首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to perform the comparative molecular characterization of avian influenza virus (AIV) H9N2, pathogenicity and seroprevalence in commercial and backyard poultry flocks. Fifty commercial poultry flocks were investigated between 2012 and 2015. Eighteen flocks (36%) out of 50 were positive HA. Seven (38.9%) out of 18 were positive by chromatographic strip test for AI common antigen. By Real-time RT-PCR, only two flocks were positive H9. The molecular characterization of two different AI-H9N2 viruses, one isolated from a broiler flock (A/chicken/Egypt/Mansoura-18/2013) and the other from a layer flock (A/chicken/Egypt/Mansoura-36/2015) was conducted on HA gene. Moreover, a higher seroprevalence, using the broiler strain as a known antigen, was shown in backyard chicken flocks 15/26 (57.7%) than duck flocks 9/74 (12.2%). Interestingly, the pathogenicity index (PI) of the H9N2 broiler strain in inoculated experimental chickens ranged from 1.2 (oculonasal route) to 1.9 (Intravenous route). The PI indicated a highly pathogenic effect, with high mortality (up to 100%) in the inoculated chickens correlated with the high mortality (80%) in the flock where the virus was isolated. The firstly recorded clinical signs, including cyanosis in the combs and wattles and subcutaneous haemorrhages in the leg shanks and lesions, as well as histopathology and immunohistochemistry, revealed a systemic infection of the high pathogenicity with the H9N2 virus. Conversely, the H9N2 layer strain showed a low pathogenicity. In conclusion, as a first report, the molecular analysis and pathogenicity of the tested strains confirmed the presence of a high pathogenicity AIV-H9N2 with systemic infections.  相似文献   

2.
Highly pathogenic influenza A virus subtype H5N1 causes significant poultry mortality in the six countries where it is endemic and can also infect humans. Egypt has reported the third highest number of poultry outbreaks (n = 1084) globally. The objective of this cross-sectional study was to identify putative risk factors for H5N1 infections in backyard poultry in 16 villages in Damietta, El Gharbia, Fayoum, and Menofia governorates from 2010–2012. Cloacal and tracheal swabs and serum samples from domestic (n = 1242) and wild birds (n = 807) were tested for H5N1 via RT-PCR and hemagglutination inhibition, respectively. We measured poultry rearing practices with questionnaires (n = 306 households) and contact rates among domestic and wild bird species with scan sampling. Domestic birds (chickens, ducks, and geese, n = 51) in three governorates tested positive for H5N1 by PCR or serology. A regression model identified a significant correlation between H5N1 in poultry and the practice of disposing of dead poultry and poultry feces in the garbage (F = 15.7, p < 0.0001). In addition, contact between domestic and wild birds was more frequent in villages where we detected H5N1 in backyard flocks (F = 29.5, p < 0.0001).  相似文献   

3.
4.
For infectious diseases such as highly pathogenic avian influenza caused by the H5N1 virus (A/H5N1 HP), early warning system is essential. Evaluating the sensitivity of surveillance is a necessary step in ensuring an efficient and sustainable system. Stochastic scenario tree modeling was used here to assess the sensitivity of the A/H5N1 HP surveillance system in backyard and free-grazing duck farms in Thailand. The whole surveillance system for disease detection was modeled with all components and the sensitivity of each component and of the overall system was estimated. Scenarios were tested according to selection of high-risk areas, inclusion of components and sampling procedure, were tested. Nationwide passive surveillance (SSC1) and risk-based clinical X-ray (SSC2) showed a similar sensitivity level, with a median sensitivity ratio of 0.96 (95% CI 0.40-15.00). They both provide higher sensitivity than the X-ray laboratory component (SSC3). With the current surveillance design, the sensitivity of detection of the overall surveillance system when the three components are implemented, was equal to 100% for a farm level prevalence of 0.05% and 82% (95% CI 71-89%) for a level of infection of 3 farms. Findings from this study illustrate the usefulness of scenario-tree modeling to document freedom from diseases in developing countries.  相似文献   

5.
本研究从有流感症状的病猪中分离到一株H9N2亚型猪流感病毒(SIV),命名为A/swine/Jiangsu/1/2015(SW/JS/1/15)。为探究其遗传特征和生物学特性,本研究采用RT-PCR技术扩增其全部基因节段后测序并进行遗传分析,并研究了其对鸡和豚鼠的致病特性。遗传进化分析显示,分离病毒SW/JS/1/15株是由BJ/94系、DK1系、G1系和F/98系4个分支病毒重组而成,8个基因节段均属于G57基因型。分离株HA蛋白裂解位点为PSRSSR*GL,符合低致病性流感病毒的特征。HA蛋白有9个潜在糖基化位点,其中218位糖基化位点缺失,145位与313位各新增一个糖基化位点。与疫苗株SH/F/98、SD/6/96、GD/SS/94相比,分离病毒HA抗原位点发生了G^90E、S^127R、S^145N、D^153G、N^167S、A^168N、A^198T、T^200R、N^201D、和Q^235M(H9numbering)突变;NA蛋白发生6个氨基酸突变:K^367R、K/E^368N、D^369N、D^401E、K^143N和T^434P。同时NA蛋白颈部缺失aa63~aa65。分离病毒的8个基因节段与2株禽源H9N2病毒的相应基因高度同源,其6个内部基因与两株人源H7N9病毒的内部基因高度同源。致病性试验结果显示分离病毒可以感染鸡和豚鼠,但不能在豚鼠群内水平传播,且可能作为H7N9等新型流感病毒内部基因供体,同时表明猪可以感染禽流感病毒(AIV),且可能是AIV获得感染哺乳动物能力的过渡宿主。本研究为H9N2亚型SIV的致病性以及遗传特征的研究提供科学依据。  相似文献   

6.
《中国兽医学报》2014,(6):874-882
2011—2012年,对我国广西活禽市场进行流行病学监测时从麻雀体内分离鉴定出1株H1亚型禽流感病毒(AIV),命名为A/Sparrow/Guangxi/GXs-1/2012(H1N2)。为了解该株H1亚型AIV的来源、特征及其分子演化规律,本研究对其全基因序列进行测定,并与GenBank登录的相关病毒进行遗传演化分析。结果表明:这株分离纯化的H1N2毒株HA基因切割位点附近的氨基酸序列为PSIQSR↓GLF,属于低致病力AIV的特征;NA基因与A/duck/Guangxi/GXd-2/2010(H6N2)在同一分支内,核苷酸同源性为98%;PB1与PB2基因与H5和H4亚型较为接近;PA基因与A/duck/Guangdong/E1/2012(H10N8)同源性最高;NP基因则与A/chicken/Pakistan/NARC-16945/2010(H3N1)同源性达97%;而NS与MP基因分别与A/wild duck/Korea/SH5-26/2008(H4N6)、A/duck/Shanghai/C84/2009(H3N2)同源性最高。因此,推测A/Sparrow/Guangxi/GXs-1/2012(H1N2)可能是不同来源的基因经过复杂重组演变后的1株重组病毒。  相似文献   

7.
A new strain of swine influenza A virus, designated A/Swine/Saint-Hyacinthe/150/90 has been isolated from pigs with severe proliferative and necrotizing pneumonia in Quebec. The antigenic characterization of the hemagglutinin was performed by hemagglutination inhibition test, immunoblot and indirect immunoprecipitation using polyclonal antisera. Only the last test was able to detect an antigenic relationship between the hemagglutinin of this isolate and an H3 subtype influenza virus. The immunoprecipitation test was a useful alternative for determining the hemagglutinin of influenza A virus subtypes. The neuraminidase inhibition test demonstrated a reactivity between the A/Swine/Saint-Hyacinthe/150/90 and antiserum against a N2 subtype influenza virus. Our results indicate that this new strain isolated for the first time in the porcine population of Canada is related to A/Sw/Hong Kong/76 H3N2 swine influenza virus.  相似文献   

8.
In this study, we describe the isolation and characterization of previously unreported Y280-lineage H9N2 viruses from two live bird markets in Korea in June 2020. Genetic analysis revealed that they were distinct from previous H9N2 viruses circulating in Korea and had highest homology to A/chicken/Shandong/1844/2019(H9N2) viruses. Their genetic constellation showed they belonged to genotype S, which is the predominant genotype in China since 2010, where genotype S viruses have infected humans and acted as internal gene donors to H5 and H7 zoonotic influenza viruses. Active surveillance and control measures need to be enhanced to protect the poultry industry and public health.  相似文献   

9.
本实验从河北地区疑似流感发病猪体内分离到一株病毒,经鉴定为H9N2亚型猪流感(SIV)病毒.将该分离株经滴鼻、点眼途径感染小鼠,观察临床症状和病理变化,同时对血凝素(HA)、神经氨酸酶(NA)、核蛋白(NP)和基质蛋白基因(M)进行克隆和序列测定,与GenBank中登录的相关序列进行比对并绘制系统发育进化树.致病性结果显示:感染小鼠出现精神不振,体重下降,并引起以弥漫性肺泡损伤为主的临床症状和病理变化.序列分析结果显示:该分离株与禽流感病毒(AW) A/chicken/Hebei/4/2008 (H9N2)(简称CK/HB/4/08)参考株的HA、NA、NP和M基因的核苷酸序列和推导的氨基酸序列的同源性最高.HA蛋白的裂解位点序列为PARSSR↓GLF,属于低致病性流感病毒的裂解位点.HA、NP、NA和M基因的遗传进化分析均显示该分离株与AIV的CK/HB/4/08株位于同一分支,具有较近的亲缘关系;由此推测该分离株可能是由CK/HB/4/08演化而来,并在跨物种传播的过程中发生了部分变异.  相似文献   

10.
11.
本研究对2005年~2006年广西和海南省疑似猪流感(SD)病猪的组织病料进行了病毒分离,并对分离毒株进行了亚型鉴定和生物学特性的研究.结果显示:分离的3株流感病毒均为H1N2亚型猪流感病毒(SIV).能凝集多种动物的红细胞,但凝集谱与以往报道略有不同;为热不稳定型病毒;在电镜下可观察到典型流感病毒粒子.动物试验显示:小白鼠、大白鼠和家兔对分离毒株不敏感,而豚鼠较敏感.能较好地复制出流感症状和病理变化;本体试验动物仅有轻微的临床症状,但能检测到抗体升高的变化,并能从鼻腔和上呼吸道检测和分离到SIV.核苷酸同源性分析显示:分离毒株Sw/GX/17/05、Sw/GX/13/06和Sw/HN/1/05的血凝素(HA)基因分别与基因重排H1N2 亚型SIV A/Swine/lndiana 9K035/99、A/SW/MN/23124-T/01和A/swine/Zhejiang/1/04的核苷酸同源性最高,分别达97.4%、97.0%和95.7%;神经氨酸酶(NA)基因均与基因重排H1N2 亚型流感病毒A/Trurkey/MO/24093/99 的核苷酸同源性最高,达97.2%~98.0%.核苷酸同源性分析进一步证实了分离毒株为基因重排H1N2亚型SIV.  相似文献   

12.
13.
免疫鸡群中分离的H9N2亚型禽流感病毒的分子特征研究   总被引:1,自引:0,他引:1  
为研究浙江省禽流感病毒(AIV)的流行病学情况,本实验应用鸡胚传代方法从AIV疫苗免疫鸡群中表现典型呼吸症状的产蛋鸡体内分离1株H9N2亚型AIV A/Chicken/Jiande/01/2009(H9N2)。氨基酸序列分析显示,HA受体结合位点出现了人流感病毒结合位点226L,M基因出现S31N的突变。遗传进化分析显示,A/Chicken/Jiande/01/2009的M基因和PB2基因属于G1-Like谱系,HA基因、NA基因和NS基因属于Ck/BJ/1/94-Like分支,而NP基因、PA基因和PB1基因属于Ck/SH/F/98-Like谱系。这些资料表明,A/Chicken/Jiande/01/2009(H9N2)为一株重排病毒。  相似文献   

14.
We compared the efficacy of 3 commercial vaccines against swine influenza A virus (SIV) and an experimental homologous vaccine in young pigs that were subsequently challenged with a variant H3N2 SIV, A/Swine/Colorado/00294/2004, selected from a repository of serologically and genetically characterized H3N2 SIV isolates obtained from recent cases of swine respiratory disease. The experimental vaccine was prepared from the challenge virus. Four groups of 8 pigs each were vaccinated intramuscularly at both 4 and 6 wk of age with commercial or homologous vaccine. Two weeks after the 2nd vaccination, those 32 pigs and 8 nonvaccinated pigs were inoculated with the challenge virus by the deep intranasal route. Another 4 pigs served as nonvaccinated, nonchallenged controls. The serum antibody responses differed markedly between groups. After the 1st vaccination, the recipients of the homologous vaccine had hemagglutination inhibition (HI) titers of 1:640 to 1:2560 against the challenge (homologous) virus. In contrast, even after 2nd vaccination, the commercial-vaccine recipients had low titers or no detectable antibody against the challenge (heterologous) virus. After the 2nd vaccination, all the groups had high titers of antibody to the reference H3N2 virus A/Swine/Texas/4199-2/98. Vaccination reduced clinical signs and lung lesion scores; however, virus was isolated 1 to 5 d after challenge from the nasal swabs of most of the pigs vaccinated with a commercial product but from none of the pigs vaccinated with the experimental product. The efficacy of the commercial vaccines may need to be improved to provide sufficient protection against emerging H3N2 variants.  相似文献   

15.
Yang H  Chen Y  Shi J  Guo J  Xin X  Zhang J  Wang D  Shu Y  Qiao C  Chen H 《Veterinary microbiology》2011,152(3-4):229-234
Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza.  相似文献   

16.
17.
A total of 1246 faecal and tissue samples collected/received from 119 farms located in various states of India were processed for isolation of avian influenza viruses (AIV) during 2003-2004 as part of a program to monitor AIV infection in Indian poultry population. Avian influenza virus was isolated for the first time in India from poultry farms with history of drop in egg production, respiratory illness and increased mortality in Haryana state. A total of 29 H9N2 AIV isolates were obtained from the states of Punjab, Haryana, Uttar Pradesh, Gujarat, and Orissa and Union Territory Delhi. Subtyping was done by HI, RT-PCR and neuraminidase inhibition assay. Pathotyping of six representative isolates by intravenous pathogenicity index (0.0/3.0) in 6-8 weeks old chicken, trypsin dependency in cell culture and HA cleavage site analysis (335RSSR*GLF341) confirmed that these isolates are low pathogenic. Nucleotide sequence analysis of the HA gene showed that the Indian isolates are very closely related (95.0-99.6%) and shared a homology of 92-96% with H9N2 isolates from Germany and Asian regions other than that of mainland China. Deduced amino acid sequences showed the presence of L226 (234 in H9 numbering) which indicates a preference to binding of alpha (2-6) sialic acid receptors. Two of the six isolates had 7 glycosylation sites in the HA1 cleaved protein and the remaining four had 5 sites. Phylogenetic analysis showed that they share a common ancestor Qa/HK/G1/97 isolate which had contributed internal genes of H5N1 virus circulating in Vietnam. Further characterization of Indian H9N2 isolates is required to understand their nature and evolution.  相似文献   

18.
禽流感 (AI)又名真性鸡瘟或欧洲鸡瘟 ,是由正粘病毒科 A型流感病毒引起的一种传染病 ,是国际兽医局规定的 A类烈性传染病。鸡、火鸡、鸭和鹌鹑等家禽及其他野禽均可感染。我们从新乡市某蛋鸡场分离鉴定 1株低致病力的 H9N2亚型的禽流感病毒毒株 ,现报告如下。1 材料与方法1.1 材料 病料来自河南职业技术师范学院禽病研究所接诊检验的病、死鸡。禽流感 A型琼扩抗原、标准阳性血清以及抗 HA、NA分型血清购自中国农科院哈尔滨兽医研究所 ;抗新城疫 (ND)血清和抗减蛋综合征 (EDS- 76 )血清由本院禽病研究所提供。 SPF鸡胚和雏鸡购自…  相似文献   

19.
The H3N2 subtype of influenza A viruses isolated from pigs in the United States and Canada has shown both genetic and antigenic diversity. The objective of this study was to determine the serologic and genetic characteristics of contemporary strains of these viruses. Genetic analysis of 18 reference strains and 8 selected strains demonstrated differences in 1% to 9% of the nucleotides of the hemagglutinin (HA) gene. Phylogenetic analysis of the HA gene revealed 3 genetic clusters, as well as divergence of cluster III viruses from a cluster III prototype virus (A/Swine/Illinois/21587/99). By means of 1-way cross-hemagglutination inhibition with antiserum against 5 field isolates and 3 vaccine viruses, most of 97 isolates tested could be placed in 1 of 3 serogroups. The several isolates that did not react with any antiserum were in genetic cluster III, which suggests that continuous antigenic drift in cluster III may have resulted in virus variants. The efficacy of commercial vaccines against these virus variants should be evaluated with vaccination and challenge studies.  相似文献   

20.
采用纯化的H3N2亚型猪流感病毒(SIV)尿囊液作为免疫原免疫6~8周龄Balb/c小鼠,取免疫小鼠脾细胞与骨髓瘤细胞(SP2/0)融合,用间接ELISA方法筛选分泌抗SIV-H3N2的阳性细胞株,经克隆获得7株亲和力较高的杂交瘤细胞株,分别命名为1C9、2C5、2F10、3D3、4E8、5C7、5D12,用其制备的腹水ELISA效价可达1×106。通过抗体亚型测定,间接免疫荧光试验及免疫印迹试验分析鉴定,该7株单抗均为抗H3N2亚型SIV的特异性单克隆抗体,而且与其他亚型猪流感病毒、猪细小病毒、猪繁殖与呼吸综合征病毒、猪圆环病毒和猪瘟病毒等均无交叉反应,为H3N2亚型SIV的鉴别诊断奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号