured in dynamic shear as rotational (CSL2100 fitted with a cone‐plate geometry) or radial (CP20 fitted with a plate‐plate geometry) small deformation mode and in lubricated squeezing flow and relaxation called large deformation mode. In comparison with radial shearing, rotational shearing induces a much larger preorientation of the network and thus a strain‐hardening phenomenon that affects the rheological measurements (storage modulus is overestimated) but relaxes, at least partially, during a rest period. Consequently, a longer period of time has to be allotted (allowing stress relaxation) before starting measurements. Plate‐plate geometry induces less preorientation and allows measurement a few minutes after setting. However, it has less discrimination of the differently structured dough than the cone‐plate geometry used in rotational mode. Results which partially agree with those of the CP20 are obtained using the lubricated squeezing flow followed by stress relaxation.  相似文献   

12.
Texture of wheat flour tortillas over 15 days at room temperature was evaluated using an expert sensory panel, consumer panels, subjective rollability test, large deformation rheological methods (i.e., bending, extensibility [1‐D and 2‐D], and puncture tests), and stress relaxation method. Most of the changes in texture occurred during the initial 8 days of storage, while texture of tortillas changed slowly thereafter. Differences in texture between fresh and 1‐day‐old tortillas were detected by many objective rheological methods but not by either sensory panel. The expert sensory panel observed a rapid decrease in tortilla extensibility and an increase in staleness between 1 and 8 days of storage and smaller changes in sensory scores after 8 days of storage. Most objective rheological parameters changed rapidly between 0 and 5 days, and slowly after 5 days of storage. Significant correlations and factor analysis reveal that changes occurring in flour tortillas during staling are estimated better by subjective rollability, sensory evaluation (expert and consumer panels), and 2‐dimensional extensibility test than by other methods. Hence, some rheological methods are useful to estimate sensory properties of flour tortillas.  相似文献   

13.
Various studies have been carried out on wheat flour to understand protein and starch changes when subjected to mixing and temperature constraints, but structural changes of proteins and starch at the typical moisture levels of a dough system are not fully understood. The aim of this research was to improve our understanding of (micro)structural changes at the mesoscopic level, through empirical rheology, microscopy (light and scanning electron microscopy), sequential protein extractions, and glutenin macropolymer wet weight along the mixing, heating, and cooling stages of the Mixolab assay. Studies were performed on three wheat flours with different protein contents. The rheological analysis allowed identifying the role of the proteins and the relationship between the protein content and different primary and secondary parameters obtained from the recorded curves. The progressive heating and mixing stages during the Mixolab assay resulted in a dynamic de‐ and restructuring of proteins involving interactions between the flour proteins from water soluble to SDS soluble to SDS insoluble and vice versa. The microstructure analysis with light, polarized, and scanning electron microscopy revealed the changes that proteins and starch molecules underwent during mixing, heating, and cooling. Qualitatively, the starch structural changes, swelling, and gelatinization observed by microscopic techniques showed some parallels with protein (and glutenin) content of the respective flour. Nevertheless, this tentative finding needs further confirmation by studying flour samples with large differences in glutenin content.  相似文献   

14.
The effects of ferulic acid and transglutaminase (TG) on the properties of wheat flour dough and bread were investigated. Ferulic acid and TG were blended with hard wheat flour at levels of 250 and 2,000 ppm of flour weight, respectively. The addition of ferulic acid reduced the mixing time and mixing tolerance. The addition of TG did not obviously affect the mixing properties. Significant effects of ferulic acid plus TG on the rested dough texture were observed for overmixed dough. The maximum resistance (Rmax) of the dough was significantly reduced with the addition of ferulic acid but increased with the addition of TG. The addition of TG with ferulic acid restored the Rmax reduced by ferulic acid alone. The proportion of SDS‐soluble high molecular weight proteins in the dough increased with the addition of ferulic acid and decreased with TG, when assessed with size‐exclusion HPLC fractionation. Although the addition of TG improved the handling properties of the dough made sticky with added ferulic acid, it did not improve the quality of the bread with added ferulic acid as measured by loaf volume and firmness.  相似文献   

15.
The rheological properties of dough and gluten are important for end‐use quality of flour but there is a lack of knowledge of the relationships between fundamental and empirical tests and how they relate to flour composition and gluten quality. Dough and gluten from six breadmaking wheat qualities were subjected to a range of rheological tests. Fundamental (small‐deformation) rheological characterizations (dynamic oscillatory shear and creep recovery) were performed on gluten to avoid the nonlinear influence of the starch component, whereas large deformation tests were conducted on both dough and gluten. A number of variables from the various curves were considered and subjected to a principal component analysis (PCA) to get an overview of relationships between the various variables. The first component represented variability in protein quality, associated with elasticity and tenacity in large deformation (large positive loadings for resistance to extension and initial slope of dough and gluten extension curves recorded by the SMS/Kieffer dough and gluten extensibility rig, and the tenacity and strain hardening index of dough measured by the Dobraszczyk/Roberts dough inflation system), the elastic character of the hydrated gluten proteins (large positive loading for elastic modulus [G′], large negative loadings for tan δ and steady state compliance [Je0]), the presence of high molecular weight glutenin subunits (HMW‐GS) 5+10 vs. 2+12, and a size distribution of glutenin polymers shifted toward the high‐end range. The second principal component was associated with flour protein content. Certain rheological data were influenced by protein content in addition to protein quality (area under dough extension curves and dough inflation curves [W]). The approach made it possible to bridge the gap between fundamental rheological properties, empirical measurements of physical properties, protein composition, and size distribution. The interpretation of this study gave indications of the molecular basis for differences in breadmaking performance.  相似文献   

16.
Gliadins are among the most important protein fractions affecting wheat baking quality, but they are also plant allergens and a cause of celiac disease or food intolerance. Therefore, we investigated how gliadin immunoreactivity and dough rheological properties are influenced by thioredoxin, a regulatory disulfide protein that can reduce disulfide bonds, a typical motive in many allergenic proteins. Ten winter wheat genotypes of different qualities were analyzed. Reduction by thioredoxin strongly (>50%) decreased gliadin immunoreactivity as estimated by enzyme‐linked immunosorbent assay with immunoglobulin E (IgE) sera from allergic patients and standard antigliadin antibodies but did not significantly affect dough rheological properties. Most parameters from the Brabender extensigraph were only slightly lower. Simultaneously, the farinograph curve exhibited a drawdown dislocation, possibly due to increased water absorption by modified flour, and dough consistency visibly improved. Results suggest that thioredoxin may be a universal natural beneficial modifier, able to significantly decrease gliadin immunoreactivity (hence its potential allergenicity) without decreasing the unique technological properties of wheat flour.  相似文献   

17.
This study evaluated the influence of calcium and magnesium ions on the empirical rheological properties of wheat flour to verify possible effects of these ions on processing because, in addition to their nutritional importance, they are also responsible for water hardness. Calcium (0–1.30 g/100 g) and magnesium (0–0.34 g/100 g) ions from sulfate salts were added to wheat flour, according to a central composite rotatable design. The farinograph and extensigraph properties of wheat flour and its mixtures were evaluated. The results were analyzed by response surface methodology. Calcium ions stood out for increasing water absorption, decreasing mixing stability, and producing a delayed effect on dough extensibility (reduced at 135 min). Magnesium ions influenced most flour rheological properties in a similar manner to oxidizing agents (increased dough stability, increased resistance to extension, and reduced extensibility), thus proving to be a possible replacement agent for these additives. An interaction effect of the combined calcium and magnesium ions was observed on dough development time. The results showed that effects on processing can occur when wheat flour fortification is made, and adaptations on wheat flour specifications, product formulation, and processing parameters may be required.  相似文献   

18.
Wheat flour dough adhesiveness was evaluated using a new instrumental method based on the extrusion of a dough strip through a specific Plexiglas cell, and the measurement of adhesiveness to a Plexiglas probe attached to a texturometer (TA.XT2‐250N). Experimental conditions for adherence measurement were based on a central composite experimental design (four parameters, five levels). Effects of both dough water content and dough strip thickness were studied. As dough water content increases, bulk stretching of the dough increases, which gives rise to a shoulder on the recorded force‐displacement curve (in addition to the formation of visible fibrils), more pronounced at higher water contents, and to an increase in the specific energy of separation ω (J/m2). Increasing dough thickness also increases ω, due to additional energy dissipation in a higher volume of dough. The new strip method was then compared with a method using a screen located between dough and probe. The former gave more reproducible and discriminant results.  相似文献   

19.
L-Ascorbic acid (AsA) and its related compounds play an important role as improvers in bread production. Addition of AsA and its related compounds, such as dehydro-L-AsA (DHA) and 2,3-diketo-L-gulonic acid (DKG), affected the rheological properties of flour-water dough during mixing, especially hardness. Addition of 10 or 100 ppm AsA increased the dough hardness of samples as compared with the control dough. Addition of DHA or DKG to dough only slightly increased hardness. Addition of p-quinone significantly increased the hardness. Both glutathione (GSH) and its oxidized form (GSSG) drastically decreased the hardness. Contents of AsA in the treated dough decreased and contents of DHA increased during mixing, suggesting that oxidation occurred. The oxidation rate of AsA was influenced by the concentration of AsA added. The improving effect of AsA on the rheological properties of flour-water dough seemed to be mostly dependent on reactive intermediate oxidation products such as O2-, while the contribution of DHA was rather limited.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号