首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究不同藻类、刺参Apostichopus japonicus与马粪海胆Hemicentrotus pulcherrimus混养比例对刺参与马粪海胆生长、体成分和消化酶活性的影响,在水温9.5~16.5℃下,将体质量为(0.38±0.15) g的马粪海胆与体质量为(1.24±0.17) g的刺参混养于幼参育苗车间白色塑料箱(30 cm×40 cm×50 cm)中,各组刺参的初始放养质量为20 g,再按照胆参质量比3∶1、2∶1、1∶1、1∶2、1∶3投放马粪海胆,各组分别投喂新鲜黏膜藻Leathesia difformis(H组,H1~H5)或孔石莼Ulva pertusa(L组,L1~L5)各20 g,对照组(D组)仅投喂配合饲料20 g。结果表明:藻类种类和胆参混养比例对刺参增重率(WGR)及特定生长率(SGR)有显著性影响(P<0.05),黏膜藻组在胆参比为3∶1时,刺参特定生长率最高(0.94%/d);孔石莼组在胆参比为2∶1时,刺参SGR最高(1.36%/d);不同藻类和胆参混养比例对海胆生长有显著性影响(P<0.05),海胆的SGR均随胆参混养比例的减小而递增,在同一混养比例下,L组海胆SGR显著高于H组(P<0.05);刺参肠道的胰蛋白酶(TRY)、淀粉酶(AMS)活性随胆参混养比例的降低呈递减趋势,其中,L1和L2组两组间无显著性差异(P>0.05),但均显著高于其他各组(P<0.05);相同混养比例下,L组胰蛋白酶和淀粉酶活性高于H组(P<0.05);而脂肪酶(LPS)活性仅受胆参混养比例的影响,且随胆参混养比例的降低而递减;胆参混养比例对H组、L组刺参体壁水分、粗脂肪含量均无显著性影响(P>0.05),粗蛋白质含量随胆参混养比例的减小呈先增加后降低趋势,其中L3组最高(39.10%),且显著高于其他各试验组(P<0.05)。研究表明,以孔石莼为饵料时,胆参适宜混养比例为2∶1,而以黏膜藻为饵料时,则为3∶1,研究结果可为构建综合养殖模式及防控刺参池塘大型藻类暴发性增殖提供数据支持。  相似文献   

2.
不同密度的虾夷马粪海胆与仿刺参混养的研究   总被引:4,自引:0,他引:4  
在水温为13.0~23.0℃、盐度为32~34、容积为50 L的塑料水箱中,分别放养体重为(1.7±0.7)g的虾夷马粪海胆Strongylocentrotus intermedius10、20、30个,每周过量投喂海带1次,再分别混养体重为(1.8±0.5)g的仿刺参Apostichopus japonicus0和5头,不投喂。151 d的饲养结果表明,混养时海胆的特殊生长率(SGR)和成活率依次比同密度单养时高28.46%、2.86%,33.99%、10.35%,25.52%、23.13%;饲料系数降低了1.50%、7.99%和1.85%;刺参的生长及成活率随海胆密度的增加而降低,高密度组(30个/箱)刺参的生长和成活率显著低于其它两组(P<0.05);海胆的密度对刺参的生化组成没有显著影响(P>0.05)。  相似文献   

3.
[目的]研究饲料中添加复合益生菌粉对刺参生长、体壁成分和消化酶活性的影响.[方法]在基础日粮中分别添加含有0、0.2%、0.4%、0.6%、0.8%的复合益生菌粉(由枯草芽孢杆菌、嗜酸乳杆菌、酿酒酵母菌组成,含有106CFU/g)进行喂养试验,养殖8周.[结果]随着复合益生菌添加量的提高,刺参增重率和特殊生长率有增加趋势.与对照组相比,添加0.8%的复合益生菌能显著提高刺参的增重率和特定生长率(P<0.05).复合益生菌对刺参成活率和体壁成分均无显著影响(P>0.05).复合益生菌对刺参肠道的消化酶活性也无显著影响(P>0.05),但有提高刺参肠道脂肪酶活性的趋势.当益生菌添加量为0.4%时,刺参脂肪酶活性最高.[结论]复合益生菌粉能够促进刺参的生长.当益生菌添加量为0.8%时刺参的生长较好.  相似文献   

4.
为了确定淇河鲫饲料中黄霉素的适宜添加量,以不添加黄霉素为对照,研究了饲料中添加2,4,6和8mg/kg黄霉素对淇河鲫生长性能、体成分和消化酶活性的影响。结果表明,饲料中添加黄霉素组淇河鲫的生物学综合评价高于对照组;添加4和6 mg/kg黄霉素处理组的饲料系数显著高于对照组(P<0.05);全鱼水分、粗蛋白、粗脂肪和灰分含量在各处理组和对照组间差异不显著(P>0.05);各处理组血清中葡萄糖和甘油三酯含量高于对照组;4,6和8 mg/kg黄霉素添加组血清游离脂肪酸含量显著高于对照组(P<0.05);4 mg/kg黄霉素添加组胰蛋白酶活性显著高于对照组和8 mg/kg黄霉素添加组(P<0.05),4和6 mg/kg黄霉素添加组肠蛋白酶活性显著高于对照组(P<0.05);2,4和6 mg/kg黄霉素添加组胰淀粉酶活性显著高于对照组(P<0.05),4 mg/kg黄霉素添加组肠淀粉酶活性显著高于对照组(P<0.05);各黄霉素添加组胰脂肪酶和肠脂肪酶酶活性高于对照组,其中6 mg/kg添加组与对照组相比差异显著(P<0.05)。结果提示,饲料中添加适量黄霉素能促进淇河鲫生长,提高淇河鲫消化酶活性,但不影响鱼体营养成分,其中以添加4 mg/kg黄霉素效果最佳。  相似文献   

5.
在等氮的基础上,用豆粕替代鱼粉的比例分别为0(对照,鱼粉的质量分数为39.9%)、20%、40%、60%、80%和100%,用上述6种饲料分别饲喂仿刺参Apostichopus japonicas幼参(0.34 g±0.01 g)56 d。养殖试验在水泥育苗池内的圆柱体网箱(直径为60 cm,高为65 cm)中进行。结果表明:当用豆粕替代鱼粉的比例为40%时,仿刺参的增重率和特定生长率显著高于对照组和其它饲料组(P<0.05),饲料系数显著低于对照组和其它饲料组(P<0.05);试验仿刺参体壁的粗蛋白含量显著高于对照组(P<0.05),而其它营养成分与对照组均无显著性差异(P>0.05);仿刺参前肠中的蛋白酶活性显著高于对照组(P<0.05);试验组仿刺参的体成分和前肠的各种消化酶的比活性与对照组相比差异均不显著(P>0.05)。从仿刺参生长指标来看,豆粕是比鱼粉更好的蛋白源,但将豆粕适当地与鱼粉搭配,效果更好,即饲料中用豆粕替代鱼粉的最适比例为40%。  相似文献   

6.
在等氮的基础上,用豆粕替代鱼粉的比例分别为0(对照,鱼粉的质量分数为39.9%)、20%、40%、60%、80%和100%,用上述6种饲料分别饲喂仿刺参Apostichopus japonicas幼参(0.34g±0.01g)56d。养殖试验在水泥育苗池内的圆柱体网箱(直径为60cm,高为65cm)中进行。结果表明:当用豆粕替代鱼粉的比例为40%时,仿刺参的增重率和特定生长率显著高于对照组和其它饲料组(P〈0.05),饲料系数显著低于对照组和其它饲料组(P〈0.05);试验仿刺参体壁的粗蛋白含量显著高于对照组(P〈0.05),而其它营养成分与对照组均无显著性差异(P〉0.05);仿刺参前肠中的蛋白酶活性显著高于对照组(P〈0.05);试验组仿刺参的体成分和前肠的各种消化酶的比活性与对照组相比差异均不显著(P〉0.05)。从仿刺参生长指标来看,豆粕是比鱼粉更好的蛋白源,但将豆粕适当地与鱼粉搭配,效果更好,即饲料中用豆粕替代鱼粉的最适比例为40%。  相似文献   

7.
为了探讨间歇投喂模式对刺参(Apostichopus japonicus)摄食、生长和消化酶活性的影响,以1 d·次-1的连续投喂为对照组,采用2 d·次-1的间歇投喂模式,设置正常投喂量(100%)的125%、150%、175%和200%共4组投喂水平,对平均体重为 (3.41±0.05) g的刺参投喂30 d,对刺参的摄食、生长和消化酶活性进行检测。结果显示:间歇投喂模式能够对刺参生长产生显著影响,刺参特定生长率随着投喂水平的上升而增加,但与对照组差异不显著; 刺参增重率与投喂水平呈正相关,200%组达到最佳,显著高于对照组(P<0.05);随着投喂水平的增加刺参摄食率逐渐升高,而饲料转化率呈现先下降后升高的变化趋势,200%间歇投喂处理的刺参摄食率显著高于100%连续投喂处理,而200%和125%间歇投喂处理的刺参饲料转化率与100%连续投喂处理间无显著差异;间歇投喂模式对刺参蛋白酶活性产生显著影响,125%、150%组蛋白酶活性显著降低(P<0.05),而175%、200%组与对照组差异不显著(P>0.05),但投喂模式对淀粉酶活性影响不显著。结果表明:基于刺参的生长性能和对饲料的转化利用,认为在刺参工厂化养殖中采用2 d·次-1的间歇投喂模式,以175%~200%投喂水平进行养殖管理,能够满足刺参的正常摄食需求,有效促进刺参的生长。  相似文献   

8.
采用3×3双因子设计方法,设3个亚油酸(LA)水平(0.5%、1.0%、1.5%,占饲料质量比)和3个亚麻酸(ALA)水平(0.5%、0.9%、1.3%),配制成9种饲料,分别投喂9组鱼,每组设4个重复,每个重复放20尾鱼(体质量为0.80 g±0.02 g),共饲养8周,探讨饲料中LA和ALA含量对团头鲂Megalobrama amblycephala幼鱼生长、体成分和消化酶活性的影响。结果表明:幼鱼的增重率、特定生长率和蛋白质效率均随饲料中LA和ALA含量的增加先升高后降低,当LA为1.0%和ALA为0.9%时均达到最高;通过二次回归方程分析得出,LA、ALA的最适添加量分别为1.09%、0.84%;ALA为1.3%组的饲料系数显著高于其他两个ALA组(P<0.05),而添加LA对饲料系数无显著影响(P>0.05);LA为1.0%组的鱼体肥满度显著高于其他两个LA组(P<0.05),全鱼粗脂肪含量随LA含量的增加显著升高(P<0.05),而水分及肝胰脏脂肪含量的变化趋势与此相反;ALA对鱼体肥满度及全鱼水分和粗脂肪含量无显著影响(P>0.05);LA为0.5%组的肠道脂肪酶和蛋白酶活性显著低于其他两个LA组(P<0.05),而ALA为1.3%时对酶活又有所抑制;LA和ALA含量对肝体指数、脏体指数、全鱼粗蛋白质、粗灰分和肠道淀粉酶活性均无显著影响(P>0.05)。研究表明,团头鲂幼鱼对LA、ALA的需要量分别为1.0%1.5%和0.5%1.5%和0.5%0.9%,当饲料中添加1.09%的LA和0.84%的ALA时,团头鲂幼鱼生长较好,各项生理机能指标正常。  相似文献   

9.
为研究光照对刺参Apostichopus japonicus Selenka生长、摄食和免疫特征的影响,试验以不同品系刺参包括白刺参、青刺参、紫刺参(体质量均为5.3 g左右)为对象,设4个光照处理组(5~10、25~50、1000、20 000 lx)和1个黑暗对照组(0 lx),每组设4个平行,养殖水温为14~16℃,进行为期90 d的养殖试验。结果表明:光照强度能够显著影响刺参体质量特定生长率(P<0.05),强光或全黑均不利于刺参生长,前者影响尤为明显;当光照强度为5~10 lx时,即白刺参体质量特定生长率最为明显的光照强度条件下,白刺参体内淀粉酶活力明显高于青、紫刺参;不同光照强度对青紫刺参蛋白酶活性影响基本与特定生长率一致,即在光照强度为25~50 lx时,青、紫刺参特定生长率最高,蛋白酶活性也最高;光照强度对不同品系刺参肠道内酸性磷酸酶(ACP)、碱性磷酸酶(AKP)作用基本一致,青刺参和紫刺参两种磷酸酶活力在25~50 lx光照强度时最大,而白刺参在5~10 lx时酶活力最大;在不同光照强度下,3个品系刺参体腔液中的超氧化物歧化酶(SOD)活力有一定差异,其中在全黑条件下白刺参SOD活性最高。研究表明,3个品系刺参在5~50 lx光照强度下生长性能最优。  相似文献   

10.
为研究光照对刺参Apostichopus japonicus Selenka生长、摄食和免疫特征的影响,试验以不同品系刺参包括白刺参、青刺参、紫刺参(体质量均为5.3 g左右)为对象,设4个光照处理组(5~10、25~50、1000、20 000 lx)和1个黑暗对照组(0 lx),每组设4个平行,养殖水温为14~16℃,进行为期90 d的养殖试验。结果表明:光照强度能够显著影响刺参体质量特定生长率(P0.05),强光或全黑均不利于刺参生长,前者影响尤为明显;当光照强度为5~10 lx时,即白刺参体质量特定生长率最为明显的光照强度条件下,白刺参体内淀粉酶活力明显高于青、紫刺参;不同光照强度对青紫刺参蛋白酶活性影响基本与特定生长率一致,即在光照强度为25~50 lx时,青、紫刺参特定生长率最高,蛋白酶活性也最高;光照强度对不同品系刺参肠道内酸性磷酸酶(ACP)、碱性磷酸酶(AKP)作用基本一致,青刺参和紫刺参两种磷酸酶活力在25~50 lx光照强度时最大,而白刺参在5~10 lx时酶活力最大;在不同光照强度下,3个品系刺参体腔液中的超氧化物歧化酶(SOD)活力有一定差异,其中在全黑条件下白刺参SOD活性最高。研究表明,3个品系刺参在5~50 lx光照强度下生长性能最优。  相似文献   

11.
以体质量(2.00±0.52)g的刺参Apostichopus japonicus幼参为研究对象,定期将光合细菌、乳酸杆菌、芽孢杆菌、海洋红酵母4种微生态制剂及其四者的复合微生态制剂(按照终浓度比为4∶1∶4∶1的比例)添加到刺参幼参培育水体中,探讨其对刺参幼参生长、存活率和消化酶活性的影响。结果表明:养殖水体中添加不同的微生态制剂对刺参幼参的生长和存活有一定的促进作用,其中增重率和特定生长率最高出现在复合微生态制剂组,分别达到(125.97±8.26)%和(1.66±0.06)%/d,与对照组有显著性差异(P0.05);添加微生态制剂能够显著提高刺参幼参的消化酶活性,尤其是添加将4种菌剂按适当比例复合的微生态制剂后,刺参幼参的消化酶活性与其他微生态制剂组相比有显著性差异(P0.05)。研究表明,将4种有益菌按照一定比例复合后投放到幼参培育水体中相对于单个菌投放更能显著提高幼参消化酶的活性。  相似文献   

12.
以体质量(2.00±0.52)g的刺参Apostichopus japonicus幼参为研究对象,定期将光合细菌、乳酸杆菌、芽孢杆菌、海洋红酵母4种微生态制剂及其四者的复合微生态制剂(按照终浓度比为4∶1∶4∶1的比例)添加到刺参幼参培育水体中,探讨其对刺参幼参生长、存活率和消化酶活性的影响。结果表明:养殖水体中添加不同的微生态制剂对刺参幼参的生长和存活有一定的促进作用,其中增重率和特定生长率最高出现在复合微生态制剂组,分别达到(125.97±8.26)%和(1.66±0.06)%/d,与对照组有显著性差异(P<0.05);添加微生态制剂能够显著提高刺参幼参的消化酶活性,尤其是添加将4种菌剂按适当比例复合的微生态制剂后,刺参幼参的消化酶活性与其他微生态制剂组相比有显著性差异(P<0.05)。研究表明,将4种有益菌按照一定比例复合后投放到幼参培育水体中相对于单个菌投放更能显著提高幼参消化酶的活性。  相似文献   

13.
探讨了饲料中不同蛋白质和能量水平对建鲤幼鱼生长性能、体组成和消化酶活性的影响。其中,蛋白质(CP)的4个水平分别为26%、30%、33%和36%,可消化能(DE)的两个水平分别为13.5 MJ/kg和14.5 MJ/kg。选用建鲤幼鱼960尾随机分为8组,每组4个重复,每个重复30尾,养殖在规格为3.0 m×1.0 m×0.8 m的水箱中,每日投喂3次,试验期为8周。结果表明:增重率和特定生长率随蛋白质水平的升高呈升高趋势,但差异不显著(P>0.05);增重率、特定生长率和饲料系数随能量水平的升高显著改善(P<0.05);其中,CP36DE14.5组和CP33DE14.5组的增重率和特定生长率显著高于CP26DE13.5组、CP30DE13.5组和CP33DE13.5组(P<0.05),但与其他组间差异不显著(P>0.05);蛋白质效率和氮保留率随蛋白质水平的升高显著下降(P<0.01);此外,氮保留率随能量水平的升高显著升高(P<0.05);摄食率、肝体比和全鱼脂肪含量随蛋白质水平的升高显著下降(P<0.05),而水分则表现出相反的趋势(P<0.05);肠道蛋白酶活性随饲料蛋白质水平的升高显著升高(P<0.05),而脂肪酶和淀粉酶活性受饲料组成的影响则不显著(P>0.05)。由此可见,蛋白质水平为33%,能量水平为14.5 MJ/kg时,建鲤幼鱼有较好的生长性能和饲料系数;建鲤幼鱼能对无氮浸出物有很好的利用效果,并对蛋白质有一定的节约效应。研究亮点:本实验首次采用正交设计研究了不同蛋白质、能量水平及其交互作用对建鲤幼鱼生长性能、体组成和肠道消化酶活性的影响,探讨了不同能量水平下建鲤幼鱼的适宜蛋白质需求量。此外,饲料的能量水平是由无氮浸出物的含量调节的,因此也就间接考察了建鲤幼鱼对无氮浸出物的利用能力以及其对蛋白质的节约作用。本试验采用的是应用型饲料,更贴近实际生产,可以为建鲤饲料的科学配置提供基础数据和理论依据。  相似文献   

14.
为研究羽毛肽粉替代鱼粉对瓦氏黄颡鱼Pelteobagrus vachelli幼鱼生长、体成分和消化酶活力的影响,以基础饲料为对照,分别在基础饲料中添加5%、10%、15%、20%羽毛肽粉,饲喂初始体重(25±2)g试验鱼60d。结果表明,试验黄颡鱼增重率、特定生长率随羽毛肽粉添加水平升高呈先升后降趋势,添加水平为10%时,增重率达到最大值117.48%。当添加水平为15%、20%时,增重率、特定生长率显著下降(P0.05);摄食总量随着羽毛肽粉的添加水平也呈先升后降趋势,在10%时,摄食总量达到最大值。饲料系数随着羽毛肽粉添加水平增加呈升高趋势,5%添加组与对照组无显著性差异(P0.05),其余各组均显著高于对照组(P0.05);羽毛肽粉在20%添加水平内对瓦氏黄颡鱼幼鱼体蛋白质、灰分、脂肪、水分无显著性影响(P0.05);试验黄颡鱼肝胰腺胰蛋白酶活力随羽毛肽粉添加水平的升高呈升高趋势,5%添加水平组与对照组无显著差异(P0.05),但显著低于其余各组(P0.05);试验黄颡鱼肠胰蛋白酶活力与肝胰腺蛋白酶活力呈相似的变化趋势,当添加水平达15%时,肠胰蛋白酶活力与胰胰蛋白酶活力比值显著下降(P0.05);不同添加水平羽毛肽粉对试验黄颡鱼淀粉酶活性无显著性影响(P0.05);5%羽毛肽粉添加组的肠、肝胰腺脂肪酶活力最低,显著低于其他羽毛肽粉添加组与对照组(P0.05);羽毛肽粉添加水平至10%时,肠脂肪酶活力与对照组无显著性差异(P0.05),至15%时,肝胰脏脂肪酶活力与对照组无显著差异(P0.05);羽毛肽粉添加组瓦氏黄颡鱼肠胃蛋白酶活性显著高于对照组(P0.05),15%、20%添加组5%、10%添加组对照组,各组间肝胰腺胃蛋白酶活性无显著性差异。在瓦氏黄颡鱼饲料中可以适量添加羽毛肽粉,添加水平在10%以内时,可以显著提高瓦氏黄颡鱼摄食量,促进其生长。  相似文献   

15.
[目的]研究不同蛋糖比对草鱼幼鱼生长性能、体组成和肠道消化酶活性的影响,为草鱼营养需求研究及饵料配制提供参考依据.[方法]采用单因素设计,以饵料蛋糖比为影响因素,共配制6组等脂等能饵料,对应的蛋糖比值分别为2.00、1.50、1.14、0.88、0.67和0.50.草鱼幼鱼饲养于室内循环养殖系统中,日投饵3次,试验周期8周.[结果]蛋糖比对草鱼幼鱼存活率无显著影响(P>0.05,下同);末体重、增重率和特定生长率受饵料蛋糖比影响显著(P<0.05,下同),均随蛋糖比降低呈先升高后降低的变化趋势,在蛋糖比为0.88时达最高值;饵料系数同样受蛋糖比影响显著,且在蛋糖比为0.88时最低(1.72).随着饵料蛋糖比的降低,草鱼幼鱼蛋白效率比、氮保留率、脏体比、肝体比和腹脂率均显著升高,但对全鱼、胴体的蛋白和灰分含量无显著影响.全鱼水分含量随饵料蛋糖比的降低显著降低,而脂肪含量显著升高;胴体水分和脂肪含量及肝脏脂肪含量的变化趋势与全鱼一致.肠道蛋白酶和淀粉酶活性随着饵料蛋糖比降低呈先升高后降低的变化趋势,脂肪酶活性则显著升高.[结论]草鱼幼鱼饵料中添加适量糖可节约蛋白质,且适宜蛋白质和糖水平分别为30.61%和29.54%,最适蛋糖比为1.04;过高的饵料糖水平能显著增加草鱼幼鱼内脏器官的相对重量,促进体脂过度沉积和糖原合成.  相似文献   

16.
于2008年6月—2009年5月,对不同生长阶段(体重分别为5、10、20、30、40 g)仿刺参Apos-tichopus japonicus肠道内含物和消化酶进行了跟踪观测。结果表明:温度显著影响不同生长阶段仿刺参的肠道内含物和消化酶活性(P〈0.05);相同温度下,体重对肠道内含物和消化酶活性的影响也呈规律性。最小体重组(5 g组)仿刺参肠道内含物和淀粉酶、蛋白酶、纤维素酶的比活力,在温度为12.7~16.2℃时,分别在较低水平上平稳上升;在16.2~22.1℃时,迅速上升,在22.1℃时达到最大值,分别为33.13%、(1143±16.95)、(1188.42±34.13)、(118.06±0.56)U/g;在22.1~26.1℃时,在较高水平上平稳下降到24.39%、(934.57±63.46)、(983.56±23.58)、(116.11±0.33)U/g。与之相反,最大体重组(40g组)仿刺参肠道内含物和淀粉酶、蛋白酶、纤维素酶比活力,在温度为12.7~16.2℃时,在较高水平上平稳上升,在16.2℃时达到最大值,分别为49.32%、(1 366.49±45.02)、(1 556.32±37.05)、(121.23±0.45)U/g;在16.2~22.1℃时,迅速下降到较低水平;在22.1~26.1℃时,在较低水平上平稳下降,在26.1℃时达到最小值,分别为10.02%、(257.61±34.39)、(603.28±31.95)、(96.34±0.86)U/g。  相似文献   

17.
于2008年6月—2009年5月,对不同生长阶段(体重分别为5、10、20、30、40 g)仿刺参Apos-tichopus japonicus肠道内含物和消化酶进行了跟踪观测。结果表明:温度显著影响不同生长阶段仿刺参的肠道内含物和消化酶活性(P<0.05);相同温度下,体重对肠道内含物和消化酶活性的影响也呈规律性。最小体重组(5 g组)仿刺参肠道内含物和淀粉酶、蛋白酶、纤维素酶的比活力,在温度为12.716.2℃时,分别在较低水平上平稳上升;在16.216.2℃时,分别在较低水平上平稳上升;在16.222.1℃时,迅速上升,在22.1℃时达到最大值,分别为33.13%、(1143±16.95)、(1188.42±34.13)、(118.06±0.56)U/g;在22.122.1℃时,迅速上升,在22.1℃时达到最大值,分别为33.13%、(1143±16.95)、(1188.42±34.13)、(118.06±0.56)U/g;在22.126.1℃时,在较高水平上平稳下降到24.39%、(934.57±63.46)、(983.56±23.58)、(116.11±0.33)U/g。与之相反,最大体重组(40g组)仿刺参肠道内含物和淀粉酶、蛋白酶、纤维素酶比活力,在温度为12.726.1℃时,在较高水平上平稳下降到24.39%、(934.57±63.46)、(983.56±23.58)、(116.11±0.33)U/g。与之相反,最大体重组(40g组)仿刺参肠道内含物和淀粉酶、蛋白酶、纤维素酶比活力,在温度为12.716.2℃时,在较高水平上平稳上升,在16.2℃时达到最大值,分别为49.32%、(1 366.49±45.02)、(1 556.32±37.05)、(121.23±0.45)U/g;在16.216.2℃时,在较高水平上平稳上升,在16.2℃时达到最大值,分别为49.32%、(1 366.49±45.02)、(1 556.32±37.05)、(121.23±0.45)U/g;在16.222.1℃时,迅速下降到较低水平;在22.122.1℃时,迅速下降到较低水平;在22.126.1℃时,在较低水平上平稳下降,在26.1℃时达到最小值,分别为10.02%、(257.61±34.39)、(603.28±31.95)、(96.34±0.86)U/g。  相似文献   

18.
硒对草鱼生长、营养组成和消化酶活性的影响   总被引:3,自引:0,他引:3  
选用体长(10.16±0.14)cm,体重(21.20±0.24)g的草鱼种630尾,随机分为7个试验组,每组设置3个重复,每个重复30尾草鱼。在纯化饲料中添加0、0.15、0.3、0.6、1.2、2.4、4.8mg,/kg的硒,以0mg,/kg添加组为对照组,进行为期84d的生长试验以研究饲料不同硒水平对草鱼生长、营养组成和消化酶活性的影响。结果表明:饲料中添加硒能促进草鱼的生长,提高饲料效率,提高体蛋白含量,降低脂肪含量,提高草鱼消化酶活性。饲料硒对草鱼脂肪酶活性的影响最为显著(P〈0.05)。当硒添加量为0.6mg/kg时,草鱼的特定生长率、增重率、饲料效率、蛋白质效率和饲料蛋白沉积效率为最大值,与对照组相比,其特定生长率和饲料效率分别提高了28.37%和38.30%;草鱼鱼体蛋白含量最高,脂肪含量最低;草鱼的肝胰脏和肠道蛋白酶、淀粉酶以及脂肪酶活性均达最大值,其中肝胰脏和肠道脂肪酶活性分别比对照组提高了205.55%和249.33%。上述研究表明饲料中适量添加硒能提高消化酶活性,改善草鱼品质,促进生长。  相似文献   

19.
硒对草鱼生长、营养组成和消化酶活性的影响   总被引:1,自引:0,他引:1  
选用体长(10.16±0.14)cm,体重(21.20±0.24)g的草鱼种630尾,随机分为7个试验组,每组设置3个重复,每个重复30尾草鱼。在纯化饲料中添加0、0.15、0.3、0.6、1.2、2.4、4.8mg,/kg的硒,以0mg,/kg添加组为对照组,进行为期84d的生长试验以研究饲料不同硒水平对草鱼生长、营养组成和消化酶活性的影响。结果表明:饲料中添加硒能促进草鱼的生长,提高饲料效率,提高体蛋白含量,降低脂肪含量,提高草鱼消化酶活性。饲料硒对草鱼脂肪酶活性的影响最为显著(P〈0.05)。当硒添加量为0.6mg/kg时,草鱼的特定生长率、增重率、饲料效率、蛋白质效率和饲料蛋白沉积效率为最大值,与对照组相比,其特定生长率和饲料效率分别提高了28.37%和38.30%;草鱼鱼体蛋白含量最高,脂肪含量最低;草鱼的肝胰脏和肠道蛋白酶、淀粉酶以及脂肪酶活性均达最大值,其中肝胰脏和肠道脂肪酶活性分别比对照组提高了205.55%和249.33%。上述研究表明饲料中适量添加硒能提高消化酶活性,改善草鱼品质,促进生长。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号